JPH08106823A - Manufacture of oxide superconductive wire material - Google Patents

Manufacture of oxide superconductive wire material

Info

Publication number
JPH08106823A
JPH08106823A JP6241021A JP24102194A JPH08106823A JP H08106823 A JPH08106823 A JP H08106823A JP 6241021 A JP6241021 A JP 6241021A JP 24102194 A JP24102194 A JP 24102194A JP H08106823 A JPH08106823 A JP H08106823A
Authority
JP
Japan
Prior art keywords
silver
superconducting
temperature
heat treatment
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6241021A
Other languages
Japanese (ja)
Inventor
Toshiya Doi
俊哉 土井
Kazuhisa Higashiyama
和寿 東山
Mitsuzo Nagamura
光造 長村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6241021A priority Critical patent/JPH08106823A/en
Publication of JPH08106823A publication Critical patent/JPH08106823A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE: To form a superconductivity applied device of superior performances by having all the triaxiality of crystal orientation of a supercooductive material so as to provided with extremely high superconductive critical current density. CONSTITUTION: Powder of Bi2 O3 , SrO, CaO, and CuO of purity 99% or more are mixed so as to have an atomic rate of Bi:Sr:Cu=2:2:1:2. This mixture is put in an aluminum crucible and calcinated in an air flow of, for example, 20% of oxygen and 80% of nitrogen under 800 deg.C for 24 hours. This is pulverized again in a glove in which 100% of nitrogen gas is flown and the POWDER is filled in a silver pipe of 99.99% purity. This is wire-drawn, for example, to an outer diameter of 1.5mm by a drawing bench under being kept at 160 deg.C, for example, and after that, is rolled into, for example, the thickness of 0.07mm under being kept at 160 deg.C. This is cut into 3cm and heat treated in an air flow of 20% of oxygen and 80% of nitrogen. The superconductive material are thus provided with all the triaxiality of crystal orientation so that extremely high superconductive critical current density can be obtained. This is set to superconductive wire material BSCC 1 and silver 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物系超電導物質を
用いた超電導線材の構成と作製方法に関するものであ
り、磁場中においても高い超電導臨界電流密度Jcを流
すことが可能である超電導線材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure and a manufacturing method of a superconducting wire using an oxide superconducting material, which is capable of flowing a high superconducting critical current density Jc even in a magnetic field. Regarding

【0002】[0002]

【従来の技術】1986年に最初の酸化物高温超電導物
質が発見されて以来、数十種類以上に及ぶ酸化物超電導
物質が発見されている。それらの中でも、物質の安定性
が高い、合成が比較的容易,結晶の配向化(結晶を特定
の向きに揃えること)が行いやすく、超電導輸送電流密
度(トランスポートJc)の高い値ものを得易い等の理
由から、
2. Description of the Related Art Since the discovery of the first oxide high temperature superconducting material in 1986, more than several tens of oxide superconducting materials have been discovered. Among them, a substance having high stability, relatively easy to synthesize, easy to orient the crystal (align the crystal in a specific direction), and have a high superconducting transport current density (transport Jc) can be obtained. For reasons such as easy

【0003】[0003]

【化2】 (Bi1-X1PbX1)2Sr2Can-1Cun2n+4 …(化2) ここで、 0≦X1≦0.4 n=1,2,3 (以下、BSCCと略す) の組成式で表される超電導物質を中心に高温超電導線材
の開発が進められている。
[Chemical Formula 2] (Bi 1-X1 Pb X1 ) 2 Sr 2 Can 1 Cu n O 2n + 4 (Chemical Formula 2) where 0 ≦ X1 ≦ 0.4 n = 1, 2, 3 (hereinafter, The development of high-temperature superconducting wire is underway, centering on the superconducting material represented by the composition formula of BSCC).

【0004】高温超電導線材を作製する為の具体的な手
法として代表的なものとしては、例えば、応用物理,第
62巻,第5号,1993年,455ページに紹介され
ているような、銀シース法を挙げることができる。
As a typical concrete method for producing a high temperature superconducting wire, for example, silver as introduced in Applied Physics, Vol. 62, No. 5, 1993, p. 455. The sheath method can be mentioned.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は、超電
導物質BSCCと複合化される銀の結晶の方向に配慮が
なされておらず、その結果、超電導物質の結晶の方位が
十分にそろっておらず、従って超電導臨界電流密度(J
c)が十分に高いものが得られていなかった。
The above prior art does not consider the direction of the silver crystal complexed with the superconducting material BSCC, and as a result, the orientation of the crystal of the superconducting material is sufficiently aligned. Therefore, the superconducting critical current density (J
No sufficiently high c) was obtained.

【0006】[0006]

【課題を解決するための手段】上記目的は、BSCCと
複合化される銀の結晶の方向を揃えることによって達成
される。
The above object is achieved by aligning the directions of silver crystals to be complexed with BSCC.

【0007】銀の結晶の方位を揃える為には、超電導線
材を作製する工程のうちの、線引きと圧延の工程を、温
度を100〜250℃に保った状態で行えば良い。この
温度で加工した後、400℃以上の温度でアニールする
ことで、BSCCと複合化される銀が、いわゆる立方体
集合組織を有するようになる。立方体集合組織とは、例
えば、長嶋晋一編著「集合組織」丸善株式会社出版の1
33,185ページに記載のあるように{100}<0
01>方位の集合組織のことである。ただし、実際に超
電導線材を作製する際には、銀管の内部に充填したBS
CCの粉末が十分に接合されなければならないので、熱
処理の温度は、最低でも700℃以上、好ましくは82
0℃以上でなければならない。このときの最適な熱処理
温度は、BSCCの組成、及び熱処理する際の雰囲気
(主には酸素分圧)によって数十度の範囲で異なってく
る。
In order to make the orientations of silver crystals uniform, the drawing and rolling steps in the step of producing a superconducting wire may be carried out while maintaining the temperature at 100 to 250 ° C. After processing at this temperature, by annealing at a temperature of 400 ° C. or higher, the silver complexed with BSCC has a so-called cubic texture. The cubic texture is, for example, 1 of "Fabric" published by Maruzen Co., Ltd., edited by Shinichi Nagashima.
As described on pages 33 and 185, {100} <0
It is a texture of 01> direction. However, when actually manufacturing the superconducting wire, the BS filled inside the silver tube
The temperature of the heat treatment is at least 700 ° C. or higher, preferably 82 ° C., because the CC powder must be well bonded.
Must be above 0 ° C. The optimum heat treatment temperature at this time varies within a range of several tens of degrees depending on the composition of BSCC and the atmosphere (mainly oxygen partial pressure) at the time of heat treatment.

【0008】立方体集合組織を有している銀は結晶の
{100}面が圧延面に平行でかつ<100>方向が線
材の長手方向を向いている。この様に銀の結晶集合組織
を制御することによって、銀とBSCCの複合体である
超電導線材の超電導臨界電流密度(Jc)を高くでき
る。
In silver having a cubic texture, the {100} plane of the crystal is parallel to the rolling plane and the <100> direction is the longitudinal direction of the wire. By controlling the crystal texture of silver in this manner, the superconducting critical current density (Jc) of the superconducting wire which is a composite of silver and BSCC can be increased.

【0009】[0009]

【作用】我々は、超電導線材を作製するときには、超電
導物質の結晶のa,b,c軸が全て同じ方向を向いてい
る(3軸配向)ようにしてやった方がより高いJcを持
った超電導体が出来ることを見いだした。そこで超電導
物質を3軸配向させて高いJcを持つ超電導線材の作製
方法を考案した。
When a superconducting wire is manufactured, it is better that the a, b, and c axes of the crystal of the superconducting substance are oriented in the same direction (triaxial orientation). I found that my body was able to do it. Therefore, we devised a method for producing a superconducting wire having a high Jc by orienting the superconducting substance in three axes.

【0010】従来から行われているような、銀の管にB
SCCの粉末もしくは熱処理すればBSCCとなる前駆
体の粉末を充填し、それを室温で線引き,圧延し、更に
熱処理するような線材作製方法では、BSCCの結晶の
向きが十分に揃わず、温度4.2K,磁場20T中にお
けるJcも数万A/cm2程度と実用化にはもう一歩の向
上が望まれていた。
B is used for silver tubes, as has been done conventionally.
In a wire rod manufacturing method in which SCC powder or a precursor powder which becomes BSCC when heat-treated is filled, drawn at room temperature, rolled, and further heat-treated, the crystal orientation of BSCC is not sufficiently aligned, The Jc in a magnetic field of 20T at 0.2K was about tens of thousands of A / cm 2, and there was a demand for further improvement in practical use.

【0011】本発明による超電導線材の作製方法では、
超電導物質の回りにある銀の組織が立方体集合組織とな
る。銀とBSCCが接する部分では、BSCCの結晶の
向きが銀の結晶の方位に影響を受けながら成長する。従
って、銀が立方体集合組織となっている場合には、BS
CCが3軸配向するようになって、その結果、本発明に
よる超電導線材では非常に高いJcを得ることができ
る。
In the method for producing a superconducting wire according to the present invention,
The silver texture around the superconducting material becomes the cubic texture. In the portion where silver and BSCC are in contact with each other, the crystal orientation of BSCC grows while being influenced by the crystal orientation of silver. Therefore, if silver has a cubic texture, BS
The CC is triaxially oriented, and as a result, a very high Jc can be obtained in the superconducting wire according to the present invention.

【0012】また、純銀の代わりに立方体集合組織を有
する銀と金の合金,銀とパラジウムの合金,銀と銅の合
金,銀のマトリックス相にMgOを分散させた分散強化
型合金,銀のマトリックス相に金属間化合物を分散させ
た分散強化型合金を使用した場合にも、同様に高いJc
が得られるものと考えられる。
Further, instead of pure silver, an alloy of silver and gold having a cubic texture, an alloy of silver and palladium, an alloy of silver and copper, a dispersion strengthening alloy in which MgO is dispersed in a silver matrix phase, and a silver matrix. Even when a dispersion strengthening alloy in which an intermetallic compound is dispersed in a phase is used, the high Jc is similarly high.
Is considered to be obtained.

【0013】[0013]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0014】(実施例1)まず最初に、銀管の中に充填
する超電導物質を作製した。原子比でBi:Sr:C
a:Cu=2:2:1:2となるように、純度99%以
上のBi23,SrO,CaO,CuOの粉末を混合す
る。この混合粉をアルミナ製るつぼに入れて、20%酸
素80%窒素気流中で800℃で24時間焼成した。こ
れを再び100%窒素ガスを流したグローブ中で粉砕
し、この粉末を純度99.998% の銀パイプ(内径4
mm,外径6mm)に充填した。これを、160℃に保った
状態で、外径1.5mm までドローベンチで線引きし、そ
の後、160℃に保ったまま、厚さ0.07mm まで圧延
した。これを3cmの長さに切断した。これを20%酸素
80%窒素気流中で熱処理した。熱処理の温度条件は、
室温から800℃まで5時間,800℃から860℃ま
で2時間で昇温し、860℃で10分間保持し、870℃
まで30分で昇温し、870℃で5分間保持し、800
℃まで15時間で冷却し、800℃から室温までは5時
間で冷却した。図1に作製した超電導線材試料の説明図
を示す。図中、1はBSCCで、2は銀である。
(Example 1) First, a superconducting substance to be filled in a silver tube was prepared. Bi: Sr: C in atomic ratio
Powders of Bi 2 O 3 , SrO, CaO, and CuO having a purity of 99% or more are mixed so that a: Cu = 2: 2: 1: 2. This mixed powder was placed in an alumina crucible and fired at 800 ° C. for 24 hours in a stream of 20% oxygen and 80% nitrogen. This was crushed again in a glove which had been flushed with 100% nitrogen gas, and this powder was powdered with a silver pipe of 99.998% purity (internal diameter 4
mm, outer diameter 6 mm). This was drawn at a draw bench to an outer diameter of 1.5 mm while being kept at 160 ° C., and then rolled to a thickness of 0.07 mm while being kept at 160 ° C. This was cut into a length of 3 cm. This was heat-treated in a stream of 20% oxygen and 80% nitrogen. The temperature conditions for heat treatment are
Room temperature to 800 ° C for 5 hours, 800 ° C to 860 ° C for 2 hours, hold at 860 ° C for 10 minutes, 870 ° C
Up in 30 minutes, hold at 870 ° C for 5 minutes, 800
It cooled to 15 degreeC in 15 hours, and cooled from 800 degreeC to room temperature in 5 hours. The explanatory view of the produced superconducting wire rod sample is shown in FIG. In the figure, 1 is BSCC and 2 is silver.

【0015】X線回折測定で熱処理後の試料の表面の銀
の結晶の方位を調べたところ、約80%の結晶粒の{1
00}面がテープ表面に平行でかつその<100>方位
が圧延を掛けた方向に平行に揃っていることが確認でき
た。
When the orientation of silver crystals on the surface of the sample after the heat treatment was examined by X-ray diffraction measurement, about 80% of crystal grains {1
It was confirmed that the {00} plane was parallel to the tape surface, and its <100> orientation was parallel to the rolling direction.

【0016】熱処理後の試料の超電導臨界電流密度Jc
を直流四端子法で測定した。4.2Kでは、ゼロ磁場で5
00,000A/cm2,8Tの磁場を基板に垂直に印加したと
きには300,000A/cm2であった。
Superconducting critical current density Jc of sample after heat treatment
Was measured by the DC four-terminal method. At 4.2K, 5 at zero magnetic field
When a magnetic field of 00,000 A / cm 2 , 8 T was applied vertically to the substrate, it was 300,000 A / cm 2 .

【0017】(比較例1)実施例1で作製した超電導物
質の粉末を、実施例1と同様に銀パイプに充填した。こ
れを、室温が25℃の部屋で、外径1.5mm までドロー
ベンチで線引きし、その後、厚さ0.07mm まで圧延し
た。これを3cmの長さに切断した。これを20%酸素8
0%窒素気流中で熱処理した。熱処理の温度条件は、実
施例1と同じとした。
(Comparative Example 1) The powder of the superconducting material prepared in Example 1 was filled in a silver pipe in the same manner as in Example 1. This was drawn in a room with a room temperature of 25 ° C. to an outer diameter of 1.5 mm with a draw bench, and then rolled to a thickness of 0.07 mm. This was cut into a length of 3 cm. This is 20% oxygen 8
Heat treatment was performed in a 0% nitrogen stream. The temperature condition of the heat treatment was the same as in Example 1.

【0018】X線回折測定で熱処理後の試料の表面の銀
の結晶の方位を調べたところ、約70%の結晶粒の{1
10}面がテープ表面に平行でかつその<112>方位
が圧延を掛けた方向に平行に揃っていることが確認でき
た。
When the orientation of silver crystals on the surface of the sample after the heat treatment was examined by X-ray diffraction measurement, about 70% of crystal grains {1
It was confirmed that the 10} plane was parallel to the tape surface, and its <112> orientation was parallel to the rolling direction.

【0019】熱処理後の試料の超電導臨界電流密度Jc
を直流四端子法で測定した。4.2Kでは、ゼロ磁場で1
00,000A/cm2,8Tの磁場を基板に垂直に印加したと
きには50,000A/cm2であった。
Superconducting critical current density Jc of sample after heat treatment
Was measured by the DC four-terminal method. At 4.2K, 1 at zero magnetic field
When a magnetic field of 00,000 A / cm 2 , 8 T was applied vertically to the substrate, it was 50,000 A / cm 2 .

【0020】(比較例2)実施例1で作製した超電導物
質の粉末を、実施例1と同様に銀パイプに充填した。こ
れを、室温が25℃の部屋で、一回の線引き毎に400
℃で1時間の焼鈍を施しながら、外径1.5mm までドロ
ーベンチで線引きし、その後、一回の圧延毎に400℃
で1時間の焼鈍を施しながら、厚さ0.07mm まで圧延
した。これを3cmの長さに切断した。これを20%酸素
80%窒素気流中で熱処理した。熱処理の温度条件は、
実施例1と同じとした。
Comparative Example 2 The silver pipe was filled with the powder of the superconducting material prepared in Example 1 as in Example 1. In a room with a room temperature of 25 ° C, this is 400 for each drawing.
While annealing at ℃ for 1 hour, draw the wire with a draw bench to an outer diameter of 1.5 mm, and then 400 ℃ for each rolling.
While being annealed for 1 hour, it was rolled to a thickness of 0.07 mm. This was cut into a length of 3 cm. This was heat-treated in a stream of 20% oxygen and 80% nitrogen. The temperature conditions for heat treatment are
Same as Example 1.

【0021】X線回折測定で熱処理後の試料の表面の銀
の結晶の方位を調べたところ、特定の結晶面が、特定の
方向を向いて揃っているようなことはなく、銀の結晶の
方向はランダムであった。
When the orientation of silver crystals on the surface of the sample after the heat treatment was examined by X-ray diffraction measurement, it was found that the specific crystal planes did not seem to be aligned in a specific direction, and The directions were random.

【0022】熱処理後の試料の超電導臨界電流密度Jc
を直流四端子法で測定した。4.2Kでは、ゼロ磁場で9
0,000A/cm2,8Tの磁場を基板に垂直に印加したとき
には40,000A/cm2であった。
Superconducting critical current density Jc of sample after heat treatment
Was measured by the DC four-terminal method. At 4.2K, 9 at zero magnetic field
When a magnetic field of 0,000 A / cm 2 , 8 T was applied vertically to the substrate, it was 40,000 A / cm 2 .

【0023】(比較例3)実施例1で作製した超電導物
質の粉末を、実施例1と同様に銀パイプに充填した。こ
れを、一回の線引き毎に400℃で1時間の焼鈍を施し
ながら、160℃の温度で、外径1.5mm までドローベ
ンチで線引きし、その後、一回の圧延毎に400℃で1
時間の焼鈍を施しながら、160℃の温度で、厚さ0.
07mm まで圧延した。これを3cmの長さに切断した。
これを20%酸素80%窒素気流中で熱処理した。熱処
理の温度条件は、実施例1と同じとした。
(Comparative Example 3) The powder of the superconducting material prepared in Example 1 was filled in a silver pipe as in Example 1. This is annealed at 400 ° C for 1 hour for each drawing, and drawn at a temperature of 160 ° C with a draw bench to an outer diameter of 1.5 mm, and then at 1 ° C at 400 ° C for each rolling.
While annealing for an hour, at a temperature of 160 ° C, a thickness of 0.
Rolled to 07 mm. This was cut into a length of 3 cm.
This was heat-treated in a stream of 20% oxygen and 80% nitrogen. The temperature condition of the heat treatment was the same as in Example 1.

【0024】X線回折測定で熱処理後の試料の表面の銀
の結晶の方位を調べたところ、特定の結晶面が、特定の
方向を向いて揃っているようなことはなく、銀の結晶の
方向はランダムであった。
When the orientation of the silver crystal on the surface of the sample after the heat treatment was examined by X-ray diffraction measurement, it was found that the specific crystal planes did not seem to be aligned in a specific direction, and The directions were random.

【0025】熱処理後の試料の超電導臨界電流密度Jc
を直流四端子法で測定した。4.2Kでは、ゼロ磁場で8
0,000A/cm2 ,8Tの磁場を基板に垂直に印加したと
きには40,000A/cm2であった。
Superconducting critical current density Jc of sample after heat treatment
Was measured by the DC four-terminal method. At 4.2K, 8 at zero magnetic field
When a magnetic field of 0,000 A / cm 2 , 8 T was applied vertically to the substrate, it was 40,000 A / cm 2 .

【0026】以上の実施例1,比較例1,2及び3から
分かるように、超電導線材を作製する途中の、線引き,
圧延工程を160℃程度の温度で、途中で焼鈍を行わず
に、実施することによって、高いJcが得られる事が分
かる。
As can be seen from the above-mentioned Example 1, Comparative Examples 1, 2 and 3, during the production of the superconducting wire, wire drawing,
It can be seen that a high Jc can be obtained by performing the rolling process at a temperature of about 160 ° C. without annealing in the middle.

【0027】(実施例2)実施例1と同様にして、ただ
し線引き、圧延を100℃,150℃,200℃,25
0℃,300℃で行って、試料を作製し、実施例1と同
様の評価を行った。
(Example 2) In the same manner as in Example 1, except that wire drawing and rolling were performed at 100 ° C, 150 ° C, 200 ° C and 25 ° C.
A sample was prepared by performing the test at 0 ° C. and 300 ° C., and the same evaluation as in Example 1 was performed.

【0028】X線回折測定で熱処理後の試料の表面の銀
の結晶の方位を調べ、おおよそどの程度の結晶粒子の
{100}面がテープ表面に平行でかつその<100>
方位が圧延を掛けた方向に平行に揃っているかを調べ
た。結果を図2に示す。また、熱処理後の試料の超電導
臨界電流密度Jcを直流四端子法で測定した。結果を図
3に示す。尚、図2,図3には実施例1,比較例1の結
果も併せて載せている。
The orientation of the silver crystals on the surface of the sample after the heat treatment was examined by X-ray diffraction measurement, and about what extent the {100} planes of the crystal grains were parallel to the tape surface and their <100>
It was investigated whether the azimuth was aligned parallel to the rolling direction. The results are shown in Figure 2. Further, the superconducting critical current density Jc of the sample after the heat treatment was measured by the DC four-terminal method. The results are shown in Fig. 3. The results of Example 1 and Comparative Example 1 are also shown in FIGS. 2 and 3.

【0029】図2及び図3より、線引き、圧延工程を実
施する温度は100℃以上250℃以下であることが好
ましく、特に150℃以上200℃以下の温度範囲であ
ることが好ましいことが分かる。
From FIGS. 2 and 3, it is understood that the temperature for carrying out the drawing and rolling steps is preferably 100 ° C. or higher and 250 ° C. or lower, and particularly preferably 150 ° C. or higher and 200 ° C. or lower.

【0030】(実施例3)まず最初に、銀管の中に充填
する超電導物質を作製した。原子比でBi:Pb:S
r:Ca:Cu=1.84:0.34:2:2.2:3 と
なるように、純度99%以上のBi23,PbO,Sr
O,CaO,CuOの粉末を混合する。この混合粉をア
ルミナ製るつぼに入れて、20%酸素80%窒素気流中
で800℃で24時間焼成した。これを再び100%窒
素ガスを流したグローブ中で粉砕し、この粉末を純度9
9.998%の銀パイプ(内径4mm,外径6mm)に充填し
た。これを、160℃に保った状態で、外径1.5mm ま
でドローベンチで線引きし、その後、160℃に保った
まま、厚さ0.07mm まで圧延した。これを3cmの長さ
に切断した。これを20%酸素80%窒素気流中で熱処
理した。熱処理の温度条件は、室温から837℃まで5
時間で昇温し、837℃で100時間保持し、室温まで
10時間で冷却した。
(Example 3) First, a superconducting substance to be filled in a silver tube was prepared. Bi: Pb: S in atomic ratio
r: Ca: Cu = 1.84: 0.34: 2: 2.2: 3 so that Bi 2 O 3 , PbO, Sr with a purity of 99% or more is obtained.
Mix powders of O, CaO, CuO. This mixed powder was placed in an alumina crucible and fired at 800 ° C. for 24 hours in a stream of 20% oxygen and 80% nitrogen. This was crushed again in a glove flowed with 100% nitrogen gas, and this powder was purified to a purity of 9%.
It was filled in a 9.998% silver pipe (inner diameter 4 mm, outer diameter 6 mm). This was drawn at a draw bench to an outer diameter of 1.5 mm while being kept at 160 ° C., and then rolled to a thickness of 0.07 mm while being kept at 160 ° C. This was cut into a length of 3 cm. This was heat-treated in a stream of 20% oxygen and 80% nitrogen. The temperature condition for heat treatment is from room temperature to 837 ° C.
The temperature was raised over time, the temperature was maintained at 837 ° C. for 100 hours, and the temperature was cooled to room temperature in 10 hours.

【0031】X線回折測定で熱処理後の試料の表面の銀
の結晶の方位を調べたところ、約80%の結晶粒の{1
00}面がテープ表面に平行でかつその<100>方位
が圧延を掛けた方向に平行に揃っていることが確認でき
た。
When the orientation of silver crystals on the surface of the sample after the heat treatment was examined by X-ray diffraction measurement, about 80% of crystal grains {1
It was confirmed that the {00} plane was parallel to the tape surface, and its <100> orientation was parallel to the rolling direction.

【0032】熱処理後の試料の超電導臨界電流密度Jc
を直流四端子法で測定した。4.2Kでは、ゼロ磁場で4
00,000A/cm2,8Tの磁場を基板に垂直に印加したと
きには250,000A/cm2であった。
Superconducting critical current density Jc of sample after heat treatment
Was measured by the DC four-terminal method. At 4.2K, 4 at zero magnetic field
When a magnetic field of 00,000 A / cm 2 , 8 T was applied vertically to the substrate, it was 250,000 A / cm 2 .

【0033】(比較例4)実施例3で作製した超電導物
質の粉末を、実施例3と同様に銀パイプに充填した。こ
れを、室温が25℃の部屋で、外径1.5mm までドロー
ベンチで線引きし、その後、厚さ0.07mm まで圧延し
た。これを3cmの長さに切断した。これを20%酸素8
0%窒素気流中で熱処理した。熱処理の温度条件は、実
施例3と同じとした。
(Comparative Example 4) The powder of the superconducting material prepared in Example 3 was filled in a silver pipe in the same manner as in Example 3. This was drawn in a room with a room temperature of 25 ° C. to an outer diameter of 1.5 mm with a draw bench, and then rolled to a thickness of 0.07 mm. This was cut into a length of 3 cm. This is 20% oxygen 8
Heat treatment was performed in a 0% nitrogen stream. The heat treatment temperature conditions were the same as in Example 3.

【0034】X線回折測定で熱処理後の試料の表面の銀
の結晶の方位を調べたところ、約70%の結晶粒の{1
10}面がテープ表面に平行でかつその<112>方位
が圧延を掛けた方向に平行に揃っていることが確認でき
た。
When the orientation of silver crystals on the surface of the sample after the heat treatment was examined by X-ray diffraction measurement, about 70% of crystal grains {1
It was confirmed that the 10} plane was parallel to the tape surface, and its <112> orientation was parallel to the rolling direction.

【0035】熱処理後の試料の超電導臨界電流密度Jc
を直流四端子法で測定した。4.2Kでは、ゼロ磁場で2
00,000A/cm2,8Tの磁場を基板に垂直に印加したと
きには80,000A/cm2であった。
Superconducting critical current density Jc of sample after heat treatment
Was measured by the DC four-terminal method. At 4.2K, 2 at zero magnetic field
When a magnetic field of 00,000 A / cm 2 , 8 T was applied vertically to the substrate, it was 80,000 A / cm 2 .

【0036】(比較例5)実施例3で作製した超電導物
質の粉末を、実施例3と同様に銀パイプに充填した。こ
れを、室温が25℃の部屋で、一回の線引き毎に400
℃で1時間の焼鈍を施しながら、外径1.5mm までドロ
ーベンチで線引きし、その後、一回の圧延毎に400℃
で1時間の焼鈍を施しながら、厚さ0.07mm まで圧延
した。これを3cmの長さに切断した。これを20%酸素
80%窒素気流中で熱処理した。熱処理の温度条件は、
実施例3と同じとした。
(Comparative Example 5) The powder of the superconducting material prepared in Example 3 was filled in a silver pipe in the same manner as in Example 3. In a room with a room temperature of 25 ° C, this is 400 for each drawing.
While annealing at ℃ for 1 hour, draw the wire with a draw bench to an outer diameter of 1.5 mm, and then 400 ℃ for each rolling.
While being annealed for 1 hour, it was rolled to a thickness of 0.07 mm. This was cut into a length of 3 cm. This was heat-treated in a stream of 20% oxygen and 80% nitrogen. The temperature conditions for heat treatment are
Same as Example 3.

【0037】X線回折測定で熱処理後の試料の表面の銀
の結晶の方位を調べたところ、特定の結晶面が、特定の
方向を向いて揃っているようなことはなく、銀の結晶の
方向はランダムであった。
When the orientation of the silver crystal on the surface of the sample after the heat treatment was examined by X-ray diffraction measurement, it was found that the specific crystal planes did not seem to be aligned in a specific direction, and The directions were random.

【0038】熱処理後の試料の超電導臨界電流密度Jc
を直流四端子法で測定した。4.2Kでは、ゼロ磁場で1
10,000A/cm2,8Tの磁場を基板に垂直に印加したと
きには50,000A/cm2であった。
Superconducting critical current density Jc of sample after heat treatment
Was measured by the DC four-terminal method. At 4.2K, 1 at zero magnetic field
When a magnetic field of 10,000 A / cm 2 and 8 T was applied vertically to the substrate, it was 50,000 A / cm 2 .

【0039】(比較例6)実施例3で作製した超電導物
質の粉末を、実施例3と同様に銀パイプに充填した。こ
れを、一回の線引き毎に400℃で1時間の焼鈍を施し
ながら、160℃の温度で、外径1.5mm までドローベ
ンチで線引きし、その後、一回の圧延毎に400℃で1
時間の焼鈍を施しながら、160℃の温度で、厚さ0.
07mmまで圧延した。これを3cmの長さに切断した。こ
れを20%酸素80%窒素気流中で熱処理した。熱処理
の温度条件は、実施例3と同じとした。
(Comparative Example 6) The powder of the superconducting material prepared in Example 3 was filled in a silver pipe in the same manner as in Example 3. This is annealed at 400 ° C for 1 hour for each drawing, and drawn at a temperature of 160 ° C with a draw bench to an outer diameter of 1.5 mm, and then at 1 ° C at 400 ° C for each rolling.
While annealing for an hour, at a temperature of 160 ° C, a thickness of 0.
It was rolled to 07 mm. This was cut into a length of 3 cm. This was heat-treated in a stream of 20% oxygen and 80% nitrogen. The heat treatment temperature conditions were the same as in Example 3.

【0040】X線回折測定で熱処理後の試料の表面の銀
の結晶の方位を調べたところ、特定の結晶面が、特定の
方向を向いて揃っているようなことはなく、銀の結晶の
方向はランダムであった。
When the orientation of silver crystals on the surface of the sample after the heat treatment was examined by X-ray diffraction measurement, it was found that the specific crystal planes did not seem to be aligned in a specific direction, and The directions were random.

【0041】熱処理後の試料の超電導臨界電流密度Jc
を直流四端子法で測定した。4.2Kでは、ゼロ磁場で1
00,000A/cm2,8Tの磁場を基板に垂直に印加したと
きには50,000A/cm2であった。
Superconducting critical current density Jc of the sample after heat treatment
Was measured by the DC four-terminal method. At 4.2K, 1 at zero magnetic field
When a magnetic field of 00,000 A / cm 2 , 8 T was applied vertically to the substrate, it was 50,000 A / cm 2 .

【0042】以上の実施例3,比較例4,5及び6から
分かるように、超電導線材を作製する途中の、線引き,
圧延工程を160℃程度の温度で、途中で焼鈍を行わず
に、実施することによって、高いJcが得られる事が分
かる。
As can be seen from the above-mentioned Example 3, Comparative Examples 4, 5 and 6, during the production of the superconducting wire, wire drawing,
It can be seen that a high Jc can be obtained by performing the rolling process at a temperature of about 160 ° C. without annealing in the middle.

【0043】[0043]

【発明の効果】本発明によれば、液体ヘリウムによる冷
却は勿論、液体窒素による冷却によって運転される、高
い超電導臨界電流密度を有する超電導線材が得られる。
According to the present invention, it is possible to obtain a superconducting wire having a high superconducting critical current density, which is operated by cooling by liquid nitrogen as well as by cooling by liquid helium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の超電導線材の構造を表す説
明図。
FIG. 1 is an explanatory view showing the structure of a superconducting wire according to a first embodiment of the present invention.

【図2】本発明の実施例2の線引き及び圧延を行った際
の温度と{100}面がテープ表面に平行でかつ<10
0>方位が圧延を掛けた方向に平行に揃って結晶粒子の
割合を示す特性図。
FIG. 2 is a graph showing the temperature and {100} plane parallel to the tape surface and <10 when drawing and rolling in Example 2 of the present invention.
A characteristic diagram showing the proportion of crystal grains in which the 0> orientation is aligned parallel to the rolling direction.

【図3】本発明の実施例2の線引き及び圧延を行った際
の温度と試料の超電導臨界電流密度Jcの関係を示す特
性図。
FIG. 3 is a characteristic diagram showing the relationship between the temperature when drawing and rolling in Example 2 of the present invention and the superconducting critical current density Jc of the sample.

【符号の説明】[Explanation of symbols]

1…超電導物質、2…銀。 1 ... Superconducting substance, 2 ... Silver.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 6/06 ZAA ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01F 6/06 ZAA

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】銀管の内部に酸化物超電導物質の粉末を充
填し、それを100℃以上200℃以下の温度で、線引
き、そして圧延し、更に700℃以上の温度で熱処理す
ることを特徴とする超電導線材の作製方法。
1. A silver tube is filled with a powder of an oxide superconducting material, which is drawn at a temperature of 100 ° C. or higher and 200 ° C. or lower, rolled, and further heat-treated at a temperature of 700 ° C. or higher. And a method for producing a superconducting wire.
【請求項2】銀管の内部に、加熱することによって酸化
物超電導物質となる前駆体粉末を充填し、それを100
℃以上200℃以下の温度で、線引き、そして圧延し、
更に700℃以上の温度で熱処理することを特徴とする
超電導線材の作製方法。
2. A silver powder is filled with a precursor powder which becomes an oxide superconducting substance by heating, and the precursor powder is heated to 100%.
Drawing and rolling at a temperature between ℃ and 200 ℃,
A method for producing a superconducting wire, further comprising heat treatment at a temperature of 700 ° C. or higher.
【請求項3】請求項1または2に於いて、前記銀管の代
わりに銀を50%以上含む合金の管を用いる超電導線材
の作製方法。
3. The method for producing a superconducting wire according to claim 1, wherein a tube made of an alloy containing 50% or more of silver is used instead of the silver tube.
【請求項4】請求項1,2または3において、前記酸化
物超電導物質の化学組成が、 【化1】 (Bi1-X1PbX1)2Sr2Can-1Cun2n+4+X2 …(化1) ここで、 0≦X1≦0.4 −0.5≦X2≦0.5 n=1,2,3 で表される超電導線材。
4. The method of claim 1, 2 or 3, the chemical composition of the oxide superconductor material, embedded image (Bi 1-X1 Pb X1) 2 Sr 2 Ca n-1 Cu n O 2n + 4 + X2 ... (Chemical formula 1) Here, 0? X1? 0.4-0.5? X2? 0.5 A superconducting wire represented by n = 1,2,3.
JP6241021A 1994-10-05 1994-10-05 Manufacture of oxide superconductive wire material Pending JPH08106823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6241021A JPH08106823A (en) 1994-10-05 1994-10-05 Manufacture of oxide superconductive wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6241021A JPH08106823A (en) 1994-10-05 1994-10-05 Manufacture of oxide superconductive wire material

Publications (1)

Publication Number Publication Date
JPH08106823A true JPH08106823A (en) 1996-04-23

Family

ID=17068163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6241021A Pending JPH08106823A (en) 1994-10-05 1994-10-05 Manufacture of oxide superconductive wire material

Country Status (1)

Country Link
JP (1) JPH08106823A (en)

Similar Documents

Publication Publication Date Title
JPH04212215A (en) Manufacture of bismuthal oxide superconductor
JPH02164760A (en) Production of thread or band like ceramics high
US5206211A (en) Process for the production of an elongate body consisting of longitudinally aligned acicular crystals of a superconducting material
JPH08106823A (en) Manufacture of oxide superconductive wire material
JPH06219736A (en) Superconductor
JP3219563B2 (en) Metal oxide and method for producing the same
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
JP3053411B2 (en) Manufacturing method of oxide superconducting wire
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JP3524530B2 (en) Method and apparatus for manufacturing oxide superconductor structure
JP2004203727A (en) Oxide superconductor having high critical current density
JPH03237094A (en) High temperature oxide superconductor, superconducting wire, coil using the wire and production of them
JP2709000B2 (en) Superconductor and method of manufacturing the same
JP3282688B2 (en) Manufacturing method of oxide superconductor
JPH01105409A (en) Oxide superconductive wire and manufacture thereof
JP2002037626A (en) Method for manufacturing bismuth type high temperature superconductor
JPH03171517A (en) Manufacture of oxide superconductor wire material
JPH05816A (en) Oxide superconductor production and superconducting wire
JP3283909B2 (en) Metal oxide material and method for producing the same
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JPH08264045A (en) Oxide superconducting wire and manufacture thereof
JPH07141940A (en) Manufacture of superconductive wire of bismuth oxide
EP0468428A2 (en) Oxide superconductor material and manufacturing method thereof
JPH06321537A (en) Production of superconductive oxide material
JPH1059718A (en) Production of thallium-based superconductor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224