JPH03170662A - Method and apparatus for vapor deposition - Google Patents

Method and apparatus for vapor deposition

Info

Publication number
JPH03170662A
JPH03170662A JP30968189A JP30968189A JPH03170662A JP H03170662 A JPH03170662 A JP H03170662A JP 30968189 A JP30968189 A JP 30968189A JP 30968189 A JP30968189 A JP 30968189A JP H03170662 A JPH03170662 A JP H03170662A
Authority
JP
Japan
Prior art keywords
molten metal
vapor deposition
evaporation
crucible
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30968189A
Other languages
Japanese (ja)
Inventor
Ryutaro Akutagawa
竜太郎 芥川
Isamu Inoue
勇 井上
Hirozo Takegawa
武川 博三
Hidenobu Shintaku
秀信 新宅
Kayoko Kodama
児玉 佳代子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30968189A priority Critical patent/JPH03170662A/en
Priority to DE1990607433 priority patent/DE69007433T2/en
Priority to EP19900122752 priority patent/EP0430210B1/en
Publication of JPH03170662A publication Critical patent/JPH03170662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent contamination with foreign matter, splashing, and sudden changes in composition and temp. and to obtain a thin metallic film having uniform composition and film thickness by supplying a vapor deposition material through an inlet tube inserted into a molten metal in an evaporation crucible. CONSTITUTION:For example, a molten metal 12 composed of a vapor deposition material (consisting of a Co-Cr alloy in which the vapor pressure of Co is lower than the vapor pressure of Cr) heated and melted by means of an electron gun 11 is put into an evaporation crucible 10 made of magnesia. A supply rod 14 in which Cr content is higher than that in the molten metal 12 is supplied into the molten metal 12 through an inlet tube 13 inserted into the position under the surface of this molten metal 12. As a result, although foreign matter 15, such as oxide which is lighter than the molten metal 12, introduced at the time of the supply of the rod 14 floats on the surface of the molten metal 12 this surface is separated from the molten metal surface in the evaporation region concerned with vapor deposition and the above foreign matter 15 can be prevented from flowing into the evaporation region. Further, since the inlet tube 13 is inserted into the position under the surface of the molten metal 12 in the crucible 10, a Cr-enriched molten metal eluted from the rod 14 is diffused from the bottom of the molten metal 12 and gradually supplied toward the surface of the molten metal 12.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 蒸着材料を、溶融して蒸気を発生レ基板に
付着させて薄膜を形或する蒸着装置並びに蒸着方法に関
するものであも 従来の技術 一般に真空蒸着法によって合金を蒸着させる場合、第5
図に示したように 塊状の被蒸発物を蒸発るつぼ1内に
設置し電子銃2より照射される電子ビーム3によって加
無 溶融して溶湯5となし蒸気4を発生させ基板(図示
せず)上へ付着させ金属薄膜を形威させも この時、蒸
発るつぼ1内の溶湯5は時間と共に減少し また 使用
する合金の組戊によっては飽和蒸気圧が異なるので溶湯
組戒も時間と共に変化すも たとえば 溶湯5を構或し
ている材料をa,  bとし それぞれの飽和蒸気圧を
Pa,PbとしPa>Pbである14aの方が蒸発速度
が速いため溶湯5内のa或分が減少してくん このた△ 組戒を一定に保つに!上 材料aの戊分の多
い蒸着材料供給棒6 (以後供給棒と呼ぶ)、もしくは
蒸着材料粒(図示せず)を溶湯5に供給していも 発明が解決しようとする課題 供給棒6からの供給が行なわれると供給棒6の表面の酸
化膜や異物も共に溶湯5内に入り、浮遊物7となって溶
湯5の表面に漂う。この浮遊物7は高融点であるため電
子ビームによって直接加熱されても容易に溶け哄 沸騰
の核となって溶湯5の液滴の飛散を招く。この飛散した
液滴はスプラシュと呼ばれ基板上で凝固し異物となって
残存し重大な蒸着欠陥となん また供給棒6を溶@5に挿入すると供給s6への熱伝導
と、供給棒6の融解潜熱のた△ 図に示した矢印Bに沿
って熱が流出し溶湯5の温度が低下すも 溶湯5の温度
が低下すると、蒸発速度が低下し基板上に形或される金
属膜の膜厚が薄くなも 第6図に示すの!友 第5図の従来例における蒸着装置
でα 蒸気組成の時間的変化である。破線の特性(上 
第5図に示すよう番へ 供給棒6を直接に溶湯5に供給
した場合であり、実線は材料を全く供給しない場合であ
も 実線の特性から分かる通り、材料を全く供給しない場合
1tcrの蒸発速度が早いたべ 時間的経過でみると蒸
気組戊申のCrの含有率は低下すも また 材料を供給した場合でL 従来で(よ 破線の特
性に示されるように 蒸気組成の変動は脈動の激しいも
のであった この理由(よ 以下の通りである。先ず第1に供給棒6
による材料供給時に{友 第5図に矢印Aで示したよう
に急激に蒸発領域に 供給棒6から材料aの戒分の多い
溶湯が溶湯5の上層部に流入すも したがって蒸気4の
組戊(友 材料aの戒分が多くなる方向に急激に変動す
るのである。第2に{よ 供給棒6は湯面と接触すると
その先端1友供給棒6の送り速度よりも速い速度で溶融
して湯面と離れ そして再び供給棒6の溶湯5への送り
によって溶湯5へ接触することを繰り返すことになり、
結果的に間欠的な材料供給となり図に示したような脈動
的な組成変動が生じのであるバ 更に詳し<(友  供
給棒6が溶湯5と接触している間(友 クロムリッチな
材料が供給されるため溶湯組成はクロム濃度が増加し 
その結果蒸気組戊もクロム或分が増加すも しかし 供
給棒6が溶湯から離れると溶湯内のクロム濃度が減少す
るため蒸気のクロム組成も減少する。この時クロム組成
の減少は材料供給無しの場合と同じ割合で減少するので
あも 以上の様に 従来例でζよ 金属薄膜の均質性などが大
幅に損なわれるという課題を有していた本発明はかかる
点に鑑へ 均一で完或度の高い金属薄膜が得られる蒸着
装置並びに蒸着方法を提供することを目的とすa 課題を解決するための手段 上記課題を解決するための手段は 蒸着材料導入管(以
降導入管と呼ぶ)を、蒸発るつぼの溶湯内に挿入し 導
入管を通して、蒸着材料を蒸発るつぼ内に供給する様に
なすことである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an evaporation apparatus and a evaporation method for forming a thin film by melting a evaporation material to generate vapor and depositing it on a substrate. Generally, when depositing an alloy by vacuum evaporation method, the fifth
As shown in the figure, a lump of material to be evaporated is placed in an evaporation crucible 1, and is melted by an electron beam 3 emitted from an electron gun 2 to form a molten metal 5 and generate steam 4, which is then attached to a substrate (not shown). At this time, the molten metal 5 in the evaporation crucible 1 decreases over time, and the saturated vapor pressure varies depending on the composition of the alloy used, so the composition of the molten metal also changes over time. For example, if the materials constituting the molten metal 5 are a and b, and their saturated vapor pressures are Pa and Pb, 14a, where Pa>Pb, has a faster evaporation rate, so a certain amount of a in the molten metal 5 decreases. Kunkota△ To keep the group precepts constant! Even if the vapor deposition material supply rod 6 (hereinafter referred to as the supply rod) or the vapor deposition material grains (not shown) with a large content of material a are supplied to the molten metal 5, the problem to be solved by the invention is that the supply rod 6 When the supply is carried out, the oxide film and foreign matter on the surface of the supply rod 6 also enter the molten metal 5 and become floating matter 7 and float on the surface of the molten metal 5. Since this floating material 7 has a high melting point, even if it is directly heated by an electron beam, it easily melts and becomes a boiling nucleus, causing droplets of the molten metal 5 to scatter. These scattered droplets are called splash, and they solidify on the substrate and remain as foreign matter, causing serious deposition defects.When the supply rod 6 is inserted into the melt@5, heat conduction to the supply s6 and Due to the latent heat of fusion, heat flows out along arrow B shown in the figure and the temperature of the molten metal 5 decreases.As the temperature of the molten metal 5 decreases, the evaporation rate decreases and the metal film formed on the substrate decreases. The thin one is shown in Figure 6! Figure 5 shows the temporal change in α vapor composition in the conventional vapor deposition apparatus. Characteristics of the dashed line (top
As shown in Fig. 5, this is the case where the supply rod 6 is directly supplied to the molten metal 5, and the solid line shows the case where no material is supplied. Although the Cr content in the steam composition decreases over time when the speed is fast, the Cr content in the steam composition decreases over time. The reason why this was so severe is as follows. First of all, the supply rod 6
When the material is supplied by the arrow A in Figure 5, the molten metal with a large amount of material a flows into the evaporation region from the supply rod 6 into the upper layer of the molten metal 5. (The precipitate of material a changes rapidly in the direction of increasing. Second, when the supply rod 6 comes into contact with the molten metal surface, its tip 1 melts at a faster speed than the feeding speed of the material A. The supply rod 6 separates from the molten metal surface, and then comes into contact with the molten metal 5 again by feeding the supply rod 6 to the molten metal 5.
As a result, the material is supplied intermittently, resulting in pulsating composition fluctuations as shown in the figure. As a result, the chromium concentration increases in the molten metal composition.
As a result, the chromium content in the steam composition increases to some extent, but when the supply rod 6 leaves the molten metal, the chromium concentration in the molten metal decreases, so the chromium composition of the steam also decreases. At this time, the chromium composition decreases at the same rate as in the case without material supply, so as shown above, the conventional example had the problem that the homogeneity of the metal thin film was significantly impaired, but the present invention In view of this, the purpose of the present invention is to provide a vapor deposition apparatus and a vapor deposition method that can obtain a uniform and highly complete metal thin film.Means for Solving the ProblemsMeans for solving the above problems are as follows. An introduction tube (hereinafter referred to as introduction tube) is inserted into the molten metal of the evaporation crucible, and the vapor deposition material is supplied into the evaporation crucible through the introduction tube.

また 蒸着時に(よ 導入管の挿入深さを制御すること
であも 作用 そして、上記手段の作用(上 次の通りである。
In addition, the effect of controlling the insertion depth of the introduction tube during vapor deposition is also effective, and the effect of the above means is as follows.

導入管を通して蒸着材料を供給することによって、供給
棒6の挿入時に於ける異物等は 導入管内に隔離され 
また供給棒から溶融して溶湯中に補給される材料(よ 
溶湯表面下の適度な深さに挿入された導入管から溶湯中
に供給されるたム 従来例における蒸発領域への局所的
で急激な流入は生ぜ哄 良好な蒸着が可能となa 更に 導入管深さを変えることによって供給棒組戊の蒸
発領域への流入量を制御することが可能となり、膜品質
は一層向上すも また 導入管を介して蒸着材料を予餓 あるいは溶融し
た状態で供給することによって、供給に伴う溶湯の温度
変動を低減でき、更に安定した蒸着が可能となる。
By supplying the vapor deposition material through the introduction pipe, foreign matter etc. that occur when the supply rod 6 is inserted are isolated within the introduction pipe.
Also, the material that is melted from the supply rod and replenished into the molten metal (such as
The introduction tube is inserted into the molten metal at an appropriate depth below the surface of the molten metal. By changing the depth, it is possible to control the amount of flow into the evaporation area of the supply rod assembly, further improving film quality.Also, the evaporation material can be supplied in a pre-starved or molten state through the introduction pipe. By doing so, temperature fluctuations in the molten metal due to supply can be reduced, and more stable vapor deposition can be achieved.

実施例 以下、本発明の一実施例を添付図面に基づいて説明すも 第l図は磁気記録媒体を製膜する本発明の一実施例を示
すものであも マグネシアで形或された蒸発るつぼ10
の中に 電子銃11によって加級溶融された蒸着材料(
Co−Cr合金致 Coの蒸気圧<Crの蒸気圧である
)の溶湯l2が入っていも そして本実施例で{上 溶
湯の表面以下に挿入された導入管l3を通して、溶湯l
2よりもCr或分の多い供給棒14を溶湯l2に供給す
んこの様な構或にすることによって次のような効果が得
られも 供給棒l4が供給される時に持ち込まれる酸化
物等の異物15(;t..  従来例で述べたと同様に
溶湯金属よりも軽いため溶湯l2の湯面上を漂う力交 
この異物15は導入管13によって供給棒l4が供給さ
れる湯面すなわち異物の浮遊する湯面と、蒸着にかかわ
る一蒸発領域の湯面とは隔離され蒸発領域へ流入するこ
とがな(ち これによって、異物l5が原因で引き起こ
されるスプラッシュを無くすことができも また 供給棒l4より溶け出したCrリッチな溶湯41
  導入管l3が蒸着るつぼ10内の溶湯l2の表面下
の適当な深さに挿入されているの弘溶湯12の底部から
拡散しなから溶湯l2の表面へ緩やかに供給されも こ
れにより、材料供給に伴う蒸着膜組成の変動が緩やかに
なん 第4図(a)に 本実施例における蒸気組成の時間的変
化を実線で示も 比較のために破線で示した従来例のも
のに比べて安定性は大幅に向上していも 第2図は本発明の他の実施例を示すものであもヒーター
2 0 j;L  導入管13あるいは供給棒14の加
熱手段であり、これにより導入管l3、材料棒14を、
十分に予熱゜した眞 移送手段であるローラーl8、 
19によって溶湯l2に挿入するものであも 溶湯l2
内に導入管l3を移送手段l9により挿入した檄 供給
棒14がローラl8によって溶湯12に供給されも 本実施例の構戊ζ上 この様に 加熱手段20を具備す
るものである力丈 加熱手段20を動作させない場合と
動作させる場合の2つの形態での動作が可能であり、い
ずれの場合においても従来の問題を解決できるものであ
も ま哄 加熱手段を動作させない形態についての説明を行
なう。
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings. Figure 1 shows an example of the present invention for forming a film for a magnetic recording medium. 10
In the evaporation material (
Even if the molten metal 12 containing the Co-Cr alloy contains the vapor pressure of Co<the vapor pressure of Cr, the molten metal 1 is
By having such a structure in which the supply rod 14 with a certain more Cr content than 2 is supplied to the molten metal 12, the following effects can be obtained. 15 (;t... As mentioned in the conventional example, since it is lighter than the molten metal, the force exchange that floats on the surface of the molten metal l2
These foreign matter 15 are separated from the hot water surface to which the supply rod 14 is supplied by the introduction pipe 13, that is, the hot water surface on which the foreign matter floats, and the hot water surface of one evaporation region involved in vapor deposition, so that they do not flow into the evaporation region. By doing so, it is possible to eliminate the splash caused by the foreign matter l5, and also the Cr-rich molten metal 41 melted from the supply rod l4.
The introduction pipe 13 is inserted at an appropriate depth below the surface of the molten metal 12 in the evaporation crucible 10, and the material is supplied slowly to the surface of the molten metal 12 without being diffused from the bottom of the molten metal 12. Figure 4(a) shows the temporal change in the vapor composition in this example as a solid line, and the stability is greater than that in the conventional example, which is shown as a broken line for comparison. FIG. 2 shows another embodiment of the present invention, which is a heating means for the inlet pipe 13 or the supply rod 14, thereby heating the inlet pipe 13, rod 14,
Roller 18, which is a transportation means, is sufficiently preheated.
19 is inserted into the molten metal l2.
The structure of this embodiment is such that the feed rod 14 is supplied to the molten metal 12 by the rollers l8. Two modes of operation are possible, one in which the heating means is not operated and one in which it is operated, and in either case, the conventional problem can be solved.The mode in which the heating means is not operated will be explained.

回転ローラl8、 19の駆動回転制御等を行なう図示
しないコントローラによって、導入管l3の挿入深さの
制御を行った場合の組戒変動を第4図(b)に破線で示
t。D,  E,  Fの符号が付された曲線(主 導
入管の溶湯液面下への挿入深さの時間経過を示すもので
あも Dは 供給棒14と溶湯が接触した時点であも 
この啄 導入管13内のクロム濃度は蒸発領域よりも濃
(〜 このたべ導入管13を溶湯12に深く挿入し蒸発
領域への流入をより緩やかに抑えも 時間と共に導入管
13内のクロム濃度が減少してくるの玄 Eの時点まで
は導入管13を徐々に引き上げf,  Eの時点では導
入管l3内の組戊と、蒸発領域における組成とはほぼ等
しくなっていも この肌 蒸気のクロム組成がE点に於
で若干増加するように導入管l3の引き上げ速度を制御
し九 これ1上EからFで導入管13を再び深く挿入す
る隊 蒸気のクロム組成(上 材料供給を行わない場合
と同じ割合で減少するた△ 次に供給棒が溶湯と接触す
る時点であるFにおいてD点と同一組成にするためであ
も 以上のDからFまでの動作を繰り返すことによって
蒸気の組成をほぼ一定に保つことができも 本実施例で(上 第4図(a)に示した実施例に比べて
安定性は更に向上していも 次に 加熱手段を用いた形態について、第3図と共に説
明を行なう。ヒータ20によって、供給棒14を導入管
l3内で予熱あるいは溶融して供給すん この場合、材
料供給時に於ける供給棒14からの熱損失と供給棒14
の融解潜熱による溶湯温度の低下を緩和できも 特に 
導入管13内で供給棒を溶融して供給する場合に《友 
材料を断続的な供給ではなく連続的に供給するが可能と
なり溶湯温度ならびに溶湯組戊の変動を更に低減でき、
それにともなう蒸発レートの変動も低減できる瓶 優れ
た効果が得られる。
FIG. 4(b) shows the variation in assembly when the insertion depth of the introduction tube l3 is controlled by a controller (not shown) that controls the drive and rotation of the rotating rollers l8 and 19, etc., as shown by the broken line t. Curves labeled D, E, and F (indicate the time course of the insertion depth of the main introduction pipe below the molten metal surface; D indicates the time when the supply rod 14 and the molten metal come into contact with each other)
The chromium concentration in the introduction tube 13 is higher than that in the evaporation region (~ Even though the introduction tube 13 is inserted deeply into the molten metal 12 and the flow into the evaporation region is suppressed more slowly, the chromium concentration in the introduction tube 13 increases over time. The chromium composition of the steam gradually decreases until point E, when the inlet tube 13 is gradually pulled up. Control the pulling speed of the inlet pipe 13 so that it increases slightly at point E, and insert the inlet pipe 13 deeply again from point E to F. In order to make the composition the same as that at point D at point F, where the supply rod contacts the molten metal, the composition of the steam can be kept almost constant by repeating the above operations from D to F. However, in this embodiment, the stability is further improved compared to the embodiment shown in FIG. 4(a). The supply rod 14 is preheated or melted in the introduction pipe 13 by the heater 20 and then supplied.
It is possible to alleviate the decrease in molten metal temperature due to the latent heat of fusion.
When supplying by melting the supply rod in the introduction pipe 13,
It is possible to supply materials continuously instead of intermittently, further reducing fluctuations in molten metal temperature and molten metal composition.
A bottle that can also reduce fluctuations in evaporation rate resulting in excellent effects.

第4図(b)に 加熱手段を用いた材料の溶融供給にお
ける蒸気組成の時間的変化を実線で示す。
In FIG. 4(b), the solid line shows the temporal change in the vapor composition when melting and supplying the material using a heating means.

最も優れた安定性が得られていも また 第1および第2の実施例において、蒸発蒸気の組
慮 蒸発速度、溶湯面の高よ 導入管内の溶湯の組戊の
何れか1つ以上の項目についての変化に基づき導入管1
3の挿入深さを制御することで、より一層完或度の高い
膜形戒が可能であんな抵 導入管の溶湯への挿入に先立
板 ヒーター20を用いて導入管を予熱することにより
、溶湯へ導入管を挿入した時に導入管に加わる熱衝撃を
緩和する事ができ、導入管の長寿命化を図ることができ
る戟 この導入管の予熱は 導入管を溶湯近傍に保持し
て溶湯からの輻射熱によって行なうことも可能である。
Even if the best stability is obtained, in the first and second embodiments, one or more of the following should be taken into consideration: evaporation steam, evaporation rate, molten metal surface height, and molten metal composition in the introduction pipe. Introductory tube 1 based on the change in
By controlling the insertion depth in step 3, it is possible to achieve a more complete membrane shape. Thermal shock applied to the inlet tube when it is inserted into the molten metal can be alleviated, and the life of the inlet tube can be extended.Preheating of the inlet tube is done by keeping the inlet tube close to the molten metal and removing it from the molten metal. It is also possible to use radiant heat.

発明の効果 以上 詳細に説明した通り、本発明によって、蒸着材料
供給時に於ける電子ビーム照射領域への異物の流入、蒸
発領域の急激な組成及び温度の変化を無くし スプラシ
ュの発生を防ぎ、製膜された膜の組砥 及び膜厚の変動
を無くし 均一で且つ完或度の高い薄膜が製膜可能とな
る。
More than Effects of the Invention As explained in detail, the present invention eliminates the inflow of foreign matter into the electron beam irradiation area during the supply of evaporation material, the sudden change in composition and temperature of the evaporation area, prevents the occurrence of splash, and improves film formation. This eliminates assembly of the film and fluctuations in film thickness, making it possible to form a thin film that is uniform and has a high degree of perfection.

【図面の簡単な説明】 第1図〜第3図は本発明の実施例の概略払 第4図は本
発明の特性阻 第5図は従来例の概略&第6図法 従来
例における特性図である。
[Brief explanation of the drawings] Figures 1 to 3 are schematic diagrams of embodiments of the present invention. Figure 4 is a diagram of the characteristics of the present invention. Figure 5 is an outline of the conventional example & Figure 6 is a characteristic diagram of the conventional example. be.

Claims (5)

【特許請求の範囲】[Claims] (1)蒸発るつぼと、前記蒸発るつぼ内に保持される溶
湯の表面以下にまで挿入可能な蒸着材料導入管とを具備
した蒸着装置。
(1) A vapor deposition apparatus comprising an evaporation crucible and a evaporation material introduction pipe that can be inserted below the surface of the molten metal held in the evaporation crucible.
(2)蒸発るつぼと、蒸着材料導入管と、前記蒸着材料
導入管を前記蒸発るつぼ内に保持される溶湯に対して移
送する移送手段と、前記材料導入管内を通して蒸発材料
をるつぼ内の溶湯に移送する蒸着材料の移送手段とを具
備した蒸着装置。
(2) an evaporation crucible, a evaporation material introduction pipe, a transfer means for transferring the evaporation material introduction pipe to the molten metal held in the evaporation crucible, and a transfer means for transferring the evaporation material to the molten metal in the crucible through the material introduction pipe; A vapor deposition apparatus comprising a means for transferring a vapor deposition material to be transferred.
(3)材料導入管を加熱する加熱手段を具備した請求項
2記載の蒸着装置。
(3) The vapor deposition apparatus according to claim 2, further comprising a heating means for heating the material introduction tube.
(4)請求項3記載の装置を用い、蒸着材料を導入管内
において加熱手段により加熱もしくは溶融してからるつ
ぼ内に供給する事を特徴とする蒸着方法。
(4) A vapor deposition method using the apparatus according to claim 3, characterized in that the vapor deposition material is heated or melted by a heating means in an introduction pipe and then supplied into a crucible.
(5)請求項2または3記載の装置を用い、蒸着時には
、少なくとも、るつぼから蒸発する蒸気の組成、蒸発速
度、るつぼ内の溶湯の湯面の高さ、導入管内の蒸着材料
の組成のいずれか1つ以上の項目についての変化に対応
して、導入管の挿入深さを変化させる蒸着方法。
(5) Using the apparatus according to claim 2 or 3, at the time of vapor deposition, at least any of the composition of the vapor evaporated from the crucible, the evaporation rate, the height of the molten metal surface in the crucible, and the composition of the vapor deposition material in the introduction pipe is controlled. A vapor deposition method in which the insertion depth of an introduction tube is changed in response to changes in one or more items.
JP30968189A 1989-11-29 1989-11-29 Method and apparatus for vapor deposition Pending JPH03170662A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30968189A JPH03170662A (en) 1989-11-29 1989-11-29 Method and apparatus for vapor deposition
DE1990607433 DE69007433T2 (en) 1989-11-29 1990-11-28 Vacuum evaporation device and method for producing film by means of vacuum evaporation.
EP19900122752 EP0430210B1 (en) 1989-11-29 1990-11-28 Vacuum evaporation apparatus and method for making vacuum evaporated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30968189A JPH03170662A (en) 1989-11-29 1989-11-29 Method and apparatus for vapor deposition

Publications (1)

Publication Number Publication Date
JPH03170662A true JPH03170662A (en) 1991-07-24

Family

ID=17995999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30968189A Pending JPH03170662A (en) 1989-11-29 1989-11-29 Method and apparatus for vapor deposition

Country Status (1)

Country Link
JP (1) JPH03170662A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135882A (en) * 1975-05-20 1976-11-25 Osaka Kouon Denki Kk Process for supplying continu ously evaporating substance
JPS6075574A (en) * 1983-09-30 1985-04-27 Ulvac Corp Feeding method of metal by melting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135882A (en) * 1975-05-20 1976-11-25 Osaka Kouon Denki Kk Process for supplying continu ously evaporating substance
JPS6075574A (en) * 1983-09-30 1985-04-27 Ulvac Corp Feeding method of metal by melting

Similar Documents

Publication Publication Date Title
JPH03170662A (en) Method and apparatus for vapor deposition
US4563979A (en) Apparatus for manufacturing large-surface, band-shaped silicon for solar cells
US2022571A (en) Method of producing bimetallic strips
US5132506A (en) Vacuum evaporation apparatus and method for making vacuum evaporated sheet
JPH0313566A (en) Production of thin film
JPH02298262A (en) Producing device for thin film
JPH06299336A (en) Crucible of evaporating source for vacuum deposition
JPH09111441A (en) Magnesium evaporating method
EP0430210B1 (en) Vacuum evaporation apparatus and method for making vacuum evaporated sheet
JPS6338569A (en) Evaporating device for vacuum deposition
JPH0416588A (en) Method and apparatus for producing single crystal
KR0160067B1 (en) Vapor source heated by resistance for vacuum deposited steel sheet
JPH07286266A (en) Vapor deposition device and vapor deposition method
US4705550A (en) Process for providing a thermically homogeneous flow of molten glass
JPH01275750A (en) Thin metallic film manufacturing equipment
JPH01208453A (en) Production of metallic thin film
JP2618695B2 (en) Manufacturing method of magnetic recording medium
JPH0688214A (en) Vapor deposition plating method
JPS6299459A (en) Evaporating source for vacuum deposition
JP3114572B2 (en) Method for controlling alloying of galvannealed steel sheet
JPH01275747A (en) Manufacture of thin metallic film
GB2102790A (en) Method of producing thin sheet glass of high quality by float process
US2708641A (en) Method of applying metal coatings to valves
JPH0312333A (en) Production of plate glass by floating
JP2830000B2 (en) Sputtering method and apparatus