JP3167316B2 - Method for producing Tl-based oxide superconductor - Google Patents

Method for producing Tl-based oxide superconductor

Info

Publication number
JP3167316B2
JP3167316B2 JP25038490A JP25038490A JP3167316B2 JP 3167316 B2 JP3167316 B2 JP 3167316B2 JP 25038490 A JP25038490 A JP 25038490A JP 25038490 A JP25038490 A JP 25038490A JP 3167316 B2 JP3167316 B2 JP 3167316B2
Authority
JP
Japan
Prior art keywords
temperature
oxide superconductor
oxygen
based oxide
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25038490A
Other languages
Japanese (ja)
Other versions
JPH03271123A (en
Inventor
理 中島
昌枝 菊地
安彦 庄野
典男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP25038490A priority Critical patent/JP3167316B2/en
Publication of JPH03271123A publication Critical patent/JPH03271123A/en
Application granted granted Critical
Publication of JP3167316B2 publication Critical patent/JP3167316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、タリウム(Tl)系の酸化物超伝導体の製
造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a thallium (Tl) -based oxide superconductor.

[従来の技術及び発明が解決しようとする課題] 近年、Tl−Ba−Ca−Cu−O系の酸化物超伝導体が100K
以上という高い超伝導転移温度(臨界温度)を有するこ
とが発表されて以来、Tl系の酸化物超伝導体に関する研
究が盛んに行われている。しかし、Tl系の酸化物超伝導
体では、組成が同一であるにもかかわらず、臨界温度が
大幅に異なる化合物の報告が数多くなされている。特
に、組成がTl2Ba2CuO6であると報告されている化合物で
は、臨界温度が80Kのものから、0Kでも超伝導特性を示
さないものまで各種報告されている。
[Problems to be Solved by the Related Art and the Invention] In recent years, Tl-Ba-Ca-Cu-O-based oxide superconductors have been
Since the publication of the high superconducting transition temperature (critical temperature), studies on Tl-based oxide superconductors have been actively conducted. However, in the case of Tl-based oxide superconductors, there have been many reports of compounds having substantially different critical temperatures even though they have the same composition. In particular, for compounds reported to have a composition of Tl 2 Ba 2 CuO 6 , various reports have been made from those having a critical temperature of 80 K to those having no superconductivity even at 0 K.

しかし、Tl系酸化物超伝導体において、製造方法と臨
界温度との関係は未だ把握されておらず、臨界温度が所
望の範囲内にあるTl系酸化物超伝導体を確実に製造する
ことができないという問題点がある。
However, in Tl-based oxide superconductors, the relationship between the manufacturing method and the critical temperature has not yet been grasped, and it is possible to reliably produce a Tl-based oxide superconductor having a critical temperature within a desired range. There is a problem that can not be.

この発明は、このような実情に鑑みてなされたもので
あって、各組成において、臨界温度が夫々所望の範囲内
にあるTl系酸化物超伝導体を確実に製造することができ
るTl系酸化物超伝導体の製造方法を提供することを目的
とする。
The present invention has been made in view of such circumstances, and in each composition, it is possible to reliably manufacture a Tl-based oxide superconductor having a critical temperature within a desired range, respectively. It is an object of the present invention to provide a method for manufacturing a superconductor.

[課題を解決するための手段及び作用] この発明に係るTl系酸化物超伝導体の製造方法は、Tl
系酸化物超伝導体を構成する金属元素が所定の割合で調
合された混合原料を酸素含有雰囲気中で焼成する工程
と、この工程で得られた焼結体を酸素含有雰囲気中で徐
冷する工程と、この徐冷工程において前記焼結体が所定
温度に至った後、又はこの徐冷工程後に再加熱して前記
焼結体が所定温度に至った後、前記焼結体を真空中又は
不活性ガス雰囲気中で徐冷する工程とを有することを特
徴とする。この場合、再加熱は真空中又は不活性ガス雰
囲気中で行うことが好ましく、また再加熱は焼結体の熱
重量変化を測定しながら行うことが好ましい。
[Means and Actions for Solving the Problems] The method for producing a Tl-based oxide superconductor according to the present invention comprises:
Baking a mixed raw material in which a metal element constituting the base oxide superconductor is prepared at a predetermined ratio in an oxygen-containing atmosphere, and gradually cooling the sintered body obtained in this step in an oxygen-containing atmosphere And after the sintered body reaches a predetermined temperature in the slow cooling step, or after the sintered body reaches a predetermined temperature by reheating after the slow cooling step, the sintered body is vacuumed or Cooling in an inert gas atmosphere. In this case, the reheating is preferably performed in a vacuum or an inert gas atmosphere, and the reheating is preferably performed while measuring the thermogravimetric change of the sintered body.

本発明者らは、先に特願平1−257805において、上述
した臨界温度のばらつきが原料焼結後の冷却速度の相違
による結晶構造中への酸素の取込み量の差に基づくこ
と、所望組成のTl系酸化物を合成した後に再加熱を行う
と酸素が放出され、その放出量は温度が上昇するに従っ
て増加すること、適当量の酸素放出が生じた場合に良好
な超伝導特性を示すようになること、再加熱の後に徐冷
を行うと酸素の再取り込みが生じ、超伝導特性が低下す
ること、及び、このような酸素の再取り込みは、再加熱
後急冷することにより解消されることを示した。
The present inventors have previously described in Japanese Patent Application No. 1-257805 that the variation in the critical temperature described above is based on the difference in the amount of oxygen taken into the crystal structure due to the difference in the cooling rate after the sintering of the raw material. When reheating is performed after synthesizing the Tl-based oxide of the above, oxygen is released, and the release amount increases as the temperature rises, and it shows good superconductivity characteristics when an appropriate amount of oxygen release occurs If re-heating is followed by slow cooling, re-uptake of oxygen will occur and superconductivity will decrease, and such re-uptake of oxygen will be eliminated by rapid cooling after re-heating. showed that.

しかしながら、本願発明者等は、酸素放出のための再
加熱後の冷却を酸素を取り込まない雰囲気、すなわち真
空中又はN2等の不活性ガス雰囲気で行うことにより、急
冷を行わなくても酸素の再取り込みが生じないことを見
出した。この発明は、このような知見に基づいてなされ
たものである。
However, the present inventors have an atmosphere that does not take up oxygen cooling after reheating for oxygen evolution, i.e. by performing an inert gas atmosphere 2 such or in N vacuum, oxygen even without quenching It was found that reuptake did not occur. The present invention has been made based on such findings.

この発明によれば、酸素再取り込み防止のための急冷
を行わなくても、臨界温度が高く安定したTl系酸化物超
伝導体を提供でき、上記先行出願に対し、急冷のための
冷媒が不要であるという利点がある。
According to the present invention, it is possible to provide a stable Tl-based oxide superconductor having a high critical temperature without quenching for preventing oxygen re-incorporation. There is an advantage that is.

また、再加熱を、焼結体の熱重量変化を測定しながら
行うと、焼結体からの酸素の放出量をより正確に把握で
きるので、加熱を停止して徐冷を開始するタイミングを
より正確に認識することができ、製造する酸化物超伝導
体の臨界温度の制御をより精密に行うことができる。
In addition, when reheating is performed while measuring the thermogravimetric change of the sintered body, the amount of oxygen released from the sintered body can be grasped more accurately. Accurate recognition can be performed, and the critical temperature of the manufactured oxide superconductor can be controlled more precisely.

この発明はTl系の超伝導酸化物であればその全てに適
用可能であるが、TlmAE2Can-1CunO2n+p(mは1又は
2、AEはBa又はSr、nは1以上の整数、pはmが1のと
き3、2のとき4になる値)に対し特に有効である。
The present invention can be applied to all Tl-based superconducting oxides, but Tl m AE 2 Can n-1 Cu n O 2n + p (m is 1 or 2, AE is Ba or Sr, n Is an integer of 1 or more, and p is a value which becomes 3 when m is 1 and becomes 4 when m is 1.

TlmAE2Can-1CunO2n+pのうちm=2の、Tl2Ba2CuO6、T
l2Ba2Ca2Cu3O10で代表されるTl2Ba2Can-1CunO2n+4に本
発明の熱処理を施すことにより、Tl2Ba2Can-1CunO
2n+4-y(yは0<y<1の範囲内)で表され、高い臨界
温度を有する酸化物超伝導体を有効に製造することがで
きる。Tl2Ba2Can-1CunO2n+4で表現される物質は、ホー
ル量が多量であるため、酸素量が減少することにより高
い臨界温度を得ることができる。
Tl m AE 2 C a n-1 C n O 2n + p , m = 2, Tl 2 Ba 2 CuO 6 , T
By performing the heat treatment of the present invention on Tl 2 Ba 2 Ca n-1 Cu n O 2n + 4 represented by l 2 Ba 2 Ca 2 Cu 3 O 10 , Tl 2 Ba 2 Ca n-1 Cu n O
2n + 4-y (y is in the range of 0 <y <1), and an oxide superconductor having a high critical temperature can be effectively produced. Substances represented by Tl 2 Ba 2 Ca n-1 Cu n O 2n + 4 , since the amount of holes is large amount, it is possible to obtain a high critical temperature by oxygen amount decreases.

TlmAE2Can-1CunO2n+pのうちm=1のTlBa2Can-1CunO
2n+3の場合は、TlBa2Can-1CunO2n+3-yで表され、TlBa2C
an-1CunO2n+3よりも高い臨界温度を有する酸化物超伝導
体を得ることができる。すなわち、TlBa2Can-1CunO2n+3
から酸素を欠乏させることにより、より臨界温度の高い
酸化物超伝導体を得ることができる。これは、この出願
の出願人が先に出願した特願平1−236174に記載されて
いるTlBa2CaCu2O7なる酸化物超伝導体のCaサイトの一部
を適量のYで置換したときに臨界温度が上昇する現象と
実質的に同一の作用に基づくものである。すなわち、Ca
サイトのYによる置換は、この物質におけるCuの平均原
子価を下げる作用をなし、この作用はTlBa2Can-1CunO
2n+3から酸素を欠乏させることによっても達成されるか
らである。なお、nが2の場合、すなわち、TlBa2CaCu2
O7-yの構造において臨界温度が最大となるyの値は、化
学量論的には、Cuの平均原子価が2.3程度となる0.2前後
である。
Tl m AE 2 Ca n-1 Cu n O 2n + TlBa 2 Ca of m = 1 of p n-1 Cu n O
For the 2n + 3, it is represented by TlBa 2 Ca n-1 Cu n O 2n + 3-y, TlBa 2 C
it is possible to obtain an oxide superconductor having a critical temperature higher than a n-1 Cu n O 2n + 3. That is, TlBa 2 Ca n-1 Cu n O 2n + 3
By depleting oxygen from, an oxide superconductor having a higher critical temperature can be obtained. This is because when the applicant's applicant has partially substituted the Ca site of the oxide superconductor TlBa 2 CaCu 2 O 7 described in Japanese Patent Application No. 1-236174 previously filed with an appropriate amount of Y. This is based on the substantially same action as the phenomenon in which the critical temperature rises. That is, Ca
Substituted by Y sites, none of the effect of lowering the average valence of Cu in the material, this effect TlBa 2 Ca n-1 Cu n O
It is also achieved by depleting oxygen from 2n + 3 . Note that when n is 2, that is, TlBa 2 CaCu 2
In the structure of O 7-y , the value of y at which the critical temperature becomes maximum is stoichiometrically about 0.2 at which the average valence of Cu becomes about 2.3.

以下、この発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

混合原料としては、Tl系酸化物超伝導体を構成する各
金属元素の酸化物を混合したものを用いることが望まし
く、その混合比率は、各金属の比率が、原子数比で目的
とする酸化物超伝導体の組成比と実質的に同一になるよ
うにするか、あるいは、焼結時Tlが蒸発しやすいことに
鑑みて、目的とする酸化物超伝導体の組成よりもTlを過
剰にする。
As the mixed raw material, it is desirable to use a mixture of oxides of the respective metal elements constituting the Tl-based oxide superconductor, and the mixing ratio is such that the ratio of each metal is the desired oxidation ratio in terms of the atomic ratio. Tl is made to be substantially the same as the composition ratio of the oxide superconductor, or in view of the fact that Tl is likely to evaporate during sintering, the Tl is excessively larger than the intended oxide superconductor composition. I do.

焼成は、上述のように酸素含有雰囲気において行う。
この場合、焼成温度が800乃至950℃と高いので、焼成時
間は短いほうが望ましく、数分乃至数十分間の範囲が適
当である。焼成後は焼結体を酸素含有雰囲気中で徐冷す
る。
The firing is performed in an oxygen-containing atmosphere as described above.
In this case, since the sintering temperature is as high as 800 to 950 ° C., the sintering time is desirably short, and the range of several minutes to tens of minutes is appropriate. After firing, the sintered body is gradually cooled in an oxygen-containing atmosphere.

真空中又は不活性ガス雰囲気中での焼結体の徐冷は、
焼成工程に続く酸素含有雰囲気中での徐冷工程において
焼結体が所定温度に至った際、雰囲気を真空又は不活性
ガスに切換えて続けて行ってもよいが、酸素含有雰囲気
中での徐冷工程完了後に所定温度まで再加熱して行うの
が望ましい。
Slow cooling of the sintered body in a vacuum or an inert gas atmosphere,
When the temperature of the sintered body reaches a predetermined temperature in the slow cooling step in an oxygen-containing atmosphere following the firing step, the atmosphere may be switched to vacuum or an inert gas, and may be continuously performed. It is desirable to reheat to a predetermined temperature after the completion of the cooling step.

焼結体の再加熱は、焼結体の結晶構造中から酸素を放
出させるための処理であり、その雰囲気は特に限定され
るものではないが、その後の徐冷処理を真空中又は不活
性ガス雰囲気中で行うので、真空中又は窒素等の不活性
ガス雰囲気中で行うことが望ましい。より望ましくは、
窒素等からなる不活性ガス雰囲気のガス圧を高くして行
う。その理由は、ガス圧を高くすればするほどTlの蒸発
を抑制することができ、結晶が分解する温度をより高温
側にシフトさせることができるので、結晶構造中からよ
り多くの酸素を放出させることができるからである。こ
の再加熱の温度及び保持時間は、Tl系酸化物超伝導の組
成に応じて適宜決定される。焼結体の結晶構造中から放
出される酸素量は温度によって異なっているので、これ
によって臨界温度もほぼ定まる。
The reheating of the sintered body is a process for releasing oxygen from the crystal structure of the sintered body, and its atmosphere is not particularly limited. Since the process is performed in an atmosphere, it is preferable to perform the process in a vacuum or an inert gas atmosphere such as nitrogen. More preferably,
This is performed by increasing the gas pressure of an inert gas atmosphere made of nitrogen or the like. The reason is that as the gas pressure increases, the evaporation of Tl can be suppressed and the temperature at which the crystal decomposes can be shifted to a higher temperature side, so that more oxygen is released from the crystal structure Because you can do it. The reheating temperature and the holding time are appropriately determined according to the composition of the Tl-based oxide superconductor. Since the amount of oxygen released from the crystal structure of the sintered body varies depending on the temperature, the critical temperature is almost determined by this.

再加熱後、焼結体を真空中又は不活性ガス雰囲気中で
徐冷する。この徐冷は、焼結体中への酸素の再取り込み
を防止するために行うものである。ここでいう徐冷は、
液体窒素等の液体冷媒中に投入することなく冷却するこ
とを意味している。再加熱を真空中又は不活性ガス雰囲
気中で行った場合には、炉の中を同じ雰囲気に保ったま
ま、炉冷すればよい。
After reheating, the sintered body is gradually cooled in a vacuum or an inert gas atmosphere. This slow cooling is performed to prevent oxygen from being re-incorporated into the sintered body. Slow cooling here means
This means that cooling is performed without being introduced into a liquid refrigerant such as liquid nitrogen. When the reheating is performed in a vacuum or an inert gas atmosphere, the furnace may be cooled while maintaining the same atmosphere in the furnace.

[実施例] 以下、この発明の実施例について説明する。Examples Examples of the present invention will be described below.

実施例1 出発原料としてTl2O3,BaO2,及びCuOの微粉末を混合し
て、原子数比でTl:Ba:Cu=2:2:1の混合粉末原料を作製
した。この場合に、Tlは有毒であるから、これらの作業
をグローブボックス内で行った。
Example 1 Fine powders of Tl 2 O 3 , BaO 2 and CuO were mixed as starting materials to prepare a mixed powder raw material having an atomic ratio of Tl: Ba: Cu = 2: 2: 1. In this case, since Tl was toxic, these operations were performed in a glove box.

次に、このような混合粉末原料を約200kg/cm2の圧力
で成形し、直径10mm、厚さ1〜1.5mmのペレット状の試
料を6個作製した。
Next, such a mixed powder raw material was molded at a pressure of about 200 kg / cm 2 , and six pellet-shaped samples having a diameter of 10 mm and a thickness of 1 to 1.5 mm were prepared.

その後、Tlの高反応性に鑑み、試料をTlと反応しにく
い金箔でゆるく包み、またTlの有毒性のため、石英管内
で更に二重のトラップを付けて流量120ml/分の酸素気流
中890℃で5分間焼成し、次いで10℃/分の速度で冷却
した。
After that, in consideration of the high reactivity of Tl, the sample was loosely wrapped in gold foil that is difficult to react with Tl, and due to the toxicity of Tl, a double trap was further attached in a quartz tube with an oxygen flow of 120 ml / min. C. for 5 minutes, then cooled at a rate of 10.degree. C./min.

その結果、Tl2Ba2CuO6なる組成の酸化物が合成され
た。
As a result, an oxide having a composition of Tl 2 Ba 2 CuO 6 was synthesized.

合成された試料を流量120ml/分の窒素気流中で5℃/
分の速度で昇温し、夫々200℃、300℃、400℃、500℃、
600℃、700℃に達した時点で、加熱炉のヒータ電源をオ
フにし、これら試料を炉冷した。その結果、200℃に加
熱後炉冷したものは超伝導特性を示さなかったが、他の
試料については超伝導特性を示した。すなわち、Tl2Ba2
CuO6-y超伝導酸化物が生成された。
The synthesized sample was placed in a nitrogen stream at a flow rate of 120 ml / min.
The temperature rises at the rate of 200 minutes, 300 ° C, 400 ° C, 500 ° C,
When the temperature reached 600 ° C. and 700 ° C., the heater power of the heating furnace was turned off, and the samples were cooled. As a result, the sample heated to 200 ° C. and then cooled in the furnace did not show superconductivity, but the other samples showed superconductivity. That is, Tl 2 Ba 2
CuO 6-y superconducting oxide was formed.

第1図乃至第5図は、四端子法により各試料の抵抗率
の温度変化を測定した結果を示す図である。第1図は30
0℃に昇温した後炉冷したもの、第2図は400℃に昇温し
た後炉冷したもの、第3図は500℃に昇温した後炉冷し
たもの、第4図は600℃に昇温した後炉冷したもの、第
5図は700℃に昇温した後炉冷したものを示す。
1 to 5 show the results of measuring the temperature change of the resistivity of each sample by the four-terminal method. Figure 1 is 30
FIG. 2 shows a furnace heated to 400 ° C. and then cooled, FIG. 3 shows a furnace heated to 500 ° C. and then cooled, and FIG. 4 shows a furnace cooled to 600 ° C. FIG. 5 shows a furnace cooled to 700 ° C. and then cooled in a furnace.

各試料の臨界温度は、第1図乃至第5図における抵抗
率変化曲線から次のようにして求めた。先ず、抵抗率変
化曲線の直線部を延長し、その延長部分がOK軸(縦軸)
と交差する点の値を基準に、その50%ポイントをOK軸上
にプロットする。次に、抵抗率変化曲線の直線部領域に
ある適当な温度軸、例えば100K軸と抵抗率曲線とが交差
する点を基準に、その50%ポイントを100K軸上にプロッ
トする。そして、OK軸上にプロットした点と、100K軸上
にプロットした点とを結ぶ直線と、抵抗率変化曲線とが
交わる点の温度をミッドポイントとして求め、これを臨
界温度Tcとする。以下同様の作業を90%のポイント及び
10%のポイントについても行い、夫々、オンセットポイ
ント及びエンドポイントとした。
The critical temperature of each sample was determined from the resistivity change curves in FIGS. 1 to 5 as follows. First, the linear part of the resistivity change curve is extended, and the extended part is the OK axis (vertical axis).
The 50% point is plotted on the OK axis based on the value of the point intersecting with. Next, a 50% point is plotted on the 100K axis with reference to an appropriate temperature axis, for example, a point at which the 100K axis intersects with the resistivity curve in the linear region of the resistivity change curve. Then, the temperature at the point where the straight line connecting the point plotted on the OK axis and the point plotted on the 100K axis intersects the resistivity change curve is determined as the midpoint, and this is defined as the critical temperature Tc. The same work is performed 90% of points and
A 10% point was also performed, which was defined as an onset point and an end point, respectively.

このようにして求めた各試料の臨界温度と加熱温度
(再加熱時の到達温度)との関係を第6図に示す。第6
図中、黒丸はミッドポイントを示し、その上下のバーは
夫々オンセットポイント及びエンドポイントを示す。こ
の図に示すように、各試料の臨界温度は、夫々、28K
(オンセットポイント31K、エンドポイント27K、以下カ
ッコ内同じ)、63K(64K、61K)、77K(80K、74K)、83
K(86K、82K)、78K(83K、73K)であった。すなわち、
300℃以上の温度に加熱し、その後炉例冷した場合に
は、30K乃至85K程度の臨界温度を有する超伝導体が合成
できることが確認された。
FIG. 6 shows the relationship between the critical temperature of each sample and the heating temperature (the temperature reached at the time of reheating) determined in this manner. Sixth
In the figure, solid circles indicate midpoints, and bars above and below indicate onset points and end points, respectively. As shown in this figure, the critical temperature of each sample was 28 K
(Onset point 31K, end point 27K, the same applies in parentheses below), 63K (64K, 61K), 77K (80K, 74K), 83
K (86K, 82K) and 78K (83K, 73K). That is,
It was confirmed that a superconductor having a critical temperature of about 30K to 85K can be synthesized when heated to a temperature of 300 ° C. or higher and then cooled in a furnace.

なお、前述したTl2Ba2CuO6なる組成の酸化物を流量12
0ml/分の窒素気流中で5℃/分の速度で昇温した際のそ
の熱重量変化は、第7図に示すようになる。この図に示
すように、Tl2Ba2CuO6の重量減少は200℃から始まり600
℃までは温度変化に比例している。この重量減少は酸素
の放出に対応する。600℃付近からは重量減少率が大き
くなっており、この付近からTlの蒸発が生じているもの
と推測されるが、前述した実施例に示したように700℃
で再加熱した試料もTl2Ba2CuO6-yなる組成の酸化物超伝
導体であることが確認されており、700℃付近でのTl蒸
発量は結晶構造に重大な影響を及ぼすものではない。な
お、結晶は770℃付近で分解した。
The oxide having the composition of Tl 2 Ba 2 CuO 6 described above was supplied at a flow rate of 12
The thermogravimetric change when the temperature is increased at a rate of 5 ° C./min in a nitrogen stream of 0 ml / min is as shown in FIG. As shown in this figure, the weight loss of Tl 2 Ba 2 CuO 6 starts at 200 ° C. and ends at 600 ° C.
Up to ° C. is proportional to the temperature change. This weight loss corresponds to the release of oxygen. From around 600 ° C., the weight loss rate has increased, and it is estimated that Tl evaporation has occurred from around this temperature, but as shown in the above-described Example, 700 ° C.
It has been confirmed that the sample reheated in the above was also an oxide superconductor having the composition of Tl 2 Ba 2 CuO 6-y , and the amount of Tl evaporation around 700 ° C did not significantly affect the crystal structure. Absent. The crystals decomposed at around 770 ° C.

Tlの蒸発が生じない温度領域では、加熱温度と酸素の
放出量とが1:1に対応するので、真空中あるいは不活性
ガス雰囲気中でに試料の熱重量変化を測定しておくこと
により、徐冷開始温度が把握できる。したがって、製造
時は酸素含有雰囲気中での徐冷温度がこの徐冷開始温度
に至った際、あるいは再加熱温度がこの徐冷開始温度に
至った際、真空中あるいは不活性ガス雰囲気中での徐冷
を開始すればよい。なお、再加熱を、試料の熱重量変化
を測定しながら行うと、試料の重量減少、つまりは酸素
の放出量を直接把握できるので、製造する酸化物超伝導
体の臨界温度をより精密に制御することができる。
In a temperature range where Tl does not evaporate, the heating temperature and the amount of released oxygen correspond to 1: 1.By measuring the thermogravimetric change of the sample in a vacuum or in an inert gas atmosphere, The slow cooling start temperature can be grasped. Therefore, at the time of manufacture, when the annealing temperature in the oxygen-containing atmosphere reaches the annealing start temperature, or when the reheating temperature reaches the annealing starting temperature, the vacuum or inert gas atmosphere is used. What is necessary is just to start slow cooling. If reheating is performed while measuring the thermogravimetric change of the sample, the weight loss of the sample, that is, the amount of released oxygen can be directly grasped, so the critical temperature of the oxide superconductor to be manufactured can be controlled more precisely. can do.

実施例2 実施例1と同様にして、同様のペレット状試料を3個
作製した。その後実施例1と同じ条件でこれら試料を焼
成し、Tl2Ba2CuO6なる組成の酸化物を合成した。
Example 2 In the same manner as in Example 1, three similar pellet-shaped samples were produced. Thereafter, these samples were fired under the same conditions as in Example 1 to synthesize an oxide having a composition of Tl 2 Ba 2 CuO 6 .

合成された3個の試料を10℃/分の速度で、夫々480
℃、500℃、540℃まで昇温し、Arガス雰囲気中にてアニ
ールした。この際のアニール時間は、480℃のもので4
時間、500℃及び540℃のもので10時間とした。その後、
いずれの試料も10℃/分の速度で降温した。このように
して形成された試料は、いずれも超伝導特性を示し、超
伝導体が生成されたことが確認された。
Each of the three synthesized samples was 480 each at a rate of 10 ° C./min.
C., 500.degree. C., and 540.degree. C., and annealed in an Ar gas atmosphere. The annealing time at this time is 4 at 480 ° C.
Time, 10 hours at 500 ° C and 540 ° C. afterwards,
Each sample was cooled at a rate of 10 ° C./min. All of the samples thus formed exhibited superconducting properties, and it was confirmed that a superconductor was generated.

第8図乃至第10図は、交流帯磁率法により各試料の磁
化率の温度変化を測定した結果を示す図である。第8図
は480℃まで昇温して4時間アニールしたもの、第9図
は500℃まで昇温して10時間アニールしたもの、第10図
は540℃まで昇温して10時間アニールしたものの結果を
示す。これらの図から、各試料の臨界温度は、夫々、40
K、50K、55Kであることが確認された。
8 to 10 are diagrams showing the results of measuring the temperature change of the magnetic susceptibility of each sample by the AC susceptibility method. FIG. 8 shows a case where the temperature was raised to 480 ° C. and annealed for 4 hours, FIG. 9 shows a case where the temperature was raised to 500 ° C. and annealed for 10 hours, and FIG. The results are shown. From these figures, the critical temperature of each sample was 40
K, 50K and 55K were confirmed.

[発明の効果] この発明によれば、臨界温度が所望の範囲内にあるTl
系酸化物超伝導体を容易に製造することができる。
[Effects of the Invention] According to the present invention, Tl whose critical temperature is within a desired range
A system-based oxide superconductor can be easily manufactured.

この発明により製造された酸化物超伝導体は、ジョセ
フソン接合を有するジョセフソン素子及びSQUID(超伝
導量子干渉計)、超伝導発電機に適用することが期待さ
れ、またエネルギ損失の少ない超伝導電力貯蔵、さらに
はエネルギ損失の少ない送電ケーブル等の多方面の超伝
導機器の実用化に寄与することが期待される。
The oxide superconductor manufactured according to the present invention is expected to be applied to a Josephson device having a Josephson junction, a SQUID (superconducting quantum interferometer), and a superconducting generator, and has a small energy loss. It is expected to contribute to the practical use of superconducting equipment in various fields, such as power storage and power transmission cables with low energy loss.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第5図はこの発明の実施例1に係る方法によ
り作成した試料の四端子法による抵抗率の温度変化を示
す図、第6図は第1図乃至第5図の結果から求めた臨界
温度と徐冷前加熱温度との関係を示す図、第7図はTl2B
a2CuO6を窒素雰囲気中で再加熱した際の熱重量変化を示
す図、第8図乃至第10図はこの発明の実施例2に係る方
法により作成した試料の交流帯磁率法による磁化率の温
度変化を示す図である。
1 to 5 are diagrams showing the temperature change of the resistivity of a sample prepared by the method according to the first embodiment of the present invention by the four-terminal method, and FIG. 6 is obtained from the results of FIGS. 1 to 5. FIG. 7 shows the relationship between the critical temperature and the heating temperature before slow cooling, and FIG. 7 shows Tl 2 B
FIGS. 8 to 10 show thermogravimetric changes when a 2 CuO 6 is reheated in a nitrogen atmosphere. FIGS. 8 to 10 show the magnetic susceptibility of a sample prepared by the method according to the second embodiment of the present invention by the AC susceptibility method. FIG. 5 is a diagram showing a temperature change of the radiator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊地 昌枝 宮城県仙台市太白区三神峯2丁目11番5 号 (72)発明者 庄野 安彦 宮城県仙台市青葉区吉成3丁目12番12号 (72)発明者 小林 典男 宮城県仙台市泉区長命ケ丘2丁目6番11 号 審査官 三崎 仁 (56)参考文献 特開 平3−199157(JP,A) 特許2820480(JP,B2) 特許3006071(JP,B2) 特許3121001(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C01G 1/00,15/00 C04B 35/64 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masae Kikuchi 2-11-5 Migamimine, Taishiro-ku, Sendai-city, Miyagi Prefecture (72) Inventor Yasuhiko Shono 3--12-12 Yoshinari, Aoba-ku, Aoba-ku, Sendai City, Miyagi Prefecture (72) Inventor Norio Kobayashi 2-6-11 Nagamigaoka, Izumi-ku, Sendai-shi, Miyagi Examiner Hitoshi Misaki (56) References JP-A-3-199157 (JP, A) Patent 2820480 (JP, B2) Patent 3006071 (JP, B2) ) Patent 3121001 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 1 / 00,15 / 00 C04B 35/64

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Tl系酸化物超伝導体を構成する金属元素が
所定の割合で調合された混合原料を酸素含有雰囲気中で
焼成する工程と、この工程で得られた焼結体を酸素含有
雰囲気中で徐冷する工程と、この徐冷工程において前記
焼結体が所定温度に至った後、又はこの徐冷工程後に再
加熱して前記焼結体が所定温度に至った後、前記焼結体
を真空中又は不活性ガス雰囲気中で徐冷する工程とを有
することを特徴とするTl系酸化物超伝導体の製造方法。
1. A process in which a mixed material prepared by mixing metal elements constituting a Tl-based oxide superconductor at a predetermined ratio is fired in an oxygen-containing atmosphere, and the sintered body obtained in this process is oxygen-containing. A step of gradually cooling in an atmosphere, and after the sintered body reaches a predetermined temperature in the slow cooling step, or after reheating after the slow cooling step and the sintered body reaches a predetermined temperature, Gradually cooling the compact in a vacuum or an inert gas atmosphere. A method for producing a Tl-based oxide superconductor, comprising:
【請求項2】前記再加熱は、真空中又は不活性ガス雰囲
気中で行うことを特徴とする請求項1に記載のTl系酸化
物超伝導体の製造方法。
2. The method for producing a Tl-based oxide superconductor according to claim 1, wherein the reheating is performed in a vacuum or in an inert gas atmosphere.
【請求項3】前記再加熱は、前記焼結体の熱重量変化を
測定しながら行われることを特徴とする請求項1又は2
に記載のTl系酸化物超伝導体の製造方法。
3. The method according to claim 1, wherein the reheating is performed while measuring a thermogravimetric change of the sintered body.
3. The method for producing a Tl-based oxide superconductor according to 1.).
JP25038490A 1990-02-28 1990-09-21 Method for producing Tl-based oxide superconductor Expired - Lifetime JP3167316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25038490A JP3167316B2 (en) 1990-02-28 1990-09-21 Method for producing Tl-based oxide superconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-45965 1990-02-28
JP4596590 1990-02-28
JP25038490A JP3167316B2 (en) 1990-02-28 1990-09-21 Method for producing Tl-based oxide superconductor

Publications (2)

Publication Number Publication Date
JPH03271123A JPH03271123A (en) 1991-12-03
JP3167316B2 true JP3167316B2 (en) 2001-05-21

Family

ID=26386064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25038490A Expired - Lifetime JP3167316B2 (en) 1990-02-28 1990-09-21 Method for producing Tl-based oxide superconductor

Country Status (1)

Country Link
JP (1) JP3167316B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317457A (en) * 1991-04-12 1992-11-09 Nec Corp Production of oxide superconductor composition

Also Published As

Publication number Publication date
JPH03271123A (en) 1991-12-03

Similar Documents

Publication Publication Date Title
Sastry et al. Synthesis and processing of (Hg, Pb) 1Ba2Ca2Cu3Oy superconductors
JP3167316B2 (en) Method for producing Tl-based oxide superconductor
JP3121001B2 (en) Method for producing Tl-based oxide superconductor
JPH0881221A (en) Oxide superconductor and its production
JP3006071B2 (en) Method for producing Tl-based oxide superconductor
JP2899510B2 (en) Oxide superconductor and manufacturing method thereof
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP2523928B2 (en) Oxide superconductor and method for producing the same
JP3536920B2 (en) Alloy superconductor and method of manufacturing the same
Rodrigues et al. Phase formation and evolution, texturing and current transport in Ag/Bi2212 PIT monofilamentary tapes
JPH03232759A (en) Production of superconductor of tl-based oxide
JPS63292525A (en) Manufacture of superconductive film
JPH04292812A (en) Manufacture of bismuth-based oxide superconductive wire
JP2820480B2 (en) Oxide superconductor and manufacturing method thereof
KR0159487B1 (en) Oxide superconductor and method of producing the same
Park et al. YBa2Cu3O7-x superconductors via oxide precursor containing BaCuO2. 5
WO1989007086A1 (en) SUPERCONDUCTING Bi-Sr-Ca-Cu OXIDE COMPOSITIONS AND PROCESS FOR MANUFACTURE
JPH0333052A (en) Production of oxide superconducting material
JPH01176609A (en) Manufacture of oxide superconductive wire material
JPH0624831A (en) Tl-base oxide superconductor and its production
JPH04292817A (en) Manufacture of high temperature superconductor
JPH01243312A (en) Manufacture of oxide superconductive multiconductor wire
JPH02293322A (en) Tl-based oxide superconductor and production thereof
JPH01279507A (en) Manufacture of ceramic superconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10