JPH03170303A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPH03170303A
JPH03170303A JP1218207A JP21820789A JPH03170303A JP H03170303 A JPH03170303 A JP H03170303A JP 1218207 A JP1218207 A JP 1218207A JP 21820789 A JP21820789 A JP 21820789A JP H03170303 A JPH03170303 A JP H03170303A
Authority
JP
Japan
Prior art keywords
superconducting
alkali halide
composition
substrate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1218207A
Other languages
Japanese (ja)
Other versions
JP2822328B2 (en
Inventor
Akira Enomoto
亮 榎本
Masanori Tamaki
昌徳 玉木
Fumihiko Takei
武居 文彦
Hiroyuki Takeya
浩幸 竹屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP1218207A priority Critical patent/JP2822328B2/en
Publication of JPH03170303A publication Critical patent/JPH03170303A/en
Application granted granted Critical
Publication of JP2822328B2 publication Critical patent/JP2822328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconducting ceramic thin film having excellent crystal orientation and high critical current density without causing the deviation of composition by coating a surface of a substrate with a molten mixture of a superconducting composition and an alkali halide and removing the alkali halide by evaporation. CONSTITUTION:A substrate is dipped into a solution produced by heating and melting a mixture of a Bi- or Tl-based superconducting composition and an alkali halide such as KCl, LiCl or NaCl to coat the surface of the substrate with the molten mixture. The substrate is preferably a fibrous or tape substrate having a melting point of >=600 deg.C, especially alumina fiber or silver tape surface- coated with SrTiO3. The objective thin film of superconducting ceramic can be produced by evaporating and removing the alkali halide from the molten mixture especially preferably at 770-850 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基材の表面に超伝導特性に優れた超伝導セラ
ξツクス薄膜を形成せしめる超伝導体の製造方法に関し
、特に本発明は、複雑なプロセスや特別な装置を必要と
しない超伝導体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a superconductor, which forms a superconducting ceramic thin film with excellent superconducting properties on the surface of a base material. , relates to a method for producing superconductors that does not require complicated processes or special equipment.

〔従来の技術〕[Conventional technology]

近年、液体窒素温度領域でも使用可能な超伝導セラξツ
クスが発見され、工業的にも大きなインバクトを与えて
いる。その代表的なものとして、Y−Ba−Cu−0系
酸化物超伝導セラミックスが良く知られている。また、
最近、希土類元素を含まない新しいタイプの超伝導セラ
ミックスとしてBi−Sr−Ca−Cu−0系、あるい
はTffiBa−Ca−Cu−0系酸化物超伝導セラミ
ックスが報告され、これら酸化物超伝導セラミックスは
大気中の水分や炭酸ガスなどに対する安定性に優れ、か
つ酸素含有量が一定で超伝導特性が安定しているという
特徴がある。
In recent years, superconducting ceramics that can be used even in the liquid nitrogen temperature range have been discovered, and this has had a major impact on the industry. As a typical example, Y-Ba-Cu-0 based oxide superconducting ceramics are well known. Also,
Recently, Bi-Sr-Ca-Cu-0 system or TffiBa-Ca-Cu-0 system oxide superconducting ceramics have been reported as new types of superconducting ceramics that do not contain rare earth elements. It has excellent stability against atmospheric moisture and carbon dioxide gas, has a constant oxygen content, and has stable superconducting properties.

しかしながら、これら超伝導セラξツクスを実用化する
にあたっては、線材状もしくはテープ状にすることが不
可欠とされ、この堅くて脆いセラミックスを超伝導組戒
を保ったまま如何に緻密に焼結して線材状もしくはテー
プ状とするかが重要な技術課題となっていた。
However, in order to put these superconducting ceramics into practical use, it is essential to make them into wire or tape shapes, and it is difficult to sinter these hard and brittle ceramics in a dense manner while maintaining their superconducting structure. An important technical issue was whether to make it into wire or tape form.

超伝導セラ旦ツクスからなる線材やテープなどのの製造
方法としては、例えば、 (1)セラ逅ツクス誌VOL22 (1987)No,
6の第526ページに、セラミック粉末を銀パイプに充
填し、線引きしたものをコイル状に巻いた後、酸素雰囲
気内で熱処理する線材の製造方法、(2)アルゴンヌ国
立研究所の発表によれば、ボリマーにY−Ba−Cu−
0粉末を混合してワイヤ化して、これを燃やしてフレキ
シブルのワイヤとする超伝導セラξツクスからなる線材
の製造方法、(3)Japanese Journal
 of Applied Physics,Vol.2
6(1987)Supplement 26−3の12
11ページに、Y,  Ba,Cuの硝酸塩からなる溶
液とY20.、BaCo3,CuOの粉末を混合し、線
状に威形した後、焼成する線材の製造方法、 (4)特開昭63−270316号公報に、酸化物超伝
導体を構威する元素を含有する有機金属化合物を原料と
するゾルをテープ状に威形した後、焼結することより、
テープ状の酸化物超伝導体を得る方法、 (5〉平或l年8月8日発行の化学工業日報は、Bi系
超伝導組成物を、純銀製パイプに充填し、線引加工後、
圧延、焼結およびプレス加工を繰り返し、Tc=77.
3K,Jc=2万A/cm2なる超伝導特性を持ち、結
晶粒の配向性が良好な超伝導セラミックからなるテープ
を得る方法、および (6)特開昭64−10530号公報に、YあるいはL
a系の超伝導化合物の溶融液に基板を浸漬し、引き上げ
た後、急冷し、次いでアニール処理して超伝導薄膜を製
造する方法などが提案されている。
Examples of methods for manufacturing wires, tapes, etc. made of superconducting ceramics include (1) Ceramics Magazine VOL 22 (1987) No.
6, page 526 describes a method for manufacturing wire rods, in which a silver pipe is filled with ceramic powder, the wire is drawn, the wire is wound into a coil shape, and then heat treated in an oxygen atmosphere. (2) According to an announcement by Argonne National Laboratory. , Y-Ba-Cu- in the polymer
(3) Japanese Journal
of Applied Physics, Vol. 2
6 (1987) Supplement 26-3 no 12
On page 11, a solution consisting of nitrates of Y, Ba, and Cu and Y20. , a method for manufacturing a wire rod in which powders of BaCo3 and CuO are mixed, shaped into a linear shape, and then fired. By forming a sol made from an organic metal compound into a tape shape and then sintering it,
A method for obtaining a tape-shaped oxide superconductor, (5) Kagaku Kogyo Nippo published on August 8, 2001, describes the method of filling a pure silver pipe with a Bi-based superconducting composition, and after wire drawing.
Repeat rolling, sintering and pressing until Tc=77.
3K, Jc = 20,000 A/cm2, and a method for obtaining a tape made of superconducting ceramic with good crystal grain orientation, and (6) JP-A No. 64-10530 describes L
A method has been proposed in which a substrate is immersed in a melt of an a-based superconducting compound, pulled up, rapidly cooled, and then annealed to produce a superconducting thin film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述の如き従来知られている超伝導体の
製造方法は、種々の欠点を有するものであった。すなわ
ち、 (1)の方法では、セラξツクス粉末′を金属パイプ内
で熱処理しているため、緻密化が困難で焼結体の粒子間
で充分な超伝導コンタクトが得難く、また特性に大きな
影響を及ぼす酸素の精密な制御が難しいという欠点があ
る。
However, the previously known methods for manufacturing superconductors as described above have various drawbacks. In other words, in method (1), the ceramic powder is heat-treated in a metal pipe, which makes it difficult to densify it, making it difficult to obtain sufficient superconducting contact between the particles of the sintered body, and causing significant changes in properties. The drawback is that it is difficult to precisely control the amount of oxygen that affects the method.

(2)の方法では、ポリマーを燃焼させてから焼結を開
始させるまでの間の形状を保持することが難しいことと
、緻密に焼結しようとすると結晶粒が或長して機械的な
特性が悪くなったり、分解して超伝導特性が大幅に低下
し易いという問題を有している。
With method (2), it is difficult to maintain the shape from the time the polymer burns until the start of sintering, and when trying to sinter it densely, the crystal grains elongate, which affects the mechanical properties. The problem is that the superconducting properties tend to deteriorate or decompose, resulting in a significant drop in superconducting properties.

(3)の方法では、線材を緻密に焼結しようとすると結
晶粒が或長して得られる線材の機械的な特性が悪くなり
、特に可撓性が劣化し易いという問題を有している。
Method (3) has the problem that when the wire is sintered densely, the crystal grains become elongated, which deteriorates the mechanical properties of the resulting wire, and in particular, the flexibility tends to deteriorate. .

(4)の方法では、威形後、長時間の熱処理を必要とす
るという問題を有している。
The method (4) has a problem in that it requires a long heat treatment after shaping.

(5)の方法では、結晶粒の配向性を向上させるためプ
レス加工と焼結を繰り返す必要があり、煩雑であった。
In method (5), it was necessary to repeat pressing and sintering in order to improve the orientation of crystal grains, which was complicated.

(6)の方法では、超伝導組成物の融点が一般に極めて
高いため、使用できる基材は、耐熱性が特に高いものに
限られるなどの問題があった。
In method (6), since the melting point of the superconducting composition is generally extremely high, there are problems in that the base materials that can be used are limited to those with particularly high heat resistance.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述の如き欠点を解決すること
のできる超伝導体の製造方法を開発すべく鋭意研究した
結果、次の如き要旨構或の本発明を開発するに到った。
Therefore, the inventors of the present invention conducted intensive research to develop a method for manufacturing a superconductor that can solve the above-mentioned drawbacks, and as a result, they developed the present invention having the following gist and structure.

本発明の要旨は、 基材の表面に超伝導組威或物とアルカリハライドの混合
溶融物をコーティングした後、アルカリハライドを蒸発
除去させることにより、超伝導セラξツクスからなる薄
膜を形成することを特徴とする超伝導体の製造方法であ
る。
The gist of the present invention is to form a thin film made of superconducting ceramics by coating the surface of a base material with a melted mixture of superconducting composite material and alkali halide, and then evaporating and removing the alkali halide. This is a method for manufacturing a superconductor characterized by the following.

すなわち、本発明においては、超伝導組成物とアルカリ
ハライドの混合溶融物を可撓性を有ずる基材の表面にコ
ーティングした後、溶媒であるアルカリハライドを蒸発
除去させると、基材の表面に、極めて結晶配向性に優れ
た超伝導セラミックスが析出し、超伝導体が得られるの
である。
That is, in the present invention, after coating the surface of a flexible base material with a mixed melt of a superconducting composition and an alkali halide, when the alkali halide, which is a solvent, is evaporated off, the surface of the base material is coated. , a superconducting ceramic with extremely excellent crystal orientation is precipitated, and a superconductor is obtained.

本発明において、前記超伝導組戒物は、アルカリハライ
ドの溶融物に可溶の化合物であり、なかでもBi系ある
いはTI!.系超伝導組戒物が好適である。また、前記
アルカリハライドは、KCl,LiCI!.およびNa
Clから選ばれるいずれか少なくとも一種であり、前記
基材は、融点が600“C以上が好適である。
In the present invention, the superconducting compound is a compound soluble in a melt of alkali halide, especially Bi-based or TI! .. A system superconducting kumikaimono is suitable. Further, the alkali halide is KCl, LiCI! .. and Na
It is at least one selected from Cl, and the base material preferably has a melting point of 600"C or more.

〔作用〕[Effect]

本発明によれば、基材の表面に超伝導組成物とアルカリ
ハライドの混合溶融物をコーティングした後、アルカリ
ハライドを蒸発除去することが必要である。その理由は
、超伝導組成物をアルカリハライドの溶媒中に溶かした
状態の混合溶融物を基材の表面にコーティングした後、
溶媒であるところのアルカリハライドを徐々に蒸発させ
て超伝導組成物を濃縮し、過飽和状態をつくりだすこと
により、組威のずれがなく、極めて結晶配向性に優れた
超伝導セラξツクスを析出させることができるからであ
る。
According to the present invention, it is necessary to coat the surface of a substrate with a mixed melt of a superconducting composition and an alkali halide, and then remove the alkali halide by evaporation. The reason is that after coating the surface of the base material with a mixed melt in which the superconducting composition is dissolved in an alkali halide solvent,
By gradually evaporating the alkali halide, which is a solvent, and concentrating the superconducting composition to create a supersaturated state, superconducting ceramics with no deviation in composition and excellent crystal orientation can be precipitated. This is because it is possible.

前記超伝導組成物とアルカリハライドの混合溶融物のコ
ーティングは、基材表面に超伝導組成物とアルカリハラ
イドの混合物をコーティングした後、加熱して溶融する
か、あるいは超伝導組戒物とアルカリハライドの混合溶
融液に基材を浸漬することにより行うことが好ましい。
The coating of the melted mixture of the superconducting composition and the alkali halide can be done by coating the surface of the substrate with the mixture of the superconducting composition and the alkali halide and then heating and melting it, or by melting the superconducting composition and the alkali halide together. It is preferable to perform this by immersing the base material in a mixed melt of.

本発明によれば、前記超伝導組成物としては、アルカリ
ハライド溶融物に可溶の化合物であり、600゜C以上
の温度で結晶化するものであれば好適に使用することが
でき、例えば、Bi系あるいはTffi系超伝導組成物
であることが好ましい。
According to the present invention, the superconducting composition can be suitably used as long as it is a compound that is soluble in an alkali halide melt and crystallizes at a temperature of 600°C or higher; for example, A Bi-based or Tffi-based superconducting composition is preferable.

前記Bi系あるいはTl系超伝導組成物とアルカリハラ
イドの混合物は、770゜C〜850゜Cの温度範囲で
溶融させることが好ましい。この理由は、770゜C以
下では、Bi系あるいはTl系超伝導組成物とアルカリ
ハライドの混合物を溶融させることが困難であり、85
0゜C以上では、アルカリハライドの蒸発が極めて激し
くなるため、安定した混合溶融液を得ることが困難であ
るからである。
The mixture of the Bi-based or Tl-based superconducting composition and alkali halide is preferably melted at a temperature in the range of 770°C to 850°C. The reason for this is that it is difficult to melt a mixture of a Bi-based or Tl-based superconducting composition and an alkali halide at temperatures below 770°C;
This is because at temperatures above 0°C, the alkali halide evaporates extremely rapidly, making it difficult to obtain a stable mixed melt.

前記Bi系超伝導組成物としては、少なくとも、ビスマ
ス、ビスマスとアル亀ニウム、ビスマスと鉛、ビスマス
とカリウム、ビスマスとイットリウムからなる群から選
ばれる元素、アルカリ土類金属、銅及び酸素から構威さ
れてなるものであり、例えば、BiSrCaCut O
X,Biz SrzCa,−XY.Cu.Oy,B i
.−.PbXSr.Ca.Cu.OvSBi+−xAI
XSrCaCuz Ov , B i S rzy3C
az/3Ktyx Cu20v、B t2Srz Cu
z O.vなどのセラQ ’7クスを生成するものが好
適である。前記Tf系超伝導組成物としては、少なくと
もタリウム、タリウムと鉛からなる群から選ばれる元素
、アルカリ土類金属、銅および酸素から構威されてなる
ものであり、例えば、Tffi.Ba.Ca2Cui 
O’.,TNo.5P bo.5 S r x C a
 2 C Hz○3などのセラミックスを生威するもの
が好適である。
The Bi-based superconducting composition includes at least an element selected from the group consisting of bismuth, bismuth and alkhenium, bismuth and lead, bismuth and potassium, bismuth and yttrium, an alkaline earth metal, copper, and oxygen. For example, BiSrCaCut O
X, Biz SrzCa, -XY. Cu. Oy, Bi
.. −. PbXSr. Ca. Cu. OvSBi+-xAI
XSrCaCuz Ov, B i S rzy3C
az/3Ktyx Cu20v, B t2Srz Cu
z O. It is preferable to use one that generates CeraQ'7x such as v. The Tf-based superconducting composition is composed of at least thallium, an element selected from the group consisting of thallium and lead, an alkaline earth metal, copper, and oxygen, such as Tffi. Ba. Ca2Cui
O'. , T No. 5P bo. 5 S r x C a
A material that supports ceramics, such as 2 C Hz○3, is suitable.

前記Bi系超伝導セラミックスやTI2系超伝導セラξ
ツクスは、従来製造時に長時間の熱処理を必要とするな
どの欠点を有していたが、本発明の製造方法によれば、
基材表面に超伝導セラミックスの薄膜を容易に威長させ
ることができ、しかも得られる超伝導セラξツクスの結
晶のC軸が基材表面に垂直な方向に配向しているため、
臨界電流密度の極めて大きな超伝導セラくツクス薄膜を
形成できる。
The Bi-based superconducting ceramics and TI2-based superconducting ceramics ξ
Traditionally, Tsukusu had drawbacks such as requiring a long heat treatment during production, but according to the production method of the present invention,
A thin film of superconducting ceramics can be easily grown on the surface of a substrate, and the C-axis of the resulting superconducting ceramic crystal is oriented in a direction perpendicular to the surface of the substrate.
It is possible to form superconducting ceramic thin films with extremely high critical current densities.

本発明によれば、前記アルカリハライドとしては、目的
とする超伝導組成物を溶解し、しかもなるべく低温で蒸
発除去できるものを使用することが好ましく、例えば、
KCI,LiCI!.およびNaClから選ばれるいず
れか少なくとも一種を使用することが有利である。
According to the present invention, it is preferable to use an alkali halide that dissolves the target superconducting composition and can be removed by evaporation at as low a temperature as possible, for example,
KCI, LiCI! .. It is advantageous to use at least one selected from NaCl and NaCl.

本発明によれば、前記混合溶融物からアルカリハライド
を蒸発除去する際の温度は、770゜C〜850℃が特
に好ましい。
According to the present invention, the temperature at which the alkali halide is removed by evaporation from the mixed melt is particularly preferably 770°C to 850°C.

本発明によれば、前記基材としては、融点が600″C
以上のものであることが望ましい。
According to the present invention, the base material has a melting point of 600″C.
The above is desirable.

また、前記基材としては単結晶体あるいは多結晶体いず
れも使用することができ、特に単結晶体を基材として用
いることにより、超伝導セラミックのエビタキシャル膜
を容易に或長させることができる。
Further, as the base material, either a single crystal or a polycrystalline body can be used, and in particular, by using a single crystal body as the base material, the epitaxial film of the superconducting ceramic can be easily extended to a certain length. .

前記基材としては、例えば、貴金属、貴金属含有合金、
Allt O3、cZroz 、S iC、石英、ムラ
イトなどが好適であり、その形状は、繊維状もしくはテ
ープ状の形態であることが望ましい。
Examples of the base material include noble metals, noble metal-containing alloys,
AlltO3, cZroz, SiC, quartz, mullite, etc. are suitable, and the shape is preferably fibrous or tape-like.

前記A/!.O.、SiC、石英、ムライトなどを基材
として使用する場合にはその表面にTiOz 、MgO
,cZroz 、SrTiOi 、貴金属あるいは貴金
属含有合金などをコーティングする11 ことが望ましい。
Said A/! .. O. , SiC, quartz, mullite, etc. as a base material, TiOz, MgO, etc. are added to the surface.
, cZroz, SrTiOi, a noble metal or an alloy containing a noble metal.

また、本発明では、特に、表面にS r T i O 
3がコーティングされたアルミナファイバーおよび銀製
テープを基材として好適に使用できる。
Moreover, in the present invention, in particular, S r T i O on the surface
Alumina fiber and silver tape coated with No. 3 can be suitably used as the base material.

本発明によれば、前記超伝導組戒物とアルカリハライド
の混合溶融物からアルカリハライドを蒸発除去させる際
の雰囲気としては、特定の雰囲気に限定されず、減圧、
常圧あるいは加圧下のいずれの雰囲気をも使用できるが
、特に酸化物超伝導体膜を製造する場合には、酸化性雰
囲気内で行うことが有利である。
According to the present invention, the atmosphere in which the alkali halide is evaporated and removed from the molten mixture of the superconducting composite material and the alkali halide is not limited to a specific atmosphere;
Although either normal pressure or pressurized atmosphere can be used, it is advantageous to carry out the process in an oxidizing atmosphere, especially when producing oxide superconductor films.

さらに本発明においては、得られた超伝導セラξツクス
が、低Tc相である場合、熱処理を施すことにより、こ
れを高Tc相とすることが好ましい。
Furthermore, in the present invention, when the obtained superconducting ceramic ξ is in a low Tc phase, it is preferable to heat treat it to convert it into a high Tc phase.

また前記熱処理の温度は、830゜C〜860゜Cであ
ることが望ましい。
Further, the temperature of the heat treatment is preferably 830°C to 860°C.

〔実施例〕〔Example〕

次に、本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail.

実施例l l2 B L  Os  、SrCOs 、CaCO,,  
、CuOを元素組或Bi:Sr:Ca:Cu=1.6:
0.4:1.6:2.o:2.8になるように混合し、
8 0 0 ’Cで12時間加熱した。得られた仮焼体
を粉砕し、840度で焼威した後、室温まで炉冷した。
Example l l2 B L Os , SrCOs , CaCO,,
, CuO has the elemental composition Bi:Sr:Ca:Cu=1.6:
0.4:1.6:2. Mix so that o: 2.8,
Heated at 800'C for 12 hours. The obtained calcined body was pulverized, fired at 840 degrees, and then cooled in a furnace to room temperature.

粉砕から炉冷までの工程を数回繰り返した。The process from crushing to furnace cooling was repeated several times.

得られた粉末にモル比で100倍のK(lを加え、エタ
ノールを使用して混合した。この混合粉末を銀テープに
塗りつけ、840゜Cで約3時間加熱して、KCIを蒸
発させた。このとき、蒸発過程においてK(lに溶けて
いたBi−Sr−CaCu−0は濃縮され過飽和の状態
に達し、基材上に徐々に析出し、超伝導テープが得られ
た。
100 times the molar ratio of K (l) was added to the obtained powder and mixed using ethanol. This mixed powder was spread on a silver tape and heated at 840°C for about 3 hours to evaporate KCI. At this time, during the evaporation process, Bi-Sr-CaCu-0 dissolved in K(l) was concentrated and reached a supersaturated state, and gradually precipitated on the base material to obtain a superconducting tape.

実施例2 (1)  BizOs、SrCOa、CaCOa、Cu
Oを元素組威Bi:Sr:Ca:Cu=1.6go.4
:1,6:2.o:2.8になるように混合し、800
゜Cでl2時間加熱した。得られた仮焼体を粉砕し、つ
いで粉末にモル比で100倍のKCIlを加え、エタノ
ールを使用して混合し、さらに、粉末に対して、エチル
セルロース1.  0%、プチルカルビトールアセテー
ト19.0%添加し、混練してペーストを作威した。
Example 2 (1) BizOs, SrCOa, CaCOa, Cu
O is the element group Bi:Sr:Ca:Cu=1.6go. 4
:1,6:2. o: Mixed to 2.8, 800
Heated at °C for 12 hours. The obtained calcined body is pulverized, and then 100 times the molar ratio of KCI1 is added to the powder, mixed using ethanol, and 1. 0% and 19.0% butyl carbitol acetate were added and kneaded to form a paste.

(2) アルミナファイバー(15μm)の表面に、ゾ
ルゲル法により、S r T i O 3の膜をコーテ
ィングした。
(2) A film of S r Ti O 3 was coated on the surface of an alumina fiber (15 μm) by a sol-gel method.

(3) 前記(1)で得られたペーストを前記(2)で
得られたアルミナファイバーに塗布して、乾燥させた後
、840゜Cで約5時間加熱して、KClを蒸発させた
。このとき、蒸発過程においてKCj2に溶けていたB
 i−Sr−Ca−Cu−0は濃縮され過飽和の状態に
達し、基材上に徐々に析出し、超伝導線材が得られた。
(3) The paste obtained in (1) above was applied to the alumina fiber obtained in (2) above, dried, and then heated at 840° C. for about 5 hours to evaporate KCl. At this time, B dissolved in KCj2 during the evaporation process
i-Sr-Ca-Cu-0 was concentrated and reached a supersaturated state, and gradually precipitated on the base material to obtain a superconducting wire.

実施例3 (1)TffiZ 03 、BaCO3 、CaCO.
、CuO  を、元素組或、TI!.:Ba:Ca:C
u一2 : 2 : 2 : 3となるように混合し、
800℃で12時間加熱した。得られた仮焼体を粉砕し
、得られた粉末にモル比で20倍のNaClを加え、エ
タノールを使用して混合し、さらに、粉末に対して、エ
チルセルロース1.0%、プチルカルビトールアセテー
ト19.0%添加し、混練してペーストを作威した。
Example 3 (1) TffiZ 03 , BaCO3 , CaCO.
, CuO in the elemental group or TI! .. :Ba:Ca:C
Mix in a ratio of u-2:2:2:3,
It was heated at 800°C for 12 hours. The obtained calcined body was pulverized, 20 times the molar ratio of NaCl was added to the obtained powder, mixed using ethanol, and 1.0% of ethyl cellulose and butyl carbitol acetate were added to the powder. 19.0% was added and kneaded to make a paste.

(2)アル衾ナファイバー(15μm)の表面に、塩化
マグネシウム溶液を塗布して熱処理することにより、M
gOの膜をコーティングした。
(2) By applying a magnesium chloride solution to the surface of Aluminum fiber (15 μm) and heat-treating it, M
A film of gO was coated.

(3)前記(1)で得られたペーストを、前記(2)で
得られたアルミナファイバーに塗布して、乾燥させた後
、840゜Cで約5時間加熱して、Naclを蒸発させ
た。このとき、蒸発過程においてNa Clに溶けてい
たT4!−Ba−Ca−CuOは濃縮され過飽和の状態
に達し、基材上に徐々に析出し、超伝導線材が得られた
(3) The paste obtained in (1) above was applied to the alumina fiber obtained in (2) above, dried, and then heated at 840°C for about 5 hours to evaporate NaCl. . At this time, T4, which had been dissolved in NaCl during the evaporation process! -Ba-Ca-CuO was concentrated and reached a supersaturated state, and gradually precipitated on the base material to obtain a superconducting wire.

実施例4 本実施例は、実施例1と基本的には同じであるが、実施
例1で得られた超伝導テープに、さらに845℃で15
0時間の熱処理を加えた。
Example 4 This example is basically the same as Example 1, but the superconducting tape obtained in Example 1 was further treated at 845°C for 15
A heat treatment of 0 hours was applied.

実施例5 (1)  B iz C)+ 、SrCO3 、CaC
O3、CuOを元素組威(モル比)Bi:Sr:Ca:
l5 Cu=1.  6:0.  4:1.  6:2.  
O:2.  8の割合で混合し、800゜Cで12時間
加熱した。
Example 5 (1) B iz C)+, SrCO3, CaC
O3, CuO elemental composition (molar ratio) Bi:Sr:Ca:
l5Cu=1. 6:0. 4:1. 6:2.
O:2. The mixture was mixed in a ratio of 8 to 8, and heated at 800°C for 12 hours.

得られた仮焼体を粉砕し、Bi系超伝導セラミックに換
算して、1モルの粉末に、KCIを100モル混合し、
これを白金るつぼに入れて800゜Cで加熱し溶融液と
した。
The obtained calcined body was pulverized, and 100 mol of KCI was mixed with 1 mol of powder in terms of Bi-based superconducting ceramic.
This was placed in a platinum crucible and heated at 800°C to form a molten liquid.

(2)前記(1)で得られた溶融液に銀製のテープ(厚
さ1mm,幅3mm、長さ200mm)を浸漬した。
(2) A silver tape (thickness: 1 mm, width: 3 mm, length: 200 mm) was immersed in the melt obtained in (1) above.

(3)ついで浸漬したまま800゜Cで3時間加熱する
ことによりKCIを蒸発除去し、超伝導テープを得た。
(3) Next, KCI was evaporated and removed by heating at 800° C. for 3 hours while immersed, to obtain a superconducting tape.

(4)前記(3)で得られた超伝導テープを840゜C
で150時間加熱処理した。
(4) The superconducting tape obtained in (3) above was heated to 840°C.
Heat treatment was performed for 150 hours.

実施例6 (1)  Bi203、SrCO3、CaCO3、Cu
Oを元素組或(モル比)Bi:Sr:Ca:Cu=1.
6:0.4:1.6:2.0:2.8の割合で混合し、
8 0 0 ’Cでl2時間加熱した。
Example 6 (1) Bi203, SrCO3, CaCO3, Cu
The elemental composition (molar ratio) of O is Bi:Sr:Ca:Cu=1.
Mixed at a ratio of 6:0.4:1.6:2.0:2.8,
Heated at 800'C for 12 hours.

得られた仮焼体を粉砕し、Bi系超伝導セラミッ16 クに換算してlモルの粉末に、NaCIを200モル混
合し、これを白金るつぼに入れて8 0 0 ’Cで加
熱し溶融液とした。
The obtained calcined body was pulverized, and 200 mol of NaCI was mixed with 1 mol of Bi-based superconducting ceramic powder, which was placed in a platinum crucible and heated at 800'C to melt. It was made into a liquid.

(2)前記(1)で得られた溶融液にアルミナファイバ
ーを浸漬した、 (3)ついで浸漬したまま、800“Cで3時間加熱し
てKCIを蒸発除去し、超伝導セラミックス線材を得た
(2) Alumina fiber was immersed in the melt obtained in (1) above. (3) Then, while immersed, it was heated at 800"C for 3 hours to evaporate KCI and obtain a superconducting ceramic wire. .

(4)前記(3)で得られた超伝導線材を、840゜C
で100時間加熱した。
(4) The superconducting wire obtained in (3) above was heated to 840°C.
It was heated for 100 hours.

実施例7 (1) Tzz 03 、BaCO. 、CaCO3、
CuO  を、元素組成(モル比)Tl:Ba:Ca 
: Cu=2 : 2 : 2 : 3となるように混
合し、800℃で12時間仮焼した。得られた仮焼体を
粉砕し、TN系超伝導セラミックに換算して、1モルの
粉末に、NaCIを200モル混合し、これを白金るつ
ぼに入れて800゜Cで加熱し溶融液とした。
Example 7 (1) Tzz 03, BaCO. , CaCO3,
CuO is divided into elemental composition (molar ratio) Tl:Ba:Ca
:Cu=2:2:2:3 and calcined at 800°C for 12 hours. The obtained calcined body was pulverized, and 200 mol of NaCI was mixed with 1 mol of powder in terms of TN-based superconducting ceramic, and this was placed in a platinum crucible and heated at 800°C to form a molten liquid. .

(2)金属ストロンチウム0.07モルと、チタンテト
ライソプロボキシド0.07モルを2−エトキシエタノ
ール300gに溶解させ、均一溶液とし、この溶液をエ
バボレータで100gになるまで濃縮した。
(2) 0.07 mol of metallic strontium and 0.07 mol of titanium tetraisoproboxide were dissolved in 300 g of 2-ethoxyethanol to form a homogeneous solution, and this solution was concentrated using an evaporator until it reached 100 g.

(3)前記(2)で得られた溶液にアルミナファイバー
(繊維径15μm)を浸漬し、これを引き上げた後、5
00゜Cで10分間熱処理した。
(3) After immersing an alumina fiber (fiber diameter 15 μm) in the solution obtained in (2) above and pulling it up,
Heat treatment was performed at 00°C for 10 minutes.

(4)前記(3)の工程を40回繰り返した後、1 0
 0 0 ’Cで1時間熱処理し、厚さ0.2μmのチ
タン酸ストロンチウムの層が形成されたアルくナファイ
バーを得た。
(4) After repeating the step (3) above 40 times, 10
Heat treatment was performed at 00'C for 1 hour to obtain an alumina fiber on which a strontium titanate layer with a thickness of 0.2 μm was formed.

(5)前記(1)で得られた融液に前記(4)で得られ
たアルミナファイバーを浸漬し、ついでこれを引き上げ
て、溶融液をコーティングした。
(5) The alumina fiber obtained in step (4) above was immersed in the melt obtained in step (1) above, and then pulled up to coat it with the melt.

(6)ついで800゜Cで3時間加熱してNaCIを蒸
発除去し、超伝導セラミックス線材を得た。
(6) Next, NaCI was evaporated off by heating at 800°C for 3 hours to obtain a superconducting ceramic wire.

(7)前記超伝導セラξツクス線材を840℃で150
時間加熱処理した。
(7) The superconducting ceramic wire rod was heated to 150°C at 840°C.
Heat treated for hours.

実施例8 本実施例は、基本的には実施例6と同様であるが、78
0゜CでKCIを蒸発除去して超伝導線セラミックス線
材を得た。
Example 8 This example is basically the same as Example 6, except that 78
KCI was removed by evaporation at 0°C to obtain a superconducting ceramic wire.

実施例9 本実施例は、基本的には、実施例6と同様であるが、第
1図の装置を用いて、超伝導セラξツクスの連続繊維を
製造した。アンコイラー1から送り出されたアル果ナフ
ァイバ−2に、加熱装置4により773゜Cで加熱され
溶融状態となっている超伝導組成物とKCIの混合溶融
物5中に浸漬せしめることにより、前記溶融物5をコー
ティングし、さらに加熱装置4゛で800゜Cで加熱す
ることによりKCIを蒸発除去し、超伝導セラミックス
連続繊維を得た。
Example 9 This example is basically the same as Example 6, except that continuous fibers of superconducting ceramics ξ were produced using the apparatus shown in FIG. By immersing the alucina fiber 2 sent out from the uncoiler 1 in the mixed melt 5 of the superconducting composition and KCI, which has been heated to 773°C by the heating device 4 and is in a molten state, 5 was coated and further heated at 800° C. with a heating device 4° to evaporate and remove KCI, thereby obtaining a superconducting ceramic continuous fiber.

前記実施例1〜9で得られた超伝導テープおよび線材を
一定長さに切断して超伝導特性測定用試験片の温度をコ
ントロールしながらゼロ磁界中の電気抵抗の変化を測定
した。また、液体窒素中で電流密度を測定した。これら
の結果を第l表に示した。
The superconducting tapes and wires obtained in Examples 1 to 9 were cut into constant lengths, and changes in electrical resistance in zero magnetic field were measured while controlling the temperature of the test pieces for measuring superconducting properties. In addition, current density was measured in liquid nitrogen. These results are shown in Table I.

19 第1表 〔発明の効果〕 以上述べたように、本発明によれば可撓性、超伝導特性
および機械的強度に優れた超伝導セラξツクス線材や超
伝導セラミックステープを簡単なプロセスで、特別な装
置を用いることなく、容易に製造することができ、得ら
れた超伝導セラミックス線材や超伝導セラミックステー
プは、エレクトロニクス分20 野、エネルギー分野、医療分野など各種の分野への実用
性が高い材料であり、工業的に有益である。
19 Table 1 [Effects of the Invention] As described above, according to the present invention, superconducting ceramic wires and superconducting ceramic tapes with excellent flexibility, superconducting properties, and mechanical strength can be produced by a simple process. The superconducting ceramic wires and superconducting tapes obtained can be easily manufactured without using special equipment, and have practical applications in various fields such as electronics, energy, and medical fields. It is an expensive material and is industrially useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例9で用いた超伝導セラミックス連続繊
維の製造装置の模式図である。 1− アンコイラー 2− アルξナファイバー 3− ガイド 4、4” 一 加熱装置 5 一 超伝導&IItc物とKCIの混合溶融物6 
− リコイラー 7 一 容器 8 − 超伝導セラミックス連続繊維
FIG. 1 is a schematic diagram of a superconducting ceramic continuous fiber manufacturing apparatus used in Example 9. 1- Uncoiler 2- Aluminum fiber 3- Guide 4, 4" - Heating device 5 - Mixed melt of superconducting & IItc material and KCI 6
- Recoiler 7 - Container 8 - Superconducting ceramic continuous fiber

Claims (1)

【特許請求の範囲】 1、基材の表面に超伝導組成物とアルカリハライドの混
合溶融物をコーティングした後、アルカリハライドを蒸
発除去することにより、超伝導セラミックスからなる薄
膜を形成することを特徴とする超伝導体の製造方法。 2、前記混合溶融物のコーティングは、基材の表面に超
伝導組成物とアルカリハライドの混合物をコーティング
した後、加熱して溶融することにより行う請求項1記載
の超伝導体の製造方法。 3、前記混合溶融物のコーティングは、超伝導組成物と
アルカリハライドの混合物を加熱溶融した融液に、基材
を浸漬することにより行う請求項1記載の超伝導体の製
造方法。 4、前記超伝導組成物は、アルカリハライドの溶融物に
可溶の化合物である請求項1記載の超伝導体の製造方法
。 5、前記超伝導組成物は、Bi系あるいはTl系超伝導
組成物である請求項1記載の超伝導体の製造方法。 6、前記アルカリハライドは、KCl、LiClおよび
NaClから選ばれるいずれか少なくとも一種である請
求項1記載の超伝導体の製造方法。 7、前記基材は、融点が600℃以上である請求項1記
載の超伝導体の製造方法。 8、前記基材は、繊維状もしくはテープ状である請求項
1記載の超伝導体の製造方法。
[Claims] 1. A thin film made of superconducting ceramics is formed by coating the surface of a base material with a melted mixture of a superconducting composition and an alkali halide, and then evaporating and removing the alkali halide. A method for producing a superconductor. 2. The method for producing a superconductor according to claim 1, wherein the coating of the mixed melt is performed by coating the surface of the substrate with the mixture of the superconducting composition and the alkali halide, and then heating and melting the mixture. 3. The method for producing a superconductor according to claim 1, wherein the coating of the mixed melt is performed by immersing the substrate in a melt obtained by heating and melting a mixture of a superconducting composition and an alkali halide. 4. The method for producing a superconductor according to claim 1, wherein the superconducting composition is a compound soluble in a melt of alkali halide. 5. The method for producing a superconductor according to claim 1, wherein the superconducting composition is a Bi-based or Tl-based superconducting composition. 6. The method for producing a superconductor according to claim 1, wherein the alkali halide is at least one selected from KCl, LiCl, and NaCl. 7. The method for producing a superconductor according to claim 1, wherein the base material has a melting point of 600° C. or higher. 8. The method for producing a superconductor according to claim 1, wherein the base material is in the form of a fiber or a tape.
JP1218207A 1989-08-14 1989-08-24 Superconductor manufacturing method Expired - Lifetime JP2822328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218207A JP2822328B2 (en) 1989-08-14 1989-08-24 Superconductor manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-207908 1989-08-14
JP20790889 1989-08-14
JP1218207A JP2822328B2 (en) 1989-08-14 1989-08-24 Superconductor manufacturing method

Publications (2)

Publication Number Publication Date
JPH03170303A true JPH03170303A (en) 1991-07-23
JP2822328B2 JP2822328B2 (en) 1998-11-11

Family

ID=26516537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218207A Expired - Lifetime JP2822328B2 (en) 1989-08-14 1989-08-24 Superconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP2822328B2 (en)

Also Published As

Publication number Publication date
JP2822328B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
JP2674979B2 (en) Superconductor manufacturing method
JP2822451B2 (en) Superconductor manufacturing method
JPH03170303A (en) Production of superconductor
JPH01252533A (en) Laminate of superconducting ceramics and production thereof
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
JP2822329B2 (en) Superconductor manufacturing method
JP3181642B2 (en) Manufacturing method of oxide superconducting wire
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
JPH07141940A (en) Manufacture of superconductive wire of bismuth oxide
GB2204033A (en) Method of forming superconductive ceramic material
JP2891365B2 (en) Manufacturing method of ceramic superconductor
Syamaprasad et al. Preparation and characterization of silver clad (Bi, Pb)-Sr-Ca-Cu-O 2223 superconducting tapes with high critical current density
KR920003025B1 (en) Method of producing superconducting ceramic wire
JPH0251805A (en) Superconducting ceramic laminated body and manufacture thereof
JPS63285157A (en) Production of superconductor
JPH0640721A (en) Preparation of superconductive body with high critical electric current density
KR20090093618A (en) Method of forming a precursor solution for metal organic deposition and mothod of forming a superconducting thick film using thereof
JPH02239103A (en) Precursor solution for superconducting ceramics
JPH0340908A (en) Production of superconductor
JPH03102715A (en) Superconductive ceramics wire material and manufacture thereof
Grader et al. Forming methods for high Tc superconductors
JPH0297422A (en) Production of tl-pb-sr-ca-cu-o type oxide superconductor
JPH01278449A (en) Production of oxide superconductor
JPS63274027A (en) Manufacture of superconductive material
JPH03112810A (en) Production of oxide superconducting film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070904

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

EXPY Cancellation because of completion of term