JPH03170089A - High frequency radiation device - Google Patents
High frequency radiation deviceInfo
- Publication number
- JPH03170089A JPH03170089A JP1307696A JP30769689A JPH03170089A JP H03170089 A JPH03170089 A JP H03170089A JP 1307696 A JP1307696 A JP 1307696A JP 30769689 A JP30769689 A JP 30769689A JP H03170089 A JPH03170089 A JP H03170089A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- antenna
- plasma
- wave
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims description 4
- 238000010438 heat treatment Methods 0.000 claims abstract description 44
- 239000004020 conductor Substances 0.000 claims abstract description 24
- 230000004927 fusion Effects 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 10
- 150000002500 ions Chemical class 0.000 abstract description 3
- 230000000644 propagated effect Effects 0.000 abstract description 3
- 230000007935 neutral effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- NMFHJNAPXOMSRX-PUPDPRJKSA-N [(1r)-3-(3,4-dimethoxyphenyl)-1-[3-(2-morpholin-4-ylethoxy)phenyl]propyl] (2s)-1-[(2s)-2-(3,4,5-trimethoxyphenyl)butanoyl]piperidine-2-carboxylate Chemical compound C([C@@H](OC(=O)[C@@H]1CCCCN1C(=O)[C@@H](CC)C=1C=C(OC)C(OC)=C(OC)C=1)C=1C=C(OCCN2CCOCC2)C=CC=1)CC1=CC=C(OC)C(OC)=C1 NMFHJNAPXOMSRX-PUPDPRJKSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Waveguide Aerials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高周波エネルギを空中または真空『に放射する
装置に係り、特に、トーラス形状の磁場閉じ込め核融合
装置であるトカマク装置のプラズマを加熱、または、プ
ラズマ内に電流を励起する装置に好適な高周波放射装置
に関する.〔従来の技術〕
従来よりトーラス型核融合装置、特に、トカマク型核融
合装置では、高温高密度のプラズマを装置内に生成する
ため多種類の加熱装置を設置する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device that radiates high-frequency energy into the air or vacuum, and in particular, it is used to heat the plasma of a tokamak device, which is a torus-shaped magnetic confinement fusion device. Or, it relates to a high-frequency radiation device suitable for a device that excites a current in plasma. [Prior Art] Conventionally, torus-type nuclear fusion devices, particularly tokamak-type nuclear fusion devices, have been equipped with various types of heating devices in order to generate high-temperature, high-density plasma within the device.
加熱装置として何種類もの物が提案されている6それら
の中で信頼性が高いものとして、プラズマ中心の加熱手
段として中性粒子入射加熱装置や速波加熱装置、プラズ
マ周辺の加熱装置として電子サイクロトロン高周波加熱
装置がある。また、プラズマを装置内に閉じ込めるため
のプラズマ電流を発生するための装置も多数設置される
。プラズマ電流を発生するプラズマ電流駆動装置として
信頼性の高いものとして、中性粒子入射加熱装置,速波
加熱装置の一部を変更して加熱より電流発生に有利なよ
うに設計した装置(これらは中性粒子入射電流駆動装置
,速波電流駆動装置等と呼ばれる)がある。さらに、プ
ラズマ電流の空間分布制御に有効な手段として低域混成
波電流駆動装置がある。これらの装置はその特性からく
る長所短所があるため、トカマク型核融合装置ではそれ
ぞれの長所を生かして運転するために少なくとも上に述
べた中性粒子入射加熱及び電流騙動装置,速波加熱及び
電流駆動装置,低域混成波電流駆動装置,電子サイクロ
トロン加熱装置を設置するのが効率的である6これら多
種類の装置をトカマク装置に設置する方法について、日
本原子力研究所のレポートJAERI−M 88−0
90 (1988)に記載の『核融合次期装置設計一総
合報告書一」と題する論文においで論じられている。こ
の方法は、第2図のようにトロイダルコイル52の間に
多数の真空ポート50,中性子遮蔽51を設け、各ポー
トに加熱装置、例えば、中性粒子入射加熱装置56,電
子サイクロトロン加熱装置54,速波電流駆動装置53
が設置,すなわち,各ポートに一種類の装置が設置され
る。Many types of heating devices have been proposed6.Among these, the most reliable ones are neutral particle injection heating devices and fast wave heating devices for heating the plasma center, and electron cyclotrons for heating the plasma periphery. There is a high frequency heating device. Additionally, many devices are installed to generate plasma current to confine plasma within the device. As a highly reliable plasma current drive device that generates plasma current, we have developed a device that is designed to be more advantageous in current generation than heating by partially modifying the neutral particle injection heating device and the fast wave heating device. (These are called neutral particle incident current drive devices, fast wave current drive devices, etc.). Furthermore, there is a low-frequency hybrid wave current drive device as an effective means for controlling the spatial distribution of plasma current. These devices have advantages and disadvantages depending on their characteristics, so tokamak-type fusion devices require at least the above-mentioned neutral particle injection heating, current deception device, fast wave heating, and It is efficient to install a current drive device, a low-frequency mixed wave current drive device, and an electron cyclotron heating device.6 Regarding the method of installing these various types of devices in a tokamak device, the Japan Atomic Energy Research Institute report JAERI-M 88 -0
90 (1988) in a paper titled ``Next-generation Nuclear Fusion Device Design - Comprehensive Report 1''. In this method, a large number of vacuum ports 50 and neutron shielding 51 are provided between toroidal coils 52 as shown in FIG. Fast wave current drive device 53
is installed, that is, one type of device is installed at each port.
上記従来技術は一個のポートに一種類の装置を設置する
ことが基本になっており,核融合炉クラスの大型装置で
は、中性粒子入射装置に三個,速波加熱及び電流駆動装
置に二個、電子サイクロトロン加熱装置に一個,低域混
或波電流駆動装置に一個のポート、全体で7個のボート
をこれらの装置で占有することになる。ところが,トカ
マク型核融合装置に設けることのできるポート数はトロ
イダルコイルの本数で制限されて十二個程度である6し
たがって、加熱や電流駆動以外の目的に使用できるポー
ト数は高々五個となってしまい、計測用,材料試験,ブ
ランケットの設置等のための十分なポートを設けられな
いという問題がある。The above conventional technology is based on installing one type of device in one port, and in a large fusion reactor class device, three are installed for the neutral particle injection device, and two are installed for the fast wave heating and current drive device. One port for the electron cyclotron heating device, and one port for the low-frequency mixed current drive device, making a total of seven boats occupied by these devices. However, the number of ports that can be installed in a tokamak-type fusion device is limited by the number of toroidal coils, and is about 12.6 Therefore, the number of ports that can be used for purposes other than heating and current drive is five at most. The problem is that there are not enough ports for measurements, material testing, blanket installation, etc.
また、加熱装置や電流駆動装置はメンテナンスのために
年に数度の頻度でトカマク型核融合装置から取り外す必
要がある。トカマク型核融合装置は放射化されるために
遠隔操作による分解組み立てを必要とし、従来技術では
各加熱電流駆動装置毎に形状の異なる遠隔操作のための
大型機器を用意することになり,数が増加すると核融合
装置建設に占める遠隔操作用経費は膨大になってしまう
。Additionally, the heating device and current drive device need to be removed from the tokamak fusion device several times a year for maintenance. Tokamak-type fusion devices require disassembly and assembly by remote control in order to be activated, and with conventional technology, large-scale equipment with different shapes for remote control is prepared for each heating current drive device, which increases the number of devices. If this increases, the cost for remote control will become enormous in the construction of a nuclear fusion device.
本発明の目的は、電子サイクロトロン加熱用のアンテナ
、低域混或波電流駆動用アンテナ、速波加熱及び電流駆
動用アンテナを一個のポートに設置できる構戒にするこ
とにより、加熱及び電流駆動装置に必要なポート数を低
減することにある。An object of the present invention is to provide a heating and current drive device by providing a configuration in which an antenna for electron cyclotron heating, an antenna for low-frequency mixed wave current drive, and an antenna for fast wave heating and current drive can be installed in one port. The goal is to reduce the number of ports required for
本発明の他の目的は、電子サイクロトロン加熱用のアン
テナ、低域混成波電流駆動用アンテナ、速波加熱及び電
流駆動用アンテナを組合せたモジユールを複数個トカマ
ク型核融合装置に設置して必要なパワーを得る構成によ
り、分解組み立てに必要な機器の種類を減らして経済性
を向上することにある。Another object of the present invention is to install a plurality of modules that combine antennas for electron cyclotron heating, low-frequency hybrid wave current drive antennas, fast wave heating and current drive antennas in a tokamak-type nuclear fusion device. The purpose of this configuration is to reduce the types of equipment required for disassembly and assembly, thereby improving economic efficiency.
上記目的を達成するため、本発明は速波加熱及び速波電
流駆動用ループアンテナに100MHz帯の高周波電力
を供給する同軸管の内導体内側を電子サイクロトロン加
熱用の1 0 0 G l{ z帯μ波の導波管として
使用する。また、100MHz帯高周波の発振器を低電
力の高周波を発生する基準発振器部分とその高周波を増
幅する増幅器部分で構成し、100GHz帯μ波の導波
管が増幅器部分の高周波空胴共振器内を貫通して1 0
0 M H z帯高周波出力取りだし用のループを形
成するようにする。In order to achieve the above object, the present invention provides a 100 Gl{z band for electron cyclotron heating on the inside of the inner conductor of a coaxial tube that supplies high frequency power in the 100 MHz band to a loop antenna for fast wave heating and fast wave current drive. Used as a μ wave waveguide. In addition, the 100 MHz band high frequency oscillator consists of a reference oscillator section that generates low power high frequency waves and an amplifier section that amplifies the high frequency waves, and a 100 GHz band μ wave waveguide passes through the high frequency cavity resonator of the amplifier section. then 1 0
A loop for taking out 0 MHz band high frequency output is formed.
さらに、電子サイクロトロン加熱用アンテナ、低域混成
波電流駆動用アンテナ、速波加熱及び電流駆動用アンテ
ナをモジュール化するため、速波加熱、及び、速波電流
駈動用ループアンテナをリターン導体に接続する先端短
絡部分を矩形の筒で製作してグリルランチャにしそこか
ら低域混或波励起用高周波を放射し,上記ループアンテ
ナを同軸管内導体に接続する部分を円開口アンテナにし
てそこから電子サイクロトロン加熱用μ波を放射する。Furthermore, in order to modularize the electron cyclotron heating antenna, the low-frequency hybrid wave current drive antenna, and the fast wave heating and current drive antenna, the fast wave heating and fast wave current drive loop antennas are connected to the return conductor. The short-circuited part at the tip is made of a rectangular tube and used as a grill launcher from which a high-frequency wave for excitation of low-frequency mixed waves is radiated.The part connecting the above loop antenna to the coaxial pipe conductor is made into a circular opening antenna and is used for electron cyclotron heating from there. Emit microwaves for use.
本発明の同軸伝送路は内導体内側の空間はμ波伝送用の
円形導波管,内導体と外導体の間の空間は100MHz
帯高周波を伝送するTEM線路として動作する。それに
よって、一本の伝送路で複数の周波数の高周波を伝送で
きるので、伝送路の配置空間を少なくでき、さらに伝送
路設置に必要な工期を短縮することができる。In the coaxial transmission line of the present invention, the space inside the inner conductor is a circular waveguide for μ wave transmission, and the space between the inner conductor and the outer conductor is 100 MHz.
It operates as a TEM line that transmits band high frequencies. As a result, high frequencies of a plurality of frequencies can be transmitted through a single transmission line, so the space for arranging the transmission line can be reduced, and the construction period required for installing the transmission line can be shortened.
また、本発明のモジュール化したアンテナは、電子サイ
クロトロン加熱アンテナ、低域混或波電流駆動アンテナ
、速波電流駆動及び加熱アンテナを一体化したアンテナ
として動作する。それによって、複数の種類のアンテナ
を一個の機器として運搬、据え付けが可能になり、分解
組立が容易になる。Further, the modular antenna of the present invention operates as an antenna that integrates an electronic cyclotron heating antenna, a low-frequency mixed wave current drive antenna, a fast wave current drive, and a heating antenna. This makes it possible to transport and install multiple types of antennas as one device, and facilitates disassembly and assembly.
さらに、円開ロアンテナ部分から放射される電子サイク
ロトロン加熱用μ波はプラズマを生成加熱し、ループア
ンテナ短絡部分のグリルランチャーから放射される低域
混成波励起用μ波はプラズマ中の周辺部分に電流を発生
させ、ループアンテナから放射される速波加熱及び電流
駆動用高周波はプラズマ中のイオンを加熱して、さらに
、プラズマの中心部分に電流を発生させる。それによっ
て、狭い領域から放射された複数の種類の高周波は相乗
効果で他の高周波がプラズマに励起される効率を上昇さ
せるので、プラズマの加熱、電流駆動の効率も向上する
。Furthermore, the electron cyclotron heating μ-waves radiated from the circular loop antenna generate and heat the plasma, and the low-frequency hybrid wave excitation μ-waves radiated from the grill launcher in the short-circuited portion of the loop antenna stimulate the peripheral portions of the plasma. A current is generated, and the fast-wave heating and current-driving high frequency waves radiated from the loop antenna heat the ions in the plasma, and further generate a current in the center of the plasma. As a result, the multiple types of high-frequency waves radiated from a narrow area have a synergistic effect that increases the efficiency with which other high-frequency waves are excited into the plasma, thereby improving the efficiency of plasma heating and current drive.
以下,本発明の一実施例を第エ図により説明する。第1
図は、本発明に・よる装置の具体的実施態様を示す図で
ある。第1図において、10はループアンテナ、32は
リターン導体、工5は円形導体管を兼ねた同軸管内導体
、30は矩形導波管を束ねたグリルランチャ、11は静
電シールドである。周波数が数百MHzの速波加熱及び
電流駆動用高周波は同軸管の内導体工5と同軸管の外導
体31の間の空間を伝播し、ループアンテナ10、グリ
ルランチャー30、リターン導体32からなる負荷に供
給され、ループアンテナ10から電磁波として空中に放
射され、プラズマと結合してイオンを加熱,及び、プラ
ズマ中に電流を発生させる。静電シールドエ1はプラズ
マに悪影響を与える静電波戒分を遮蔽し、プラズマ領域
に放射されないようにする。同軸管内導体工5の内部を
伝播してきた周波数が数百G H zのμ波は開口部4
0より空中に放射され、プラズマ生戒と電子加熱を行う
。矩形導波管4工を伝播した周波数が数Gllzのμ波
はグリルランチャ30から空中に放射されてプラズマ中
に電流を発生させる。本実施例によれば、数百M H
z ,数百GHz,数GHzという三個の周波数の高周
波が空中に放射されて本実施例の静電シールド近傍に存
在するプラズマと結合し、プラズマの生成、加熱,電流
駆動という動作を同時に行える。また、本実施例によれ
ば、内径5olmの円開口アンテナ八個から約2MW、
長さ60(1)幅20cmのループアンテナ八個から約
16MW,高さ7CfII幅1■の矩形導波管180個
を束ねたグリルランチャから約5MWの電力を放射でき
、同様のモジュールをトカマク型核融合装置に三個設置
すると炉規模の大型装置に必要な50MW以上の電力を
供給可能となる。An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows a specific embodiment of the device according to the invention. In FIG. 1, 10 is a loop antenna, 32 is a return conductor, 5 is a coaxial tube inner conductor that also serves as a circular conductor tube, 30 is a grill launcher made of a bundle of rectangular waveguides, and 11 is an electrostatic shield. The high frequency wave for fast wave heating and current driving with a frequency of several hundred MHz propagates through the space between the inner conductor 5 of the coaxial tube and the outer conductor 31 of the coaxial tube, and consists of a loop antenna 10, a grill launcher 30, and a return conductor 32. The electromagnetic wave is supplied to the load, is radiated into the air as an electromagnetic wave from the loop antenna 10, combines with the plasma, heats the ions, and generates a current in the plasma. The electrostatic shield 1 shields electrostatic waves that adversely affect the plasma and prevents them from being radiated into the plasma region. The μ waves with a frequency of several hundred GHz that have propagated inside the coaxial pipe conductor 5 are transmitted through the opening 4.
It is radiated into the air from 0 and performs plasma vigilance and electronic heating. The μ waves having a frequency of several Gllz propagated through the four rectangular waveguides are radiated into the air from the grill launcher 30 and generate current in the plasma. According to this embodiment, several hundred MH
High frequencies of three frequencies, z, several hundred GHz, and several GHz, are radiated into the air and combine with the plasma existing near the electrostatic shield of this embodiment, allowing the operations of plasma generation, heating, and current drive to be performed simultaneously. . Further, according to this embodiment, approximately 2 MW is generated from eight circular aperture antennas each having an inner diameter of 5 olm.
Approximately 16 MW of power can be radiated from eight loop antennas with a length of 60 (1) and a width of 20 cm, and approximately 5 MW of power can be radiated from a grill launcher that bundles 180 rectangular waveguides with a height of 7CfII and a width of 1 cm, and a similar module can be used in a tokamak type. If three of them are installed in a nuclear fusion device, it will be possible to supply more than 50 MW of power, which is necessary for a large reactor-sized device.
さらに、本実施例の低域混或波電流駆動用グリルランチ
ャーは九十列二段の矩形導波管より構成されている。従
来のランチャーは一個のポートから多くの高周波電力を
放射するために矩形導波管を六から八段という多段構或
になっていてランチャーを冷却するための冷却パイプの
配置設計が難しい課題になっていたが、本実施例のラン
チャはリターン導体の裏側に大きな空間が存在するため
、従来例のような問題もない。Furthermore, the grille launcher for driving a low-frequency mixed wave current according to this embodiment is composed of rectangular waveguides arranged in 90 rows and two stages. Conventional launchers have a multi-stage structure of six to eight stages of rectangular waveguides in order to radiate a large amount of high-frequency power from a single port, and designing the layout of the cooling pipes to cool the launcher has become a difficult issue. However, since the launcher of this embodiment has a large space on the back side of the return conductor, there is no problem like that of the conventional example.
第3図は,数百MHz及び数百GHzの二個の周波数の
高周波を放射する他の実施例を、高周波発振器の低周波
数増幅器部分とともに示す図である。基準発振器部分で
生威された低周波数の百MHz帯高周波は高周波入力ロ
21から高周波空胴共振器17に導かれ、増幅管20に
よって増幅される。また、数百GHz帯のμ波は高周波
空胴共振器17を貫通してμ波入力ロ22につながった
同軸管内導体を通って開口部40から放射される。増幅
管20によって増幅された百MHz帯の高周波は高周波
結合ループ16によって取り出され,同軸管の内導体1
5と外導体l3の間を伝播してループアンテナ10まで
導かれる。本実施例によれば、数百MHz及び数百GH
zの二種類の高周波を円形導波管を兼ねた同軸管に供給
してアンテナまで伝送し、空中に放射できる。FIG. 3 is a diagram showing another embodiment for radiating high frequencies of two frequencies, several hundred MHz and several hundred GHz, together with the low frequency amplifier section of the high frequency oscillator. The low frequency 100 MHz band high frequency generated by the reference oscillator section is guided from the high frequency input lo 21 to the high frequency cavity resonator 17 and amplified by the amplifier tube 20. Furthermore, the μ-waves in the hundreds of GHz band pass through the high-frequency cavity resonator 17 and are radiated from the opening 40 through the coaxial pipe conductor connected to the μ-wave input lo 22. The high frequency wave in the 100 MHz band amplified by the amplifier tube 20 is taken out by the high frequency coupling loop 16, and is connected to the inner conductor 1 of the coaxial tube.
5 and the outer conductor l3 and is guided to the loop antenna 10. According to this embodiment, several hundred MHz and several hundred GH
Two types of high frequency waves, z, are supplied to a coaxial tube that also serves as a circular waveguide, and transmitted to the antenna, where they can be radiated into the air.
本発明は、以上説明したように構成されているので以下
に記載されるような効果を奏する。すなわち、異なる周
波数の高周波を一個の伝送路を伝送して一体化されたア
ンテナから放射できるので、高周波システムを小型化で
きる。また,異なる性質の高周波を空間的に局在化した
場所から放射してプラズマ中に波を励起できるので、波
の励起,及び、プラズマの加熱と電流駆動の効率が向上
する。さらに,同じ構造のアンテナ及び伝送路を複数個
設置するので、標準化が容易で経済性を向上できる。Since the present invention is configured as described above, it produces the effects described below. That is, since radio waves of different frequencies can be transmitted through one transmission path and radiated from the integrated antenna, the radio frequency system can be made smaller. In addition, waves can be excited in the plasma by emitting high-frequency waves with different properties from spatially localized locations, which improves the efficiency of wave excitation, plasma heating, and current drive. Furthermore, since a plurality of antennas and transmission lines having the same structure are installed, standardization is easy and economical efficiency can be improved.
第1図は本発明の一実施例の正面図(a)及び側面図(
b),第2図は従来の高周波放射装置の配置をトカマク
型核融合装置半面の上面図、第3図は本発明の第二の実
施例におけるアンテナ部分と高周波発振器の低周波数高
周波増幅器部分を示す断面図である。
10・・・ループアンテナ、15・・・同軸管内導体兼
円形導波管、31・・・同軸管外導体、32・・・リタ
ーン41一一一爬@4浪畳
第3図
日用!4浪畳FIG. 1 is a front view (a) and a side view (
b), Figure 2 shows the arrangement of a conventional high-frequency radiator, and Figure 3 shows a top view of one half of a tokamak-type nuclear fusion device, and Figure 3 shows the antenna part and the low-frequency high-frequency amplifier part of the high-frequency oscillator in the second embodiment of the present invention. FIG. 10...Loop antenna, 15...Coaxial pipe inner conductor and circular waveguide, 31...Coaxial pipe outer conductor, 32...Return 41 111 @ 4 Rotatami figure 3 day use! 4-row tatami
Claims (1)
高周波伝送路、高周波を空中または真空中に放射するア
ンテナを備えた高周波放射装置において、 前記高周波伝送路は複数の導電性同軸円筒からなり、も
つとも内側の円筒は周波数のもつとも高い高周波が伝播
する導波管、外側の隣合う二個の円筒間は周波数が低い
高周波が伝播するTEM線路として作用し、前記アンテ
ナは前記周波数のもつとも高い周波数を放射する部分と
前記周波数の低い高周波を放射する部分よりなることを
特徴とする高周波放射装置。 2、請求項1において、磁場によつてプラズマを閉じ込
める核融合装置内にプラズマを生成して加熱する、また
は磁場によつてプラズマを閉じ込める核融合装置内にプ
ラズマ電流を励起する装置に前記高周波放射装置を配し
、もつとも周波数の高い高周波は周波数がプラズマ中の
電子サイクロトロン周波数の整数倍周波数に一致する電
子サイクロトロン加熱、または、電子サイクロトロン電
流駆動用高周波であり、周波数の低い高周波は周波数が
プラズマ中のイオンサイクロトロン周波数より高く電子
サイクロトロン周波数より低い速波加熱、または、速波
電流駆動用高周波である高周波放射装置。 3、請求項1において、周波数の最も高い高周波を放射
する部分は円開口アンテナである高周波放射装置。 4、請求項1において、周波数の低い高周波を放射する
部分は板状アンテナ、または、ループアンテナである高
周波放射装置。 5、請求項1において、前記高周波発振器は前記もつと
も周波数の高い高周波を発生する第一の発振器部分と、
前記低い周波数の高周波を発生する第二の発振器部分と
、前記第二の発振器部分の低い周波数の高周波出力を増
幅する増幅器部分を備え、前記第一の発振器部分の高周
波出力を伝送する導波管が増幅器部分に含まれる高周波
空胴共振器内を貫通して前記高周波伝送路に接続される
高周波放射装置。 6、請求項4の前記板状アンテナまたは前記ループアン
テナにおいて、アンテナ導体をリターン導体に接続する
部分を矩形の筒で構成し、その筒からも高周波を放射す
る高周波放射装置。[Claims] 1. A high-frequency radiating device comprising a high-frequency oscillator that generates high-frequency waves, a high-frequency transmission line that transmits high-frequency waves, and an antenna that radiates high-frequency waves into the air or vacuum, wherein the high-frequency transmission line includes a plurality of conductive conductors. Consisting of coaxial cylinders, the inner cylinder acts as a waveguide through which high-frequency waves propagate, and the area between two adjacent outer cylinders acts as a TEM line through which low-frequency waves propagate, and the antenna acts as a waveguide through which high-frequency waves propagate. A high frequency radiating device comprising a part that emits the highest frequency and a part that emits a low frequency. 2. In claim 1, the radio frequency radiation is applied to a device that generates and heats plasma in a nuclear fusion device that confines plasma by a magnetic field, or excites a plasma current in a nuclear fusion device that confines plasma by a magnetic field. The high-frequency wave used for electron cyclotron heating or electron cyclotron current drive has a frequency that matches an integral multiple of the electron cyclotron frequency in the plasma, and the low-frequency wave has a frequency that matches an integral multiple of the electron cyclotron frequency in the plasma. A high frequency radiation device that is a high frequency for fast wave heating or fast wave current driving that is higher than the ion cyclotron frequency and lower than the electron cyclotron frequency. 3. The high frequency radiating device according to claim 1, wherein the part that radiates the highest frequency is a circular aperture antenna. 4. The high-frequency radiating device according to claim 1, wherein the portion that radiates low-frequency high-frequency waves is a plate antenna or a loop antenna. 5. In claim 1, the high-frequency oscillator includes the first oscillator portion that generates a high-frequency wave with a high frequency;
A waveguide that transmits the high frequency output of the first oscillator section, comprising a second oscillator section that generates the low frequency high frequency wave, and an amplifier section that amplifies the low frequency high frequency output of the second oscillator section. A high-frequency radiating device that penetrates through a high-frequency cavity resonator included in an amplifier portion and is connected to the high-frequency transmission path. 6. A high-frequency radiating device in the plate antenna or the loop antenna according to claim 4, in which the portion connecting the antenna conductor to the return conductor is constituted by a rectangular cylinder, and the high-frequency wave is also radiated from the cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1307696A JPH03170089A (en) | 1989-11-29 | 1989-11-29 | High frequency radiation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1307696A JPH03170089A (en) | 1989-11-29 | 1989-11-29 | High frequency radiation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03170089A true JPH03170089A (en) | 1991-07-23 |
Family
ID=17972127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1307696A Pending JPH03170089A (en) | 1989-11-29 | 1989-11-29 | High frequency radiation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03170089A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108257681A (en) * | 2016-12-29 | 2018-07-06 | 核工业西南物理研究院 | A kind of solid-state produces tritium cladding modular shielding slab |
CN108601190A (en) * | 2017-12-20 | 2018-09-28 | 中国科学院合肥物质科学研究院 | Height couples the double ring type ion involution antenna of low impurity |
-
1989
- 1989-11-29 JP JP1307696A patent/JPH03170089A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108257681A (en) * | 2016-12-29 | 2018-07-06 | 核工业西南物理研究院 | A kind of solid-state produces tritium cladding modular shielding slab |
CN108257681B (en) * | 2016-12-29 | 2024-04-09 | 核工业西南物理研究院 | Solid tritium production cladding module shielding block |
CN108601190A (en) * | 2017-12-20 | 2018-09-28 | 中国科学院合肥物质科学研究院 | Height couples the double ring type ion involution antenna of low impurity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100871475B1 (en) | Microwave plasma nozzle array unit, method for configuring nozzle array and microwave plasma system, for providing uniform scalable microwave plasma generation | |
US6327339B1 (en) | Industrial x-ray/electron beam source using an electron accelerator | |
Cai et al. | Modeling and technical design study of two-stage multibeam klystron for CLIC | |
Teryaev et al. | 90% efficient two-stage multibeam klystron: Modeling and design study | |
Belo et al. | ITER-like PAM launcher for Tore Supra's LHCD system | |
JPH03170089A (en) | High frequency radiation device | |
He et al. | Preliminary experimental study on a compact relativistic magnetron with diffraction output of TEM mode | |
WO2014202739A1 (en) | Electromagnetic radiating structure to generate a direct current in a magnetically confined plasma in a tokomak thermonuclear fusion reactor by high frequency electromagnetic radiation | |
CN204695649U (en) | A kind of sectional type solenoidal field | |
JP4618726B2 (en) | Power distributor using waveguide slot coupling | |
Arbuzov et al. | RF system of the CW race-track microtron-recuperator for FELs | |
Unyu et al. | Transient Response of Circuit Shape Right-and Left-Handed Waveguide | |
AU2017288844B2 (en) | Microwave feeding system | |
CN113540827B (en) | High-power microwave system capable of radiating in all directions | |
JP4010419B2 (en) | Power distributor using waveguide slot coupling | |
Ongena et al. | The dedicated ICRH system for the stellarator Wendelstein 7-X | |
JPS63250095A (en) | Microwave discharge light source | |
Faugel et al. | ICRF system efficiency | |
Ravera et al. | Analysis of a 8-strap plasma-facing launcher with load-tolerant external matching units for the ICRH system of DTT | |
Gormezano | RF systems for heating and current drive in fusion experiments | |
US5929720A (en) | Electromagnetic wave matching matrix using a plurality of mirrors | |
Gormezano | RF Systems for Heating and | |
Okada | Study of Fast Ion Production and Confinement in Ion Cyclotron Range of Frequency Heating of Heliotron E | |
Bondarenko et al. | Photoinjector accelerating system for sub-mm high-power pulse source | |
CN117410692A (en) | Side beam scanning leaky-wave antenna based on yttrium iron garnet cylindrical array |