JPH08241635A - Oxide superconductive wire material and manufacture thereof - Google Patents

Oxide superconductive wire material and manufacture thereof

Info

Publication number
JPH08241635A
JPH08241635A JP7047127A JP4712795A JPH08241635A JP H08241635 A JPH08241635 A JP H08241635A JP 7047127 A JP7047127 A JP 7047127A JP 4712795 A JP4712795 A JP 4712795A JP H08241635 A JPH08241635 A JP H08241635A
Authority
JP
Japan
Prior art keywords
silver
oxide
oxide superconducting
wire
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7047127A
Other languages
Japanese (ja)
Inventor
Seiji Hayashi
征治 林
Kazuyuki Shibuya
和幸 渋谷
Takashi Hase
隆司 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7047127A priority Critical patent/JPH08241635A/en
Publication of JPH08241635A publication Critical patent/JPH08241635A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE: To obtain the oxide superconducting wire material, which can improve the strength of sheath material and to which drawing can be performed, by forming the wire material of the blunt silver, which is arranged adjacent to the oxide superconductor so as to surround the superconductor, and the silver, which includes the predetermined quantity of at least one kind of MgO, NiO for surrounding the blunt silver. CONSTITUTION: An AgNi0.3 Mg0.3 alloy pipe as a sheath 1 is arranged most outside, and hexagonal pipes 3 filled with the raw material powder 2 of oxide superconductor 4 are inserted into the alloy pipe for fixation. After drawing is performed to the hexagonal blunt silver pipes 3, the heating that the temperature is raised from the room temperature to 835 deg.C at 400 deg.C/h, and maintained at 835 deg.C for eight hours, and furthermore, raised from 835 deg.C to 890 deg.C in four hours, and maintained at 890 deg.C for 10 minutes, and thereafter, gradually cooled from 890 deg.C to 835 deg.C at 5 deg.C/h, and cooled from 835 deg.C to the room temperature 10 about six hours is performed so as to manufacture the oxide superconducting wire material. As the raw material of the superconductor 4, Bi, Sr, Ca, Cu are mixed at Bi:Sr:Ca:Cu=2:2:1:2 of the atomic molar ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分解能NMR等強磁
場発生のためのマグネットを製作するために用いられる
酸化物超電導線材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting wire used for producing a magnet for generating a strong magnetic field such as high resolution NMR.

【0002】[0002]

【従来の技術】超電導現象は抵抗ゼロで大電流を流しう
るという特長を活かして大電流送電、強磁場発生機器な
ど各方面での利用が拡がりつつある。現在このような実
用に供されているのは、NbTi、Nb3Sn 等の俗に金属系と
呼ばれている材料である。近年、臨界温度が液体窒素温
度を超える酸化物系超電導体が発見され、この材料によ
り超電導応用はさらに拡大するものと期待されている。
この酸化物超電導材料は臨界温度が高いことの他に、臨
界磁場(超電導性を保持できる最高磁場)が金属系材料
に比較して飛躍的に大きいという特長も併せ持ってい
る。この特長を活かして超強磁場マグネットの最内層コ
イルとしての応用が期待されている。
2. Description of the Related Art The superconducting phenomenon is being widely used in various fields such as high-current power transmission and strong magnetic field generation equipment by taking advantage of the fact that a large current can flow with zero resistance. Presently used for such practical use are materials commonly called metallic materials such as NbTi and Nb3Sn. In recent years, oxide superconductors whose critical temperature exceeds liquid nitrogen temperature have been discovered, and it is expected that this material will further expand superconducting applications.
In addition to having a high critical temperature, this oxide superconducting material also has the feature that the critical magnetic field (the maximum magnetic field that can maintain superconductivity) is dramatically larger than that of metallic materials. Utilizing this feature, it is expected to be applied as the innermost layer coil of a super strong magnetic field magnet.

【0003】[0003]

【発明が解決しようとする課題】さて、この強磁場マグ
ネットの最内層コイルの超電導線材には強磁場のもとで
大電流を流すので強大な電磁力が働く。例えば、20T の
中で3Tを発生する典型的な内層コイルの場合、線材に働
く引張り応力は数百MPa にも達する。このため、酸化物
超電導材料はセラミックスであるため変形し、この変形
で臨界電流密度(Jc)がすぐに低下してしまう。酸化物
超電導材料が耐えられる変形量は 0.2%程度である。
A large electric current is applied to the superconducting wire of the innermost coil of the strong magnetic field magnet under a strong magnetic field, so that a strong electromagnetic force is exerted. For example, in the case of a typical inner layer coil generating 3T in 20T, the tensile stress acting on the wire reaches several hundred MPa. Therefore, since the oxide superconducting material is ceramics, it is deformed, and the critical current density (Jc) is immediately lowered by this deformation. The amount of deformation that an oxide superconducting material can withstand is about 0.2%.

【0004】従来製造されていた酸化物超電導線材は酸
化物超電導材料を純銀で包んだいわゆる銀シース線材と
いわれるものであった。純銀は強度が弱く(ヤング率が
低く)、上述した様な高磁場内で用いようとすると歪が
0.5%程度以上にもなり、このままでは使うことはでき
ない。このため、銀シース線材の強度を高めることが一
部で試みられている。野村らは、銀にMgO やNiO を添加
することで銀シースの強度が向上することを報告してい
る(93年度秋期低温工学・超電導学会予稿集p.32)。
The oxide superconducting wire that has been conventionally manufactured is a so-called silver sheath wire in which the oxide superconducting material is wrapped with pure silver. Pure silver has weak strength (low Young's modulus), and distortion occurs when it is used in a high magnetic field as described above.
It is about 0.5% or more, and it cannot be used as it is. Therefore, some attempts have been made to increase the strength of the silver sheath wire. Nomura et al. Have reported that the addition of MgO or NiO to silver improves the strength of the silver sheath (Autumn 1993 Autumn Low Temperature Engineering and Superconductivity Society Proceedings p.32).

【0005】しかしながら、この方法を用いて、銀にMg
O 、NiO を添加したパイプを作り、これに酸化物超電導
材料原料粉末を詰めて伸線・加工を施そうとすると、パ
イプが硬くなったことが災いして、伸線・加工途中段階
でパイプに亀裂が入り破損してしまうのが一般的であっ
た。すなわち、引張り強度が強く、かつ伸線加工のでき
る酸化物超電導線材とその製造方法の開発が強く望まれ
ていた。
However, using this method, silver is replaced by Mg.
When a pipe with O 2 and NiO added was made and the powder of oxide superconducting material was packed into this pipe for wire drawing and processing, the pipe became hard and the pipe was damaged during the drawing and processing. It was common for cracks to occur and damage. That is, it has been strongly desired to develop an oxide superconducting wire having a high tensile strength and capable of being drawn, and a manufacturing method thereof.

【0006】本発明は、上記の問題点を解決するために
なされたもので、シース材料の強度を高め、かつ伸線加
工ができる酸化物超電導線材とその製造方法を提供する
ことを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an oxide superconducting wire capable of increasing the strength of a sheath material and performing wire drawing, and a method for producing the same. .

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、酸化物
超電導体に隣接して、前記酸化物超電導体を包む純銀
と、さらにこれを包む MgO、NiO の少なくとも一種をM
g、Niに換算して0.01〜0.5 質量%含む銀とから構成さ
れる酸化物超電導線材である。
Means for Solving the Problems The gist of the present invention is to provide pure silver surrounding the oxide superconductor adjacent to the oxide superconductor and at least one of MgO and NiO surrounding the pure silver.
An oxide superconducting wire composed of 0.01 to 0.5 mass% of silver converted to g and Ni.

【0008】また、酸化物超電導体原料粉を封入した純
銀パイプを、Mg、Niの少なくとも一種を0.01〜0.5 質量
%含む銀合金で包んで複合体とし、この複合体を伸線加
工した後、酸素を含む雰囲気中で熱処理して MgO、NiO
の少なくとも一種を前記銀合金中に析出分散させる酸化
物超電導線材の製造方法である。
Further, a pure silver pipe filled with oxide superconductor raw material powder is wrapped with a silver alloy containing 0.01 to 0.5 mass% of at least one of Mg and Ni to form a composite, and this composite is wire-drawn. Heat treated in an atmosphere containing oxygen to MgO, NiO
Is a method for producing an oxide superconducting wire, in which at least one of the above is deposited and dispersed in the silver alloy.

【0009】さらに、伸線加工後の熱処理を、酸素を含
む雰囲気中で 800〜900 ℃の温度で5〜50時間行う上記
の酸化物超電導線材の製造方法である。
Further, in the above method for producing an oxide superconducting wire, the heat treatment after wire drawing is carried out at a temperature of 800 to 900 ° C. for 5 to 50 hours in an atmosphere containing oxygen.

【0010】[0010]

【作用】本発明者らは、銀シースの強度を高めるため
に、次のような実験を行った。すなわち、Mg、Niを含む
銀合金を熱処理して内部酸化させ、MgO 、NiO を析出す
ることによって銀シースの強度を高める方法について検
討した。表1に示す組成の銀合金を、 850℃の温度で大
気中で熱処理し、時間に対する酸化浸透深さについて調
べた。その結果を図1に示す。
The present inventors conducted the following experiment in order to increase the strength of the silver sheath. That is, a method of increasing the strength of the silver sheath by heat treating a silver alloy containing Mg and Ni to internally oxidize it and depositing MgO 2 and NiO 2 was examined. The silver alloys having the compositions shown in Table 1 were heat-treated in the atmosphere at a temperature of 850 ° C., and the oxidation penetration depth with respect to time was examined. The result is shown in FIG.

【0011】図1に示すように、時間と共に酸化が浸透
し内部のMg、NiはそれぞれMgO 、NiO に変化していくこ
とを見出した。Mg、Niをそれぞれ 0.3%ずつ含む典型的
な場合、 850℃、大気中 5時間の熱処理で表面から約70
μm の深さまで酸化が浸透した。Mg、Niが酸化されない
状態の銀合金は純銀と加工性は大差なく、伸線加工は非
常に容易である。本発明はこの知見に基づいてなされた
ものである。すなわち、本発明はMg、Niのうちの少なく
とも一種を含んだ銀合金を銀シースとし、伸線加工後熱
処理を行い銀シース中のMg、Niを適量酸化析出させて銀
シースを高強度化するものである。
As shown in FIG. 1, it has been found that oxidation permeates with time and the internal Mg and Ni change to MgO and NiO, respectively. In the typical case of containing Mg and Ni at 0.3% respectively, heat treatment at 850 ° C for 5 hours in air will give about 70
The oxidation penetrated to a depth of μm. The workability of silver alloys in which Mg and Ni are not oxidized is not so different from that of pure silver, and wire drawing is very easy. The present invention has been made based on this finding. That is, the present invention uses a silver alloy containing at least one of Mg and Ni as a silver sheath, and heat-treats after wire drawing to oxidize and deposit an appropriate amount of Mg and Ni in the silver sheath to enhance the strength of the silver sheath. It is a thing.

【0012】[0012]

【表1】 [Table 1]

【0013】銀合金に含むMg、Ni量は、量が多すぎると
硬くなり、熱処理前の加工性が低下するので、上限は
0.5質量%とした。一方、量が少なすぎると熱処理後のM
gO 、NiO による高強度化が期待できなくなるので、下
限は0.01質量%とした。
If the amount of Mg or Ni contained in the silver alloy is too large, the amount of Mg and Ni becomes hard and the workability before heat treatment deteriorates.
It was 0.5% by mass. On the other hand, if the amount is too small, M after heat treatment
Since gO 2 and NiO 2 cannot be expected to have high strength, the lower limit was made 0.01% by mass.

【0014】伸線加工後に行う熱処理は、酸素を含む雰
囲気中で、 800〜900 ℃の温度で 5〜50時間行う。その
理由は、酸化浸透に十分な時間を確保するためと、酸化
物超電導体の焼結・高配向化を促し、十分高いJcを確保
するためである。処理温度に関しては、 800℃未満で熱
処理した時には酸化物超電導体の焼結が進まないため、
これ以上にする必要がある。また、 900℃を超えて加熱
すると Bi-系酸化物粉末が分解溶融する。この時、 CaO
が固相として残存しており、これを冷却していく際にそ
のまま CaOが固体非超電導不純物として残存する。これ
が酸化物超電導体の結晶性と配向性を低下させ、Jcの向
上を妨げる。したがって、熱処理温度の上限は 900℃と
する必要がある。
The heat treatment performed after wire drawing is carried out at a temperature of 800 to 900 ° C. for 5 to 50 hours in an atmosphere containing oxygen. The reason for this is to secure a sufficient time for oxidative permeation and to promote sintering and high orientation of the oxide superconductor to secure a sufficiently high Jc. Regarding the processing temperature, when the oxide superconductor does not sinter when heat-treated at less than 800 ° C,
It needs to be more than this. Also, when heated above 900 ° C, the Bi-based oxide powder decomposes and melts. At this time, CaO
Remains as a solid phase, and as it cools, CaO remains as a solid non-superconducting impurity. This lowers the crystallinity and orientation of the oxide superconductor and hinders the improvement of Jc. Therefore, the upper limit of the heat treatment temperature must be 900 ° C.

【0015】[0015]

【実施例】以下に、本発明の実施例について説明する。
実施例の酸化物超電導線材の製造手順を図2に示す。実
施例では多芯構造線材を例示するが、単芯構造線材も本
発明の範疇に含まれることは言うまでもない。酸化物超
電導線材の製造手順は以下の通りである。
EXAMPLES Examples of the present invention will be described below.
The manufacturing procedure of the oxide superconducting wire of the example is shown in FIG. In the examples, a multi-core structured wire is illustrated, but it goes without saying that a single-core structured wire is also included in the scope of the present invention. The manufacturing procedure of the oxide superconducting wire is as follows.

【0016】本発明例は、シース1となるAgNi0.3Mg0.3
合金パイプを最外周に配置し、この中に、酸化物超電導
体4の原料粉末2を封入した6角形状のパイプ3を装入
固定した。本発明例では6角形状のパイプ3は純銀パイ
プである。これを伸線加工した後、大気雰囲気中で室温
から 835℃まで 400℃/hで昇温、 835℃で 8時間保持、
835℃〜890 ℃まで 4時間で昇温、 890℃で10分間保
持、 890℃〜 835℃までを 5℃/hで徐冷し、 835℃から
室温までは約 6時間かけて炉冷するという熱処理で酸化
物超電導線材を製造した。なお、酸化物超電導体4の原
料となる粉末は、Bi、Sr、Ca、Cuを原子モル比 Bi:Sr:C
a:Cu=2:2:1:2となるように混合したものである。
The example of the present invention is AgNi 0.3 Mg 0.3 which is the sheath 1.
An alloy pipe was arranged on the outermost periphery, and a hexagonal pipe 3 in which the raw material powder 2 of the oxide superconductor 4 was enclosed was charged and fixed therein. In the example of the present invention, the hexagonal pipe 3 is a pure silver pipe. After wire drawing, raise the temperature from room temperature to 835 ° C at 400 ° C / h in air, hold at 835 ° C for 8 hours,
It is said that the temperature is raised from 835 ° C to 890 ° C in 4 hours, kept at 890 ° C for 10 minutes, gradually cooled from 890 ° C to 835 ° C at 5 ° C / h, and the furnace is cooled from 835 ° C to room temperature in about 6 hours. An oxide superconducting wire was manufactured by heat treatment. The powder used as the raw material of the oxide superconductor 4 contains Bi, Sr, Ca and Cu in an atomic molar ratio of Bi: Sr: C.
It is a mixture such that a: Cu = 2: 2: 1: 2.

【0017】比較例1は、本発明例の最外周の銀合金パ
イプに替えて純銀パイプを用い、本発明例と全く同じ工
程で酸化物超電導線材を製造した。これは従来の銀シー
ス酸化物超電導線材の製造方法に相当するものである。
In Comparative Example 1, a pure silver pipe was used in place of the outermost silver alloy pipe of the present invention example, and an oxide superconducting wire was manufactured in exactly the same steps as the present invention example. This corresponds to the conventional method for producing a silver sheath oxide superconducting wire.

【0018】比較例2は、本発明例の最外周の銀合金パ
イプに替えてMgO 、NiO をそれぞれMg、Niに換算して
0.3質量%添加した銀パイプを用い、本発明例と全く同
じ工程で酸化物超電導線材を製造した。しかしながら、
この場合は前述のように加工性が悪く、最終熱処理に至
る前に最外周のパイプが破損してしまい、臨界電流密度
測定には至らなかった。
In Comparative Example 2, instead of the outermost silver alloy pipe of the present invention, MgO and NiO were converted into Mg and Ni, respectively.
An oxide superconducting wire was manufactured in exactly the same process as in the example of the present invention using a silver pipe added with 0.3% by mass. However,
In this case, the workability was poor as described above, and the outermost pipe was broken before the final heat treatment, and the critical current density could not be measured.

【0019】比較例3は、最外周のパイプおよび酸化物
超電導体の原料粉末を封入する6角形状のパイプを、Ag
Ni0.3Mg0.3合金パイプとし、本発明例と全く同じ工程で
酸化物超電導線材を製造した。
In Comparative Example 3, the outermost pipe and the hexagonal pipe for enclosing the raw material powder of the oxide superconductor are made of Ag.
Using an Ni 0.3 Mg 0.3 alloy pipe, an oxide superconducting wire was manufactured in exactly the same process as the example of the present invention.

【0020】上記の製造手順で製造した酸化物超電導線
材について、温度4.2K、外部磁場20T における臨界電流
密度Jcとヤング率を測定した。その結果を表2に示す。
The critical current density Jc and Young's modulus of the oxide superconducting wire manufactured by the above manufacturing procedure were measured at a temperature of 4.2K and an external magnetic field of 20T. The results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】表2に示すように、比較例1の純銀シース
の場合は、Jcは十分な大きさであるものの、ヤング率が
30GPaと小さく強度不足のものしか得られなかった。比
較例2においては、ヤング率が 75GPaと十分な強度であ
るものの、加工途中で最外周のパイプが破断し最終形状
まで伸線加工することができなかった。
As shown in Table 2, in the case of the pure silver sheath of Comparative Example 1, Jc was sufficiently large, but the Young's modulus was
Only 30 GPa and insufficient strength were obtained. In Comparative Example 2, although the Young's modulus was 75 GPa, which was a sufficient strength, the outermost peripheral pipe broke during processing, and wire drawing could not be performed to the final shape.

【0023】比較例3は、最終的に強度ではほぼ十分な
改善が認められるが、Jcは比較例1の 1/8しかなく、実
用レベルに至らなかった。この線材について、 SQUIDを
用いて帯磁率の温度変化を測定した。その結果を図3に
示す。図3に示すように、超電導転移の開始温度は Bi-
系2212相の転移温度 80K近傍にあるものの、遷移域が非
常に広い。これは、酸化物超電導体がMg、Ni含有銀合金
と直接接しているため超電導体サイドへMg、Niが熱処理
時に拡散して酸化物超電導体の特性を劣化させたものと
見られる。
In Comparative Example 3, the strength was finally improved almost completely, but Jc was only 1/8 of that in Comparative Example 1, and it was not at a practical level. The change in magnetic susceptibility of this wire was measured using SQUID. The result is shown in FIG. As shown in Fig. 3, the onset temperature of superconducting transition is Bi-
Although the transition temperature of system 2212 phase is near 80K, the transition region is very wide. This is considered to be because the oxide superconductor was in direct contact with the silver alloy containing Mg and Ni, so that Mg and Ni diffused to the side of the superconductor during the heat treatment and deteriorated the characteristics of the oxide superconductor.

【0024】一方、本発明例においては、Jcは十分な大
きさで、強度も十分な強さが確保され、実用的線材が得
られている。この線材について、 SQUIDを用いて帯磁率
の温度変化を測定した。その結果を図4に示す。図4に
示すように、超電導転移の開始温度は 80K近傍であり、
遷移域も非常に狭い。これを比較例3に照らして考える
と、酸化物超電導体に直接接してこれを包むように純銀
を配したことにより、熱処理時のMg、Ni拡散による酸化
物超電導体の汚染が防止されたものと考えられる。
On the other hand, in the examples of the present invention, Jc has a sufficient size and sufficient strength is secured, and a practical wire rod is obtained. The change in magnetic susceptibility of this wire was measured using SQUID. FIG. 4 shows the results. As shown in Figure 4, the onset temperature of superconducting transition is around 80K,
The transition area is also very narrow. Considering this in comparison with Comparative Example 3, it was determined that the oxide superconductor was prevented from being contaminated by the diffusion of Mg and Ni during the heat treatment by arranging pure silver so as to directly contact and wrap the oxide superconductor. Conceivable.

【0025】[0025]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、実用に供しうる大きい臨界電流密度Jc
と強度を有する酸化物超電導線材を得ることができる。
As is apparent from the above description,
According to the present invention, a practically large critical current density Jc
An oxide superconducting wire having high strength can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】表1に示す組成の銀合金を、 850℃の温度で大
気中で熱処理した時の、時間に対する酸化浸透深さを示
す図である。
FIG. 1 is a diagram showing the depth of oxidation penetration with respect to time when a silver alloy having the composition shown in Table 1 was heat-treated in the atmosphere at a temperature of 850 ° C.

【図2】実施例の酸化物超電導線材の製造手順を示す図
である。
FIG. 2 is a diagram showing a procedure for manufacturing an oxide superconducting wire according to an example.

【図3】比較例3における帯磁率の温度変化を示す図で
ある。
FIG. 3 is a diagram showing changes in magnetic susceptibility with temperature in Comparative Example 3.

【図4】本発明例における帯磁率の温度変化を示す図で
ある。
FIG. 4 is a diagram showing changes in magnetic susceptibility with temperature in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…シース、2…原料粉末、3…6角形状のパイプ、4
…超電導体。
1 ... sheath, 2 ... raw material powder, 3 ... hexagonal pipe, 4
… Superconductors.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体に隣接して、前記酸化物
超電導体を包む純銀と、さらにこれを包む MgO、NiO の
少なくとも一種をMg、Niに換算して0.01〜0.5 質量%含
む銀とから構成されることを特徴とする酸化物超電導線
材。
1. Pure silver surrounding the oxide superconductor adjacent to the oxide superconductor, and silver containing at least one of MgO and NiO in 0.01 to 0.5 mass% in terms of Mg and Ni. An oxide superconducting wire, which is characterized by being composed of
【請求項2】 酸化物超電導体原料粉を封入した純銀パ
イプを、Mg、Niの少なくとも一種を0.01〜0.5 質量%含
む銀合金で包んで複合体とし、この複合体を伸線加工し
た後、酸素を含む雰囲気中で熱処理して MgO、NiO の少
なくとも一種を前記銀合金中に析出分散させることを特
徴とする酸化物超電導線材の製造方法。
2. A pure silver pipe filled with oxide superconductor raw material powder is wrapped with a silver alloy containing 0.01 to 0.5 mass% of at least one of Mg and Ni to form a composite, and the composite is wire-drawn. A method for producing an oxide superconducting wire, comprising heat treating in an atmosphere containing oxygen to precipitate and disperse at least one of MgO and NiO in the silver alloy.
【請求項3】 伸線加工後の熱処理を、酸素を含む雰囲
気中で 800〜900 ℃の温度で 5〜50時間行うことを特徴
とする請求項2記載の酸化物超電導線材の製造方法。
3. The method for producing an oxide superconducting wire according to claim 2, wherein the heat treatment after wire drawing is performed in an atmosphere containing oxygen at a temperature of 800 to 900 ° C. for 5 to 50 hours.
JP7047127A 1995-03-07 1995-03-07 Oxide superconductive wire material and manufacture thereof Pending JPH08241635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7047127A JPH08241635A (en) 1995-03-07 1995-03-07 Oxide superconductive wire material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7047127A JPH08241635A (en) 1995-03-07 1995-03-07 Oxide superconductive wire material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08241635A true JPH08241635A (en) 1996-09-17

Family

ID=12766486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7047127A Pending JPH08241635A (en) 1995-03-07 1995-03-07 Oxide superconductive wire material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08241635A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203703A (en) * 2002-12-26 2004-07-22 Chubu Electric Power Co Inc Bi BASED OXIDE SUPERCONDUCTOR
CN110911047B (en) * 2019-11-15 2021-10-01 西部超导材料科技股份有限公司 Preparation method of Bi-2212 superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203703A (en) * 2002-12-26 2004-07-22 Chubu Electric Power Co Inc Bi BASED OXIDE SUPERCONDUCTOR
CN110911047B (en) * 2019-11-15 2021-10-01 西部超导材料科技股份有限公司 Preparation method of Bi-2212 superconducting wire

Similar Documents

Publication Publication Date Title
JP3386942B2 (en) Oxide superconducting coil and manufacturing method thereof
JPH0268820A (en) Electric conductor in the form of wire or cable
EP0837512B1 (en) Improved performance of oxide dispersion strengthened superconductor composites
US3836404A (en) Method of fabricating composite superconductive electrical conductors
Sekine et al. Studies on the composite processed Nb-Hf/Cu-Sn-Ga high-field superconductors
US4153986A (en) Method for producing composite superconductors
JP4033375B2 (en) MgB2-based superconductor and manufacturing method thereof
JPH08241635A (en) Oxide superconductive wire material and manufacture thereof
Miao et al. Development of Bi‐2212 Conductors for Magnet Applications
JP3778971B2 (en) Oxide superconducting wire and method for producing the same
JP3920606B2 (en) Powder method Nb (3) Method for producing Sn superconducting wire
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
JP2003331660A (en) Metal-sheathed superconductor wire, superconducting coil, and its manufacturing method
JP2916382B2 (en) Method for producing Nb3Sn superconductor
Fischer et al. Fabrication of Bi-2223 tapes
JPH06275146A (en) Composite superconducting wire
Inoue et al. New superconducting Nb3Al MF wire made by Nb/Al Mg composite process
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
Slimani et al. Fabrication Technologies of Superconducting Cables and Wires
JPH028335A (en) Sheath for manufacturing of oxide superconducting wire rod
JP3848449B2 (en) Manufacturing method of oxide superconducting wire
JP2727565B2 (en) Superconductor manufacturing method
JP2633868B2 (en) Oxide superconducting wire
Sharma et al. Improved superconducting properties of the composite-processed V3Ga wires with changed configuration
Tenbrink et al. Manufacture and properties of Bi-2212-based Ag-sheathed wires

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000404