JPH03171517A - Manufacture of oxide superconductor wire material - Google Patents

Manufacture of oxide superconductor wire material

Info

Publication number
JPH03171517A
JPH03171517A JP1310021A JP31002189A JPH03171517A JP H03171517 A JPH03171517 A JP H03171517A JP 1310021 A JP1310021 A JP 1310021A JP 31002189 A JP31002189 A JP 31002189A JP H03171517 A JPH03171517 A JP H03171517A
Authority
JP
Japan
Prior art keywords
oxide superconductor
wire
halogenide
particulate
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1310021A
Other languages
Japanese (ja)
Inventor
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP1310021A priority Critical patent/JPH03171517A/en
Publication of JPH03171517A publication Critical patent/JPH03171517A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductor wire material, having an improved orientation property and high critical current density, by packing the halogenide particulate of a metallic element in a metal slender tube to form a desired shape, and then heat-treating the halogenide particulate in an oxidizing atmosphere including steam. CONSTITUTION:The halogenide particulate of a metallic element is mixed at a suitable ratio, packed in a silver or other metal slender tube, and wire-drawn and roll-treated to be formed into a desired shape and size. Then the halogenide particulate is oxidation-reacted in an oxidizing atmosphere including steam in a furnace having a given temperature gradient to form a superconducting wire material. This enables the generation of a nucleus to be restrained in the slender tube, and a large crystal to be produced in one direction to improve orientation property for obtaining a wire material having high critical current density. Also the manufacture of a coil or other specific shape articles can be eased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超伝導体線材の作製方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an oxide superconductor wire.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

臨界温度が液体窒素温度をしのぐ酸化物超伝導体が発見
されて、これを電磁石やジョセフソン素子等の超伝導機
器に応用するための研究が盛んに行われている。そのな
かでも線材の開発は超伝導電磁石を作製するうえで重要
なポイントとなる。
An oxide superconductor whose critical temperature exceeds that of liquid nitrogen has been discovered, and research is being actively conducted to apply it to superconducting devices such as electromagnets and Josephson devices. Among these, the development of wire rods is an important point in producing superconducting electromagnets.

現在まで、酸化物超伝導線材は、酸化物超伝導体の粉末
を銀シース等の細管(シースともいう)につめ、これに
線引き・圧延等の処理を施した後、熱処理することによ
って作製されてきた。この工法では圧延処理に際して、
一軸性の力をかけることによって板状の酸化物超伝導体
の結晶の配同性を高め、臨界電流密度の向上を図ること
ができる。
Until now, oxide superconducting wires have been produced by packing oxide superconductor powder into thin tubes (also called sheaths) such as silver sheaths, subjecting them to drawing, rolling, etc., and then heat-treating them. It's here. In this method, during the rolling process,
By applying a uniaxial force, it is possible to improve the conformation of the crystals of the plate-shaped oxide superconductor and improve the critical current density.

このような力学的な配向処理によって結晶の配向性を高
め、臨界電流密度の大きな酸化物超伝導体を得るために
は、酸化物超伝導体の結晶粒が大きいことが必要である
In order to improve crystal orientation through such mechanical orientation treatment and obtain an oxide superconductor with a large critical current density, it is necessary that the crystal grains of the oxide superconductor be large.

しかしながら、この場合結晶の大きさは原料として用い
た酸化物超伝導体粉末によって決定されてしまい、実際
のところ数10μm以上の粉末を用いることは困難であ
り、よって、臨界電流密度も77Kゼロ磁場中で1〜3
万A/cm”が限度である。
However, in this case, the size of the crystal is determined by the oxide superconductor powder used as a raw material, and in reality it is difficult to use powder larger than several tens of micrometers, so the critical current density is also 77K in the zero magnetic field. 1-3 inside
The limit is 10,000 A/cm.

比較的大きな結晶を持つ酸化物超伝導体として、ビスマ
ス(鉛)一ストロンチウムーカルシウム銅酸化物超伝導
体(以下Bi系酸化物超伝導体という)がある。このB
i系酸化物超伝導体は、結晶のアスペクト比(長さと厚
さの比)が非常に大きいため、配向させやすく、そのた
めゼロ磁場中の臨界電流密度は非常に大きい値を示して
いた,しかしながら、Bi系酸化物超伝導体の本質的な
性質のため、ビンとめ力と粒間の結合が弱く、1テスラ
以上の磁場下では臨界電流密度は数百八/cm2以下に
低下してしまっていた。
As an oxide superconductor having relatively large crystals, there is a bismuth (lead) monostrontium calcium cuprate superconductor (hereinafter referred to as a Bi-based oxide superconductor). This B
I-based oxide superconductors have a very large crystal aspect ratio (ratio of length to thickness), so they are easily oriented, and therefore the critical current density in zero magnetic field shows a very large value. Due to the essential properties of Bi-based oxide superconductors, the binding force and the bond between grains are weak, and the critical current density drops to less than a few hundred 8/cm2 under a magnetic field of 1 Tesla or more. Ta.

これに対してビン止め力の大きい酸化物超伝導体にイッ
トリウムーバリウムー銅酸化物超伝導体(以下Y系酸化
物超伝導体という)がある。このY系酸化物超伝導体の
ビンとめ力はBi系酸化物超伝導体より数倍大きいもの
である。
On the other hand, yttrium-barium-copper oxide superconductors (hereinafter referred to as Y-based oxide superconductors) are oxide superconductors that have a large bottle-holding force. The binding force of this Y-based oxide superconductor is several times greater than that of the Bi-based oxide superconductor.

しかしこのY系酸化物超伝導体はアスペクト比が非常に
小さくそのため配向性の良いものではなかった。
However, this Y-based oxide superconductor had a very small aspect ratio and therefore did not have good orientation.

また従来の酸化物超伝導体の作製方法では、熱処理の際
に超伝導体がシースの中で結晶成長することはなかった
。なぜならば、既に、酸化物超伝導体は多結晶粉末とし
てシースの内部に存在するため、結晶の核が多くあり過
ぎてより大きな結晶は戒長できないからである。
Furthermore, in conventional methods for producing oxide superconductors, crystals of the superconductor do not grow within the sheath during heat treatment. This is because the oxide superconductor already exists inside the sheath as a polycrystalline powder, so there are too many crystal nuclei and larger crystals cannot be formed.

シ〜スの内.部に酸化物超伝導体の粉末ではなく、原料
の酸化物(例えばY系酸化物超伝導体においては二酸化
二イットリウム、酸化バリウムもしくは過酸化バリウム
および酸化銅)の混合物を詰めて熱処理をおこなっても
事態は改善しない。すなわち、固相反応のおこる温度域
が極めて狭い(約50’C)ため、熱処理によってシー
ス内の至るところに容易に酸化物超伝導体の結晶核が多
く発生し、結果として多結晶体となってしまうからであ
る。
Within the series. Instead of oxide superconductor powder, a mixture of raw oxides (for example, diyttrium dioxide, barium oxide, or barium peroxide, and copper oxide for Y-based oxide superconductors) is filled in the oxide superconductor, and heat treatment is performed. The situation does not improve. In other words, because the temperature range in which solid-state reactions occur is extremely narrow (approximately 50'C), heat treatment easily generates many crystal nuclei of the oxide superconductor throughout the sheath, resulting in a polycrystalline state. This is because

結晶粒の大きさは熱処理の温度によって変わるが、せい
ぜい、数lOμmである。
The size of the crystal grains varies depending on the temperature of the heat treatment, but is at most several 10 μm.

従ってシース内に酸化物超伝導体の大型結晶を戒長させ
るには核の発生を抑制することが必要である。
Therefore, in order to grow large crystals of oxide superconductor within the sheath, it is necessary to suppress the generation of nuclei.

本発明はシース内においての核の発生を抑制し、大きな
結晶粒を生じさせることで配向性を向上させ、臨界電流
密度の大きな酸化物超伝導体を得ることを目的とするも
のである。
The present invention aims to suppress the generation of nuclei within the sheath, improve orientation by producing large crystal grains, and obtain an oxide superconductor with a high critical current density.

〔問題を解決するための手段〕[Means to solve the problem]

上記の目的を達威するため本発明は酸化物超伝導体を構
成する金属元素のハロゲン化物の微粒子を金属の細管(
シース)に詰め、線引き、圧延等の過程によって所望の
形状またはサイズに形成したのち、水蒸気を含む酸化性
雰囲気中で熱処理することにより、酸化物超伝導体線材
を作製するものである。
In order to achieve the above-mentioned object, the present invention utilizes fine particles of a halide of a metal element constituting an oxide superconductor.
An oxide superconductor wire is produced by packing the wire into a sheath), forming it into a desired shape or size through processes such as wire drawing and rolling, and then heat-treating it in an oxidizing atmosphere containing water vapor.

本発明の方法による酸化物超伝導体線材は.酸化物超伝
導体を構成する金属元素ハロゲン化物微粒子を適当な比
率で混合したものを銀もしくは他の適当な金属の細管(
シース)に詰め、これを線引き・圧延処理して、所望の
形状・サイズに形成し、場合によってはコイル等の特殊
な形状に加工したのち、これを水蒸気を含む酸化性雰囲
気中で熱処理することで形成される。
The oxide superconductor wire produced by the method of the present invention is. A mixture of metal element halide fine particles constituting the oxide superconductor in an appropriate ratio is placed in a thin tube of silver or other suitable metal (
Sheath), which is drawn and rolled to form the desired shape and size, and in some cases processed into a special shape such as a coil, and then heat treated in an oxidizing atmosphere containing water vapor. is formed.

即ち本願発明は、原料に金属ハロゲン化物を用いて酸化
反応を行わせることにより酸化物超伝導体を作製する際
に、金属ハロゲン化物を水蒸気と反応させることで酸化
反応を行わせると、結晶或長の基になる核の発生を抑制
できることを知見したことに基づくものである。
That is, the present invention provides that when producing an oxide superconductor by performing an oxidation reaction using a metal halide as a raw material, if the metal halide is reacted with water vapor to perform an oxidation reaction, crystals or This is based on the discovery that it is possible to suppress the generation of nuclei that form the basis of long hair.

金属シース中に上記ハロゲン化物の混合物を詰めてこれ
を水蒸気を含む酸素雰囲気中にさらしたとすると、まず
、金属シースの外側から浸透した水蒸気の拡散によって
酸化反応が起こり、核が発生する。しかし、核の発生は
多くはなく、酸化反応の起こっている領域にはまだ多く
のハロゲン化物が残存しており、核の発生する領域は限
られていることが走査型電子顕微鏡により確認された。
When a metal sheath is filled with the above halide mixture and exposed to an oxygen atmosphere containing water vapor, an oxidation reaction occurs due to the diffusion of water vapor that has penetrated from the outside of the metal sheath, generating nuclei. However, scanning electron microscopy confirmed that not many nuclei were generated, and many halides still remained in the area where the oxidation reaction was occurring, and that the area where nuclei were generated was limited. .

以後、反応は内部に進んでゆくが、酸化物超伝導体の結
晶或長は表面付近に発生した少数の核を中心に成長する
。この威長過程は表面から中心に向かって、C軸方向に
おこり、走査型電子顕微鏡による観察からは、金属シー
スの上に酸化物超伝導体の板状結晶が積層しているよう
すが見られる。
Thereafter, the reaction proceeds internally, and the crystals of the oxide superconductor grow around a small number of nuclei generated near the surface. This elongation process occurs in the C-axis direction from the surface to the center, and observation using a scanning electron microscope shows that plate-shaped crystals of the oxide superconductor are stacked on top of the metal sheath. .

前記酸化反応の際に予め、酸化物超伝導体の粒子が存在
しているとそれが結晶成長核となってより一層結晶の戒
長が制御できる。
If oxide superconductor particles are present in advance during the oxidation reaction, they serve as crystal growth nuclei and the crystal length can be further controlled.

また、シースの内径が十分小さいか、シースが押しつぶ
されてその幅が十分小さければ、結晶の配同性はより向
上する。
Furthermore, if the inner diameter of the sheath is sufficiently small, or if the sheath is compressed and its width is sufficiently small, the conformation of the crystal will be further improved.

原料のハロゲン化物の混合物はできるだけ粒子の細かい
ものがのぞましい。そのため原子オーダでの混合が可能
なスプレードライ法などはこのような微粒子混合粉末を
作製するのに最適な方法である。
It is desirable that the raw material halide mixture has as fine particles as possible. Therefore, the spray drying method, which allows mixing on the atomic order, is the most suitable method for producing such a fine particle mixed powder.

このようなハロゲン化物を詰めたシースを温度勾配を有
する炉を通過させて熱処理をおこなえば、結晶は一方向
に巨大な結晶となり、このような線材は極めて高い臨界
電流密度を示すものになる.本発明において用いられる
金属ハロゲン化物としては厚さが100μm以下のもの
が望ましい。
If a sheath filled with such a halide is heat-treated by passing it through a furnace with a temperature gradient, the crystals will form huge crystals in one direction, and such wires will exhibit extremely high critical current densities. The metal halide used in the present invention preferably has a thickness of 100 μm or less.

この程度の厚さまでのものであれば結晶成長が配向方向
に生じやすくなるからである。
This is because crystal growth tends to occur in the orientation direction if the thickness is up to this level.

本発明における加熱処理は水蒸気のみによっても行うこ
とができるが、水草気に酸素その他を添加した酸化性雰
囲気で行ってもよい。
The heat treatment in the present invention can be performed using only water vapor, but it may also be performed in an oxidizing atmosphere in which oxygen or other substances are added to the aquatic plants.

熱処理するときは10″C/Cm以上の温度勾配を有す
る炉を用いることが望ましい。10゜C/cm未満では
結晶化がシースのいろいろな場所で数多く発生してしま
い、大きな結晶を戒長させることができなくなるからで
ある。
When heat-treating, it is desirable to use a furnace with a temperature gradient of 10°C/cm or more. If the temperature is less than 10°C/cm, many crystals will occur in various places on the sheath, causing large crystals to grow. This is because it becomes impossible to do so.

また金属元素のハロゲン化物の微粒子を細管内に詰める
際、酸化物超伝導体を添加しても差支えない。酸化物超
伝導体が添加されていれば、それが結晶威長の核となっ
てより一層結晶の戒長が制御できるものである。
Further, when filling fine particles of a halide of a metal element into a capillary, an oxide superconductor may be added. If an oxide superconductor is added, it will serve as the core of the crystal length and the crystal length can be further controlled.

本発明において金属の細管は、代表的なものとしでは銀
が用いられるが、高温で酸化物超伝導体と反応しないも
のであり、かつ水蒸気を浸透させることのできるもので
あればその他の金属あるいは合金を用いてもよい。
In the present invention, silver is typically used as the metal capillary, but other metals or other metals can be used as long as they do not react with the oxide superconductor at high temperatures and are permeable to water vapor. Alloys may also be used.

以下に実施例を示し、より詳細に本発明を説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

r実施例1J 本実施例は、イノトリウムーバリウムー銅酸化物超伝導
体(以下Y系酸化物超伝導体という)の配向性を向上さ
せることを目的としたものである。
r Example 1J This example was aimed at improving the orientation of an innotrium-barium-copper oxide superconductor (hereinafter referred to as Y-based oxide superconductor).

Y系酸化物超伝導体はピン止め力が大きく、Bi系酸化
物超伝導体のピン止め力より数倍大きいものであるが、
アスペクト比が小さいため配向性はよくなかった。
Y-based oxide superconductors have a large pinning force, which is several times larger than that of Bi-based oxide superconductors.
The orientation was not good because the aspect ratio was small.

従ってもし、シースの内部にシースの長手方向に巨大な
結晶を成長させることができれば、その線材は極めて配
同性の高いものとなると予想される。
Therefore, if giant crystals can be grown inside the sheath in the longitudinal direction of the sheath, it is expected that the wire will have extremely high conformation.

そこでここでは化学式 YBa2CuJ7−xで表され
る超伝導体の線材を形成する例を示す。
Therefore, an example of forming a superconductor wire represented by the chemical formula YBa2CuJ7-x will be shown here.

先ずみかけの組成式がYBazCuJ+:+となるよう
にスプレードライ法で作製したフッ化物を内径1mm、
肉厚0.2mmの銀シースに充填した。このようなシー
スを100本束にして、線引きを行い、フン化物の部分
の直径を約50μmにした。さらにこの線材に圧延処理
を施し、フッ化物の部分を短径10μm、長径200μ
mの楕円形のテープ状線材にした。このテープ状線材を
温度勾配が50゜(: /cmである電気炉に1 cm
/時の速度で入れていった。電気炉には、水蒸気を含ん
だ酸素気流を流した。電気炉の最高温度は900゜Cで
あった。この熱処理が終了したのち、このテープ状線材
は、温度勾配のない電気炉の酸素中900゜Cで24時
間アニ−ルされ、さらに酸素中400゜Cで24時間ア
ニールした。
First, a fluoride prepared by a spray drying method so that the apparent compositional formula was YBazCuJ+:+ was prepared with an inner diameter of 1 mm,
A silver sheath with a wall thickness of 0.2 mm was filled. A bundle of 100 such sheaths was drawn and the diameter of the fluoride portion was approximately 50 μm. Furthermore, this wire is rolled, and the fluoride part is 10 μm in the short axis and 20 μm in the long axis.
It was made into a tape-shaped wire with an oval shape of m. This tape-shaped wire was placed in an electric furnace with a temperature gradient of 50° (1 cm).
I put it in at a speed of / hour. An oxygen stream containing water vapor was passed through the electric furnace. The maximum temperature of the electric furnace was 900°C. After this heat treatment was completed, the tape-shaped wire rod was annealed at 900°C in oxygen for 24 hours in an electric furnace with no temperature gradient, and further annealed at 400°C in oxygen for 24 hours.

このようにして得られた線材を適当な長さに切出し磁場
中での臨界電流密度を測定した.その結果を第1表に示
す。結晶の配同性が改善されたため、従来の線材で報告
されていた臨界電流密度の値(77K、ゼロ磁場で10
000 A/c己程度)よりl桁以上大きな値が得られ
ている。
The wire thus obtained was cut to an appropriate length and the critical current density in a magnetic field was measured. The results are shown in Table 1. Due to improved crystal orientation, the critical current density value (77K, 10
000 A/c).

第1表 〔実施例2〕 本実施例はYBazCu+Ot−Xで表される超伝導体
の線材を形収する際、金属のシースとして合金を使用し
た例である。
Table 1 [Example 2] This example is an example in which an alloy is used as a metal sheath when molding a superconductor wire represented by YBazCu+Ot-X.

実施例1と同様にみかけのm戒弐がYBazCu3F1
となるようにスプレードライ法で作製したフッ化物を内
径1mm、肉厚0.3印の組成式YzBaCuで表され
るイットリウムーバリウムー銅の合金のシースに詰め、
これを100本束ねて線引き加工を施し、フッ化物の部
分の直径を約10μmの細い線状に加工した。この線材
を温度勾配が40゜C/cmである電気炉にlcm/時
の速度で入れていった。
As in Example 1, the apparent m precept is YBazCu3F1.
The fluoride prepared by the spray drying method was packed into a sheath of yttrium-barium-copper alloy represented by the composition formula YzBaCu with an inner diameter of 1 mm and a wall thickness of 0.3, and
100 of these were bundled and wire-drawn to form a thin wire with a diameter of about 10 μm at the fluoride portion. This wire was placed into an electric furnace with a temperature gradient of 40°C/cm at a rate of 1cm/hour.

電気炉には、水蒸気を含んだ酸素気流を流した。An oxygen stream containing water vapor was passed through the electric furnace.

電気炉の最高温度は9 3 0 ’Cであった。The maximum temperature of the electric furnace was 930'C.

この熱処理が終了したのち、線材を温度勾配のない電気
炉の酸素中9 0 0 ’Cで24時間アニールサれ、
さらに酸素中4 0 0 ”Cで12時間アニールした
After this heat treatment is completed, the wire is annealed for 24 hours at 900'C in oxygen in an electric furnace with no temperature gradient.
Further, it was annealed at 400''C in oxygen for 12 hours.

このようにして得られた線材を適当な長さに切出し磁場
中での臨界電流密度を測定した.その結果を第2表に示
す。結晶の配同性が改善されたため、従来の線材で報告
されていた臨界電流密度の値(77K、ゼロ磁場テIO
OOO A/c+fl程度)ヨリI桁以上大きな値が得
られている。
The wire thus obtained was cut to an appropriate length and the critical current density in a magnetic field was measured. The results are shown in Table 2. Due to improved crystal orientation, the critical current density value (77K, zero magnetic field TeIO) reported for conventional wires has been improved.
OOO A/c+fl) A value larger than I order of magnitude is obtained.

第2表 [実施例3〕 本実施例はYBazCu:+O,−xのテープ状線材を
得るためのものである。実施例1と同様にみかけの組成
弐がYBazCu3F+:vとなるようにスプレードラ
イ法で作製したフン化物を内径1祁、肉厚0.2 mm
の1艮シースに充填した。このようなシースを100本
束ねて、各シースの外径が約0. 1 mmになるまで
線引きした。線引きが終了した状態ではシースの断面は
円形である。次にこのシースの束に圧延処理を施した。
Table 2 [Example 3] This example is for obtaining a tape-shaped wire of YBazCu: +O, -x. Similar to Example 1, a fluoride was prepared by spray drying so that the apparent composition was YBazCu3F+:v, and the inner diameter was 1 mm and the wall thickness was 0.2 mm.
One sheath was filled. When 100 such sheaths are bundled, each sheath has an outer diameter of approximately 0. The line was drawn to 1 mm. The cross section of the sheath is circular when the wire drawing is completed. Next, this bundle of sheaths was subjected to a rolling process.

この週程でシースは押し潰され、各シースは厚さ約5μ
mのテープ状となった。このテープ状線材を温度勾配が
60゜(: / cmである電気炉にICTI1/時の
速度で入れていった。電気炉には、水蒸気を含んだ酸素
気流を流した。電気炉の最高温度は8 5 0 ”Cで
あった。この熱処理が終了したのち、線材を温度勾配の
ない電気炉の酸素中800℃で24詩間アニールされ、
さらに酸素中400゜Cで24時間7二−ルした。
In this week or so, the sheaths will be crushed and each sheath will be approximately 5μ thick.
It became a tape-like shape. This tape-shaped wire rod was put into an electric furnace with a temperature gradient of 60° (: / cm) at a rate of ICTI 1/hour. An oxygen stream containing water vapor was passed through the electric furnace. The maximum temperature of the electric furnace was After this heat treatment was completed, the wire was annealed for 24 cycles at 800°C in oxygen in an electric furnace with no temperature gradient.
Further, the mixture was heated in oxygen at 400°C for 7 hours for 7 hours.

このようにして得られた線材を適当な長さに切出し磁場
中での臨界電流密度を測定した.その結果を第3表に示
す。
The wire thus obtained was cut to an appropriate length and the critical current density in a magnetic field was measured. The results are shown in Table 3.

シースが押しつぶされてテープ状となり、その幅が十分
小さいため、結晶の配同性はシース管の場合に比べ向上
し、その結果として結晶の配向性もシース管に比べて、
より改善されたものであったため臨界電流密度も大きな
ものが得られた。
The sheath is crushed into a tape-like shape, and its width is sufficiently small, so the crystal orientation is improved compared to a sheathed tube, and as a result, the crystal orientation is also improved compared to a sheathed tube.
Since this was further improved, a large critical current density was also obtained.

第3表 〔効果〕 本発明は、原料に金属ハロゲン化物を用いて酸化反応を
行わせることにより酸化物超伝導体を作製する際に、金
属ハロゲン化物を水蒸気と反応させることで酸化反応を
行わせることにより、シース内においての核の発生を抑
制し、大きな結晶粒を生じさせることで配向性の向上し
た酸化物超伝導体が得られるとともに、臨界電流密度の
大きな酸化物超伝導体線材を得ることができるものであ
り、しかも得られた酸化物超伝導体線材は磁場に対する
叱界電流密度の低下も小さく実用的なものである。
Table 3 [Effects] In the present invention, when producing an oxide superconductor by performing an oxidation reaction using a metal halide as a raw material, the oxidation reaction is performed by reacting the metal halide with water vapor. By suppressing the generation of nuclei within the sheath and producing large crystal grains, an oxide superconductor with improved orientation can be obtained, and an oxide superconductor wire with a high critical current density can be produced. Moreover, the obtained oxide superconductor wire has a small decrease in field current density with respect to a magnetic field and is of practical use.

また本発明は、所望の形状またはサイズに形成したのち
、水蒸気を含む酸化性雰囲気中で熱処理するものである
ため、酸化物超伝導体の形或の前の段階でコイルや他の
特殊な形状物の作製が可能であるので、超伝導電磁石等
の機器の作製が極めて容易であり、そのため広い分野に
わたって使用される超伝導機材に適用可能となるもので
ある。
Furthermore, in the present invention, after forming the oxide superconductor into a desired shape or size, it is heat-treated in an oxidizing atmosphere containing water vapor. Since it is possible to manufacture objects, it is extremely easy to manufacture devices such as superconducting electromagnets, and therefore it can be applied to superconducting equipment used in a wide range of fields.

Claims (1)

【特許請求の範囲】[Claims] (1)酸化物超伝導体を構成する金属元素のハロゲン化
物の微粒子を金属の細管に詰め、線引き、圧延等の過程
によって所望の形状またはサイズに形成したのち、水蒸
気を含む酸化性雰囲気中で熱処理することを特徴とする
酸化物超伝導体線材の作製方法。
(1) Fine particles of the halide of the metal element constituting the oxide superconductor are packed into a thin metal tube, formed into a desired shape or size by a process such as wire drawing or rolling, and then placed in an oxidizing atmosphere containing water vapor. A method for producing an oxide superconductor wire characterized by heat treatment.
JP1310021A 1989-11-29 1989-11-29 Manufacture of oxide superconductor wire material Pending JPH03171517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310021A JPH03171517A (en) 1989-11-29 1989-11-29 Manufacture of oxide superconductor wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1310021A JPH03171517A (en) 1989-11-29 1989-11-29 Manufacture of oxide superconductor wire material

Publications (1)

Publication Number Publication Date
JPH03171517A true JPH03171517A (en) 1991-07-25

Family

ID=18000204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310021A Pending JPH03171517A (en) 1989-11-29 1989-11-29 Manufacture of oxide superconductor wire material

Country Status (1)

Country Link
JP (1) JPH03171517A (en)

Similar Documents

Publication Publication Date Title
JPH04212215A (en) Manufacture of bismuthal oxide superconductor
JPWO2006011302A1 (en) Superconducting wire manufacturing method
JPH03171517A (en) Manufacture of oxide superconductor wire material
Fischer et al. Fabrication and properties of Bi-2223 tapes
Gao et al. Effect of annealing on superconductivity of Pb‐doped Bi‐Sr‐Ca‐Cu‐O single‐crystal superconductors
JP4925639B2 (en) RE123 oxide superconductor and manufacturing method thereof
JPH07115924B2 (en) Method for manufacturing oxide superconductor
JP3006071B2 (en) Method for producing Tl-based oxide superconductor
JP3167316B2 (en) Method for producing Tl-based oxide superconductor
JPH01251518A (en) Manufacture of oxide superconductive wire and oxide superconductive multi-core
JP2942896B2 (en) Oxide superconductor wire and method of making
JPH08106823A (en) Manufacture of oxide superconductive wire material
JPH05816A (en) Oxide superconductor production and superconducting wire
JPH01243314A (en) Manufacture of oxide superconductive multiconductor wire
JP3013253B2 (en) Oxide superconductor wire and method of making
JPH08241635A (en) Oxide superconductive wire material and manufacture thereof
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JPH05101719A (en) Oxide superconductive wire rod and manufacture thereof
JPH0471113A (en) Manufacture of oxide superconducting wire
JPH06168635A (en) Compound superconducting wire material and manufacture thereof
JP2007087813A (en) Bi-BASED SUPERCONDUCTOR AND MANUFACTURING METHOD THEREOF, Bi-BASED SUPERCONDUCTIVE WIRE, AND Bi-BASED SUPERCONDUCTIVE EQUIPMENT
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JPH0447611A (en) Manufacture of oxide superconducting wire
JPH01163911A (en) Wire drawing method for oxide type superconductor
JPH03230423A (en) Manufacture of thallium oxide superconducting wire rod