JPH0333052A - Production of oxide superconducting material - Google Patents

Production of oxide superconducting material

Info

Publication number
JPH0333052A
JPH0333052A JP1164547A JP16454789A JPH0333052A JP H0333052 A JPH0333052 A JP H0333052A JP 1164547 A JP1164547 A JP 1164547A JP 16454789 A JP16454789 A JP 16454789A JP H0333052 A JPH0333052 A JP H0333052A
Authority
JP
Japan
Prior art keywords
superconducting material
oxide
oxide superconducting
present
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1164547A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kusuhara
楠原 博行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1164547A priority Critical patent/JPH0333052A/en
Publication of JPH0333052A publication Critical patent/JPH0333052A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the material having a higher superconductivity critical temp. by mixing the oxide powders contg. Tl, Pb, Ca, Ba and Cu in a specified atomic ratio and sintering the mixture under specified conditions in an oxygen atmosphere. CONSTITUTION:The oxide powders contg. Tl, Pb, Ca, Ba and Cu are mixed in the atomic ratio of Tl:Pb:Ca:Ba:Cu=r:s:3:1:3 (where 0.5<r<1 and 0<s<0.5). The mixture is sintered at 820-950 deg.C for 6-100hr in an oxygen atmosphere. An oxide superconducting material having a high critical temp. is obtained by this method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸化物超電導材料の製造方法に関する。より
詳細には、高い超電導臨界温度(’re )を有する、
Tl系超電導材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing oxide superconducting materials. More specifically, having a high superconducting critical temperature ('re),
The present invention relates to a method for manufacturing Tl-based superconducting materials.

従来の技術 1986年に、ベドノーツおよびミューラー達によって
高いTcを有する複合酸化物系の超電導材料が発見され
るにいたって、高温超電導の可能性が大きく開けてきた
(Bednorz、 Muller、 ”Z、 Phy
s、 864(1986) 189”)。
Conventional technology In 1986, Bednorz and Muller et al. discovered complex oxide-based superconducting materials with high Tc, greatly opening up the possibility of high-temperature superconductivity (Bednorz, Muller, "Z, Phys.
s, 864 (1986) 189”).

ベドノーツおよびミューラー達によって発見された酸化
物超電導体は(La、 Sr) 2Cu O、で、この
酸化物超電導体は、K2NiF、型酸化物と呼ばれるも
のであり、従来から知られていたペロブスカイト型超電
導酸化物と結晶構造が似ているが、そのTcは従来の超
電導材料に比べて飛躍的に高い約30にという値である
The oxide superconductor discovered by Bednotes and Muller et al. is (La, Sr) 2Cu O, and this oxide superconductor is called a K2NiF type oxide, which is a type of perovskite superconductor that has been known for a long time. Although its crystal structure is similar to that of oxides, its Tc is approximately 30, which is significantly higher than that of conventional superconducting materials.

さらに、1987年2月になって、チュー達によって9
0にクラスの臨界温度を示すY1Ba2Cu3O7−x
系の複合酸化物が発見されたことが新聞報道され、非低
温超電導体実現の可能性が俄かに高まっている。
Furthermore, in February 1987, 9
Y1Ba2Cu3O7-x exhibiting a class critical temperature of 0
The discovery of a complex oxide has been reported in the newspapers, and the possibility of realizing non-low-temperature superconductors has suddenly increased.

1988年には、希土類を用いないため、原料が比較的
安価なTI −Ba−Ca−Cu −0系複合酸化物テ
ハ、Tcが100Kを超える可能性のあることが報告さ
れている。TI −Ba−Ca −Cu−0系複合酸化
物超電導体には、臨界温度が異なる複数の相が存在する
ことが知られている。高温相のみを形成するには、pb
を添加することが有効であるという発表もあり、例えば
、TI+、 53Ptlo、 sBa、Ca、、、33
Cun○8(Tlo、 5Pbo、 2) 1.25 
(eao、5Cao、 s) aca3cu4011で
表される複合酸化物が高温で超電導性を示すという報告
もなされている。(Science Vol、241p
p1198〜1200) さらに本願特許出願人による特願昭63−285538
号には、周期率表IIa族から選択された元素AIEI
およびAIE2 、Tl、pbおよびCuを含み、−級
式%式% 〈ただし、0<x<1、n≧2である〉で表されること
を特徴とする酸化物超電導材料が開示されている。また
、本願特許出願人による特願平1−35661号には、
一般式 %式% (ただし、Q<x≦0.2、n=4.5.6)で表され
る酸化物超電導材料およびその作製方法として、Tl5
Pb、 Ca5BaおよびCuを含む酸化物粉末を原子
比Tl :Pb:Ca:Ba:Cu=r : s : 
3 : 1:3(ただし、Q、5<r<1、0<s<0
.5)となる割合で混合し、酸素雰囲気中にて820〜
950℃の温度で6〜100時間焼結することを特徴と
する酸化物超電導材料の作製方法が開示されている。
In 1988, it was reported that TI-Ba-Ca-Cu-0 based composite oxide Tc, which does not use rare earth elements and whose raw materials are relatively inexpensive, may have a Tc of over 100K. It is known that a plurality of phases having different critical temperatures exist in a TI-Ba-Ca-Cu-0 based composite oxide superconductor. To form only the high temperature phase, pb
There are also announcements that it is effective to add TI+, 53Ptlo, sBa, Ca,...
Cun○8 (Tlo, 5Pbo, 2) 1.25
(eao, 5Cao, s) It has also been reported that a composite oxide represented by aca3cu4011 exhibits superconductivity at high temperatures. (Science Vol, 241p
p1198-1200) Furthermore, patent application No. 63-285538 by the patent applicant of this application
The issue contains elements AIEI selected from group IIa of the periodic table.
An oxide superconducting material is disclosed that contains AIE2, Tl, pb, and Cu, and is represented by the -class formula % (where 0<x<1, n≧2). . In addition, in Japanese Patent Application No. 1-35661 filed by the applicant for the present patent,
Tl5
Oxide powder containing Pb, Ca5Ba and Cu is prepared with an atomic ratio Tl:Pb:Ca:Ba:Cu=r:s:
3: 1:3 (however, Q, 5<r<1, 0<s<0
.. 5) Mix at a ratio of 820~ in an oxygen atmosphere.
A method for producing an oxide superconducting material is disclosed, which is characterized by sintering at a temperature of 950° C. for 6 to 100 hours.

発明が解決しようとする課題 しかしながらTI −Ba−Ca −Cu −0系超電
導体においては、Tl□Ca、、Ba2Cu、08系お
よびTl、CaBa、C’u20゜系に代表される数種
の超電導相を含んでおり、臨界温度こそ120にと高い
ものが得られているが、その高Tc相の単相生成は困難
である。
Problems to be Solved by the Invention However, in the TI-Ba-Ca-Cu-0 system superconductors, several types of superconductors such as Tl□Ca, , Ba2Cu, 08 system and Tl, CaBa, C'u20° system exist. Although a high Tc phase has been obtained with a critical temperature as high as 120, it is difficult to generate a single high Tc phase.

さらに、Tl系複合酸化物超電導材料では、構成元素中
でTIの蒸気圧が高く、製造過程においてTIが飛散す
るので精密な組成制御が難しい。
Furthermore, in the Tl-based composite oxide superconducting material, TI has a high vapor pressure among the constituent elements, and TI scatters during the manufacturing process, making it difficult to precisely control the composition.

そこで、本発明の目的は、従来よりも高い超電導臨界温
度を有するTI系超超電導材料の作製方法を提供するこ
とにある。
Therefore, an object of the present invention is to provide a method for producing a TI-based superconducting material having a higher superconducting critical temperature than conventional ones.

課題を解決するための手段 本発明に従うと、Tl、Pb、 Ca、 BaおよびC
uを含む酸化物粉末を原子比Tl :Pb :Ca :
Ba :Cu= r :s:3:l:3  (ただしQ
、5<r<1、0<s<0.5)となる割合で混合し、
酸素雰囲気中にて820〜950℃の温度で6〜100
時間焼結することを特徴とする酸化物超電導材料の製造
方法が提供される。
Means for solving the problem According to the invention, Tl, Pb, Ca, Ba and C
The atomic ratio of oxide powder containing u is Tl:Pb:Ca:
Ba:Cu=r:s:3:l:3 (however, Q
, 5<r<1, 0<s<0.5),
6-100 at a temperature of 820-950℃ in an oxygen atmosphere
Provided is a method for producing an oxide superconducting material characterized by time-sintering.

作用 本発明の酸化物超電導材料の製造方法は、一般式 %式% (ただし、Q<x≦0.2、 n=2. 3. 4. 5. 6) で表される酸化物超電導材料を製造する方法である。こ
の酸化物超電導材料は、TIサイトの10〜20%をp
bで置換したもので、(Tl、 Pb)−0層が1層で
ある構造を保ちつつ、C軸の長さの異なる上記の種々の
相を、それぞれ単一相で得ることができるものである。
Function: The method for producing an oxide superconducting material of the present invention is based on the following formula: This is a method of manufacturing. This oxide superconducting material has 10-20% of the TI sites as p
b, and it is possible to obtain the above various phases with different C-axis lengths in a single phase while maintaining the structure of one (Tl, Pb)-0 layer. be.

本発明の製造方法において、pbを添加しない場合には
(Tl、 Pb)−0層が1層である構造をとらず、p
b添加量がTI量の50%を越える場合には不純物相が
析出する。従って、本発明の製造方法においてrSsは
それぞれQ、5< r < 3 Q < s <0.5
が好ましい。
In the manufacturing method of the present invention, when pb is not added, a structure in which there is only one (Tl, Pb)-0 layer is not adopted, and pb is not added.
If the amount of b added exceeds 50% of the amount of TI, an impurity phase will precipitate. Therefore, in the manufacturing method of the present invention, rSs is Q, 5< r < 3 Q < s < 0.5, respectively.
is preferred.

また焼結温度が820℃未満または焼結時間が6時間未
満では反応が十分行われず、不純物相が残留する。焼結
温度が950℃を越えると焼結中に液相を生じ、やはり
不純物が生じてしまう。
Furthermore, if the sintering temperature is less than 820° C. or the sintering time is less than 6 hours, the reaction will not be sufficiently carried out and an impurity phase will remain. If the sintering temperature exceeds 950°C, a liquid phase will be generated during sintering, and impurities will also be generated.

さらに、上記の焼結反応は100時間以内で完了し、1
00時間を越えて焼結しても、得られる超電導材料の特
性に差はない。従って本発明の方法では、上記の条件で
超電導材料を製造する。
Furthermore, the above sintering reaction was completed within 100 hours, and 1
There is no difference in the properties of the obtained superconducting material even if the sintering time exceeds 00 hours. Therefore, in the method of the present invention, a superconducting material is manufactured under the above conditions.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 原料としてTl□03、PbO,CaO、BaO2、C
uOの各粉末をTl :Pb :Ca :Ba :Cu
の比が、■ 0.8  :0.2  :3:l:3■ 
0.75 :0.25 : 3 : 1 : 3■ 0
.8  :0.2  :3:1:3■ 0.95 :0
.05 : 3 : 1 : 3■ 0.95 :0.
05 : 3 : 1 : 3となるようにそれぞれ混
合し、約100kg/cafでそれぞれペレット成形し
た。各ペレットを厚さ50ミクロンのAu箔で包み、流
量200mj!/分で02ガスフローした炉内において
、それぞれ850〜900℃の範囲の異なる温度で約1
0時間焼結して本発明の超電導材料を作製した。
Example raw materials include Tl□03, PbO, CaO, BaO2, C
Each powder of uO was converted into Tl :Pb :Ca :Ba :Cu
The ratio is ■ 0.8:0.2:3:l:3■
0.75 : 0.25 : 3 : 1 : 3 ■ 0
.. 8:0.2:3:1:3■ 0.95:0
.. 05: 3: 1: 3 ■ 0.95: 0.
05:3:1:3, respectively, and pelletized at about 100 kg/caf. Each pellet is wrapped in 50 micron thick Au foil and the flow rate is 200mj! 1 at different temperatures ranging from 850 to 900 °C, respectively, in a furnace with a gas flow of 02/min.
The superconducting material of the present invention was produced by sintering for 0 hours.

得られた各超電導材料の緒特性を第1表に、また、X線
回折のデータを第1図〜第5図に、帯磁率の測定結果を
第6図〜第10図に示す。
The characteristics of each superconducting material obtained are shown in Table 1, the X-ray diffraction data are shown in FIGS. 1 to 5, and the magnetic susceptibility measurement results are shown in FIGS. 6 to 10.

発明の詳細 な説明したように、本発明の製造方法による酸化物超電
導材料は臨界温度が高く、超電導ケーブル、電子材料等
の分野で有効に利用され得るものである。
As described in detail, the oxide superconducting material produced by the production method of the present invention has a high critical temperature and can be effectively used in the fields of superconducting cables, electronic materials, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は、本発明の超電導材料の実施例におけ
るそれぞれ■〜■の試料のX線回折図形であり、 第6図〜第10図は、本発明の超電導材料の実施例にお
けるそれぞれ■〜■の試料の帯磁率の測定結果である。
Figures 1 to 5 are X-ray diffraction patterns of samples ■ to ■, respectively, in Examples of the superconducting material of the present invention, and Figures 6 to 10 are X-ray diffraction patterns in Examples of the superconducting material of the present invention. These are the measurement results of magnetic susceptibility of samples ① to ②, respectively.

Claims (1)

【特許請求の範囲】[Claims]  Tl、Pb、Ca、BaおよびCuを含む酸化物粉末
を原子比Tl:Pb:Ca:Ba:Cu=r:s:3:
1:3(ただし0.5<r<1、0<s<0.5)とな
る割合で混合し、酸素雰囲気中にて820〜950℃の
温度で6〜100時間焼結することを特徴とする酸化物
超電導材料の製造方法。
Oxide powder containing Tl, Pb, Ca, Ba and Cu has an atomic ratio of Tl:Pb:Ca:Ba:Cu=r:s:3:
It is characterized by mixing at a ratio of 1:3 (however, 0.5<r<1, 0<s<0.5) and sintering at a temperature of 820 to 950°C for 6 to 100 hours in an oxygen atmosphere. A method for producing an oxide superconducting material.
JP1164547A 1989-06-27 1989-06-27 Production of oxide superconducting material Pending JPH0333052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1164547A JPH0333052A (en) 1989-06-27 1989-06-27 Production of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1164547A JPH0333052A (en) 1989-06-27 1989-06-27 Production of oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH0333052A true JPH0333052A (en) 1991-02-13

Family

ID=15795231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1164547A Pending JPH0333052A (en) 1989-06-27 1989-06-27 Production of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH0333052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160006153A (en) * 2015-12-30 2016-01-18 한지흠 A mountable curtain controller reacting to specific alarm sound unconsciously

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160006153A (en) * 2015-12-30 2016-01-18 한지흠 A mountable curtain controller reacting to specific alarm sound unconsciously

Similar Documents

Publication Publication Date Title
JPH0333052A (en) Production of oxide superconducting material
JPH0764560B2 (en) Layered copper oxide
JPH03223151A (en) Superconducting material of oxide and its production
JP3219563B2 (en) Metal oxide and method for producing the same
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JP3121001B2 (en) Method for producing Tl-based oxide superconductor
JP3073229B2 (en) Manufacturing method of oxide superconducting material
JP2801806B2 (en) Metal oxide material
JPH0365512A (en) High-temperature superconductive material and production thereof
JP3979609B2 (en) Method for producing Tl-based oxide superconductor
JP3006071B2 (en) Method for producing Tl-based oxide superconductor
JP2555505B2 (en) Metal oxide material
JP2556712B2 (en) Method for manufacturing oxide superconductor
JPH02221125A (en) Oxide superconductor and its production
JPH0238359A (en) Production of superconductor
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
JPH0365514A (en) High-temperature superconductive material and production thereof
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JPH07257961A (en) Superconductive material
JP2838312B2 (en) Oxide superconducting material
JP3283909B2 (en) Metal oxide material and method for producing the same
JPH02293322A (en) Tl-based oxide superconductor and production thereof
JPH0230618A (en) Oxide high-temperature superconductor
JPH0446015A (en) Oxide superconducting material and its production
JPH01126258A (en) Production of oxide high-temperature superconductive material