JPH03168275A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03168275A
JPH03168275A JP1309656A JP30965689A JPH03168275A JP H03168275 A JPH03168275 A JP H03168275A JP 1309656 A JP1309656 A JP 1309656A JP 30965689 A JP30965689 A JP 30965689A JP H03168275 A JPH03168275 A JP H03168275A
Authority
JP
Japan
Prior art keywords
vapor
weight
approximately
working fluid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309656A
Other languages
Japanese (ja)
Inventor
Koji Arita
浩二 有田
Takeshi Tomizawa
猛 富澤
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1309656A priority Critical patent/JPH03168275A/en
Publication of JPH03168275A publication Critical patent/JPH03168275A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a working fluid, containing specific amounts of chlorodifluoromethane, chlorodifluoroethane and dichlorotrifluoroethane, hardly affecting the stratospheric ozonosphere and used for refrigerators, heat pumps, etc. CONSTITUTION:The objective working fluid containing at least three kinds of fluorocarbons of 45-90wt.%, preferably 55-85wt.% chlorodifluoromethane (R22), <=55wt.%, preferably <=50wt.% chlorodifluoroethane (R142b) and <=50wt.% dichlorotrifluoroethane (R123).

Description

【発明の詳細な説明】 産業上の利用分野 本発明!よ 冷凍機・ヒートボンプ等に使用される作動
流体に関すん 従来の技術 従来 冷凍機・ヒートボンプ等において{よ 作動流体
としてフロン類(以下R○○またはRO○○と記す)と
呼ばれるハロゲン化炭化水素が知られており、利用温度
としては凝縮温度および/または蒸発温度が略0〜略5
0℃の範囲において通常使用されも 中でもジクロロジ
フルオロメタン(CCI倉F*,R12)は冷蔵凧 カ
ーエアコンや大型冷凍機等の作動流体として幅広く用い
られていも 発明が解決しようとする課題 しかしなか仮 近年フロンによる戒層圏オゾン層破壊が
地球規模の環境問題となっており、戊層圏オゾン破壊能
力が大であるフロン類(以下、特定フロンと記す)につ
いて(よ すでに国際条約によって使用量及び生産量の
規制がなされ さらに将来的には特定フロンの使用・生
産を廃止しようという動きがあも さて、R12はオゾ
ン破壊係数(トリクロロフルオロメタン(CC l*F
)の戒層圏オゾン破壊能力を1としたときの戒層圏オゾ
ン破壊能九 以下○DPと記す)が1.0の特定フロン
であり、冷凍・空調機器が広く普及した現&  R12
の使用量及び生産量の削減が人類の生活環境に与える影
響は甚だ太き(ち 従って、威層圏オゾン破壊能力が小
であり、R12の代替となる作動流体の早期開発が強く
要望されていも本発明ζ上 上述の問題に鑑みて試され
たもので、戒層圏オゾン層に及ぼす影響が小さl.kR
12の代替となる作動流体を提供するものであん課題を
解決するための手段 本発明は上述の課題を解決するた取 少なくとk クロ
ロジフルオロメタン(CHCIF2)とクロロジフルオ
ロエタン(CeHsC I Fg)とジクロロトリフル
オロエタン(CsHC IgFs)からの3種のフロン
類を含へ クロロジフルオロメタン略45〜略90重量
瓢 クロロジフルオロエタンO〜略55重量米 ジクロ
ロトリフルオロエタンO〜略50重量%の組戊範囲であ
ることを特徴とするものであり、特に クロロジフルオ
ロメタン略50〜略85重量賊 クロロジフルオ口エタ
ンO〜略50重量米 ジクロロトリフルオロエタン0〜
略50重量%の組或範囲が望ましいものであム作用 本発明ζ上 上述の組合せによって、作動流体を、オゾ
ン破壊能力の極めて低い分子構造中に塩素・水素を共に
含むフロン類であるクロロジフルオロメタン(ODP=
0.  05)、クロロジフルオ口エタン(○DP=0
.  06)およびジクロロトリフルオロエタン(OD
P=0.  02)の混合物となすことにより、戊層圏
オゾン層に及ぼす影響をR12よりもはるかに小さくす
ることを可能とするものであも 又 本発明は上述の組
戒範囲とすることによって、冷凍機・ヒートボンプ等の
利用温度である略O〜略50℃においてR12と同程度
の蒸気圧を有L  R12の代替として現行機器で使用
可能な作動流体を提供することを可能とするものであも
 特に上述の組合せおよび組戒範囲における○DPは0
. 03〜0. 06と予想さ札R12の代替として極
めて有望な作動流体となるものであん またかかる混合
物は非共沸混合物となり、凝縮過程および蒸発過程にお
いて温度勾配をもった数 熱源流体との温度差を近接さ
せたロレンツサイクルを構或することにより、R12よ
りも高い或績係数を期待できるものであも実施例 以下、本発明による作動流体のいくつかの実施例につい
て、図を用いて説明すも 第l図Ct  クロロジフルオロメタン(R22)、■
−クロロ−1.  1−ジフルオ口エタン(R142b
)、 2,2−ジクロロー1.1.1−トリフルオ口エ
タン(R123)の3種のフロン類の混合物によって構
或される作動流体α 一定温度・一定圧力における平衡
状態を三角座標を用いて示したものであん 本三角座標
においてζ上 三角形の各頂点直 上側頂点を基点とし
て反時計回りに沸点の低い順に単一物質を配置しており
、座標平面上のある点における各或分の組或比(重量比
)1&  点と三角形の各辺との距離の比で表されもま
たこのとき、点と三角形の辺との距離&よ 辺に相対す
る側にある三角座標の頂点に記された物質の組或比に対
応ずん 第1図において1 41  温度0℃・圧力2
.  1 1 6kg/cm”Gにおける混合物の気液
平衡線であり、この温度・圧力はRl2の飽和状態に相
当すん 気液平衡線(R120℃相当)Iの上側の線は
飽和気相線 気液平衡線(R12  0℃相当)lの下
側の線は飽和液相線を表わし この画線で挟まれた範囲
においては気液平衡状態となも また2は 温度50℃
・圧力1 1.  373kg/cm”Gにおける混合
物の気液平衡線であり、この温度・圧力もRl2の飽和
状態に相当すん 図からわかるように R22、R14
2b及びR123がそれぞれ略45〜略90重量基 0
〜略55重量鴬 0〜略50重量%となるような組或範
囲(よ 略O〜略50℃の利用温度においてR12とほ
ぼ同等の蒸気圧を有するため望ましt.′11)さらi
.:,R22、R142b及びR123がそれぞれ略5
0〜略85重量米 0〜略50重量勉 0〜略50重量
%となるような組或範囲(よ 0℃と50℃の間のすべ
ての利用温度においてR12とほぼ同等の蒸気圧を有す
るため特に望まし(ち 第1図中の点A1〜点Flにおける作動流体の組戊及び
ODPを第l表に示も 点A1〜点C1は気液平衡線(
R12  50℃相当)2の飽和気相線上に 点F1は
気液平衡線(R12  50℃相当)2の飽和液線上に
あると共に 気液平衡線(R12  0℃相当)1の飽
和気相線及び気液平衡線(R120℃相当)1の飽和液
相線の両線で挟まれた範囲にあることか転 温度O℃・
圧力2.  116kg/cm”G(R12の飽和状態
に相当)においては気液平衡状態となも また 点Dl
及び点Elは気液平衡線(R120℃相当)lの飽和液
線上にあると共に 気液平衡線(Rl2 50℃相当)
2の飽和気相線及び気液平衡線(R12  50℃相当
)2の飽和液相線の画線で挟まれた範囲にあることか収
 温度50℃・圧力1 1.  3 7 3 kg/c
m2G (R 1 2の飽和状態に相当)においては気
液平衡状態となん 従って、第1表に示された組或を有
する作動流体EL  O℃第1表 ・50℃におけるR12の飽和蒸気圧の条件下で飽和状
態あるいは気液平衡状態を実現し 略0〜略50℃の利
用温度において、同温度におけるRl2の飽和蒸気圧で
操作することにより、R12とほぼ等しい凝縮温度・蒸
発温度を得ることが可能となるものであも ここで(上 気液平衡線(R12  0℃相当)!ある
いは気液平衡線(R12  50℃相当)2上の点につ
いてのみ説明した力交 点A1〜点F1の内側にある戊
 すなわ板 温度O℃・圧力2.116kg/cm’G
及び温度50℃・圧力11.37 3 kg/crn”
G (両者ともR12の飽和状態に相当)において気液
平衡状態となる組或を有する作動流体についても同様に
操作することにより、略0〜略50℃の利用温度におい
てR12とほぼ等しい凝縮温度・蒸発温度を得ることが
可能となるものであも 第2図1上 R22、R142b,  1,  2−ジ
クロロトリフルオロエタン(R123a)の3種のフロ
ン類の混合物によって構戊される作動流体α一定温度・
一定圧力における平衡状態を三角座標を用いて示したも
のであも 第2図において31上温度O℃・圧力2. 
 1 1 6kg/cm”Gにおける混合物の気液平衡
線であり、また4(よ 温度501−圧力11.  3
73kg/cm”Gにおける混合物の気液平衡線であも
 この場合にζ.i=  R22、Rl 42b及びR
123aがそれぞれ略45〜略90重量瓢 0〜略55
重量%  Q〜略50重量%となるような組或範囲爪 
R12とほぼ同等の蒸気圧を有するため望ましく、R2
2、R142b及びR123aがそれぞれ略50〜略8
5重量%.O〜略50重量%.O〜略50重量%となる
ような組或範囲力交 特に望まし鶏 第2図中の点A2〜点F2における作動流体の組戒及び
○DPを第2表に示九 点A2〜点C2は気液平衡線(
R12  50℃相当)4の飽和気相線上に 点F2は
気液平衡線(R12  50℃相当)4の飽和液線上に
あると共に 気液平衡線(R120℃相当)3の飽和気
相線及び気液平衡線(R12  0℃相当)3の飽和液
相線の画線第2表 で挟まれた範囲にあることか板 温度0℃・圧力2. 
 1 1 6kg/cm”G (Rl 2の飽和状態に
相当)においては気液平衡状態となん また 点D2及
び点E2は気液平衡線(R12  0℃相当)3の飽和
液線上にあると共に 気液平衡線(Rl2  50℃相
当〉 4の飽和気相線及び気液平衡線(R12  50
℃相当)4の飽和液相線の両線で挟まれた範囲にあるこ
とか板 温度50℃・圧力11.  373kg/cm
”G(R12の飽和状態に相当)においては気液平衡状
態となん 従って、第2表に示された組或を有する作動
流体{友 O℃・50℃におけるR12の飽和蒸気圧の
条件下で飽和状態あるいは気液平衡状態を実現し 略0
〜略50℃の利用温度において、同温度におけるR12
の飽和蒸気圧で操作することにより、R12とほぼ等し
い凝縮温度・蒸発温度を得ることが可能となるものであ
も ここで41  気液平衡線(R12  0℃相当)3あ
るいは気液平衡線(R12  50℃相当)4上の点に
ついてのみ説明した力交 点A2〜点F2の内側にある
戊 すなわム 温度O℃・圧力2.  116kg/c
m”G及び温度50℃・圧力11.37 3 kg/c
m”G (両者ともR12の飽和状態に相当)において
気液平衡状態となる組戊を有する作動流体についても同
様に操作することにより、略0〜略50℃の利用温度に
おいてR12とほぼ等しい凝縮温度・蒸発温度を得るこ
とが可能となるものであも 以上の実施例においては作動流体は3種のフロン類の混
合物によって構或されている力交 構造異性体を含めて
4種以上のフロンの混合物によって作動流体を構戊する
ことも勿論可能であり、この場合、クロロジフルオロメ
タン略45〜略90重量勉 クロロジフルオ口エタン0
〜略55重量基ジクロ口トリフルオロエタン0〜略50
重量%となるような組或範囲(友 略O〜略50℃の利
用温度においてRl2とほぼ同等の蒸気圧を有するため
望まし鴎 さら阪 クロロジフルオロメタン略50〜略
8 5 重量K  クロロジフルオロエタン0〜略50
重量勉 ジクロロトリフルオロエタンO〜略50重量%
となるような組戊範囲GA  O℃と50℃の間のすべ
ての利用温度においてR12とほぼ同等の蒸気圧を有す
るため特に望まし(1 特に上述の組合せおよび組或範
囲におけるODPは0. 03〜0. 06と予想され
 R12の代替として極めて有望な作動流体となるもの
であも またかかる混合物は非共沸混合物となり、凝縮
過程および蒸発過程において温度勾配をもった奴 熱源
流体との温度差を近接させたロレンツサイクルを構或す
ることにより、R12よりも高い或績係数を期待できる
ものであも 発明の効果 以上の説明から明らかなように 本発明は 作動流体を
、分子構造中に塩素・水素を共に含むフロン類の3種以
上から或る混合物となし その組戒範囲を特定したこと
により、 (1)rli.層圏オゾン層に及ぼす影響をR12より
もはるかに小さくするためα 作動流体の選択の幅を拡
大することが可能であL (2〉機器の利用温度においてR12と同程度の蒸気圧
を有L.,R12の代替として現行機器で使用可能であ
も (3)非共沸混合物の温度勾配の性質を利用して、R1
2よりも高い戒績係数を期待できる等の効果を有するも
のであも
[Detailed Description of the Invention] Industrial Application Field of the Invention! Conventional technology related to working fluids used in refrigerators, heat pumps, etc. In refrigerators, heat pumps, etc., halogenated hydrocarbons called fluorocarbons (hereinafter referred to as R○○ or RO○○) are used as working fluids. It is known that the condensation temperature and/or evaporation temperature is approximately 0 to approximately 5.
Among them, dichlorodifluoromethane (CCI F*, R12), which is commonly used in the temperature range of 0°C, is widely used as a working fluid in refrigerator kites, car air conditioners, large refrigerators, etc., but it is difficult to solve the problems that the invention aims to solve. In recent years, the depletion of the stratospheric ozone layer by fluorocarbons has become a global environmental issue, and international treaties have already established regulations regarding the amount of fluorocarbons used (hereinafter referred to as specified fluorocarbons), which have a large ability to deplete the stratospheric ozone. Production volume has been regulated, and there is also a movement to abolish the use and production of specified fluorocarbons in the future.Now, R12 has an ozone depletion coefficient (trichlorofluoromethane (CC l*F)).
) is a specific CFC with a stratospheric ozone depletion potential of 9 (hereinafter referred to as ○DP) of 1.0 when the stratospheric ozone depletion potential of
Reducing the amount of R12 used and produced will have a tremendous impact on the living environment of humankind (therefore, its ability to deplete stratospheric ozone is small, and there is a strong demand for the early development of a working fluid that can replace R12. The present invention ζ was also tried in view of the above-mentioned problems, and has a small effect on the stratospheric ozone layer.
Means for Solving the Problems by Providing Alternative Working Fluids for Twelve Alternative Working Fluids The present invention solves the above problems by providing alternative working fluids for at least k chlorodifluoromethane (CHCIF2), chlorodifluoroethane (CeHsC I Fg) and dichlorodifluoromethane (CHCIF2), chlorodifluoroethane (CeHsC I Fg) and Contains three types of fluorocarbons from trifluoroethane (CsHC IgFs) Chlorodifluoromethane approximately 45 to approximately 90% by weight Chlorodifluoroethane O to approximately 55% by weight Dichlorotrifluoroethane O to approximately 50% by weight composition range In particular, it is characterized by: Chlorodifluoromethane approximately 50 to approximately 85% by weight Chlorodifluoromethane O to approximately 50% by weight Dichlorotrifluoroethane 0 to approximately 50% by weight
A composition range of about 50% by weight is desirable.The above combination allows the working fluid to be treated with chlorodifluorofluorocarbon, a fluorocarbon containing both chlorine and hydrogen in its molecular structure, which has an extremely low ozone depleting ability. Methane (ODP=
0. 05), chlorodifluoroethane (○DP=0
.. 06) and dichlorotrifluoroethane (OD
P=0. 02), it is possible to make the effect on the stratospheric ozone layer much smaller than that of R12.・It has a vapor pressure similar to that of R12 at temperatures ranging from about 0 to about 50 degrees Celsius, which is the operating temperature of heat pumps, etc., and can provide a working fluid that can be used in current equipment as an alternative to L R12. ○DP in the above combination and group precept range is 0
.. 03~0. 06 and expected to be an extremely promising working fluid as a replacement for R12.In addition, such a mixture will be a non-azeotropic mixture, and will have a temperature gradient in the condensation and evaporation processes. By constructing a Lorenz cycle, a higher coefficient of performance than R12 can be expected. Figure Ct Chlorodifluoromethane (R22), ■
-Chloro-1. 1-difluoroethane (R142b
), 2,2-dichloro1.1.1-trifluoroethane (R123), a working fluid α composed of a mixture of three types of fluorocarbons. The equilibrium state at a constant temperature and constant pressure is shown using triangular coordinates. In this trigonometric coordinate system, single substances are arranged counterclockwise in descending order of boiling point, starting from the vertex immediately above each vertex of the triangle on ζ, and each set or fraction at a certain point on the coordinate plane is The ratio (weight ratio) 1 & is expressed as the ratio of the distance between the point and each side of the triangle.In this case, the distance between the point and the side of the triangle & y is written at the vertex of the triangular coordinates on the side opposite the side. Corresponds to the composition ratio of substances In Figure 1, 1 41 Temperature 0℃, pressure 2
.. 1 1 This is the vapor-liquid equilibrium line of the mixture at 6 kg/cm"G, and this temperature and pressure correspond to the saturated state of Rl2. The line above the vapor-liquid equilibrium line (corresponding to R120°C) I is the saturated vapor phase line. Gas-liquid Equilibrium line (R12 equivalent to 0℃) The line below 1 represents the saturated liquidus line, and the area between these lines is in vapor-liquid equilibrium.Also, 2 is the temperature at 50℃.
・Pressure 1 1. This is the vapor-liquid equilibrium line of the mixture at 373 kg/cm"G, and this temperature and pressure also correspond to the saturated state of R12. As you can see from the figure, R22, R14
2b and R123 are each about 45 to about 90 weight groups 0
- approximately 55% by weight 0 to approximately 50% by weight.
.. :, R22, R142b and R123 are each approximately 5
0~approximately 85% by weight 0~approximately 50% by weight (0~approximately 50% by weight) Table 1 shows the composition and ODP of the working fluid at points A1 to Fl in Figure 1.
Point F1 is on the saturated vapor line of the vapor-liquid equilibrium line (R12 equivalent to 50°C) 2, and the saturated vapor line of the vapor-liquid equilibrium line (R12 equivalent to 0°C) 1. It must be within the range between the saturated liquidus line of vapor-liquid equilibrium line (equivalent to R120℃) 1.
Pressure 2. At 116 kg/cm"G (corresponding to the saturated state of R12), there is no vapor-liquid equilibrium state. Also, point Dl
and point El is on the saturated liquid line of the vapor-liquid equilibrium line (R120°C equivalent) l, and the vapor-liquid equilibrium line (Rl2 equivalent to 50°C)
Temperature: 50°C, Pressure: 1. 3 7 3 kg/c
m2G (corresponding to the saturated state of R 1 2) is a vapor-liquid equilibrium state. Therefore, the working fluid EL having the composition shown in Table 1 is By realizing a saturated state or a vapor-liquid equilibrium state under the conditions and operating at the saturated vapor pressure of R12 at the operating temperature of approximately 0 to approximately 50°C, the condensation temperature and evaporation temperature are approximately equal to those of R12. (Above) The force intersection between points A1 and F1 that explains only the points on the vapor-liquid equilibrium line (R12, equivalent to 0°C)! or the vapor-liquid equilibrium line (R12, equivalent to 50°C) 2. Inner shank plate Temperature 0℃・Pressure 2.116kg/cm'G
and temperature 50℃・pressure 11.37 3 kg/crn”
By performing the same operation on a working fluid having a gas-liquid equilibrium state at G (both of which correspond to the saturated state of R12), the condensation temperature is approximately equal to that of R12 at a usage temperature of approximately 0 to approximately 50°C. Even if it is possible to obtain the evaporation temperature, the working fluid α, which is composed of a mixture of three types of fluorocarbons, R22, R142b, and 1,2-dichlorotrifluoroethane (R123a), as shown in Figure 2 (above 1), is constant. temperature·
The equilibrium state at a constant pressure is shown using triangular coordinates.
It is the vapor-liquid equilibrium line of the mixture at 1 1 6 kg/cm"G, and is also 4 (yo Temperature 501 - Pressure 11.3
In this case, ζ.i = R22, Rl 42b and R
123a each weighs about 45 to about 90 weight gourds 0 to about 55
Weight % Q ~ A certain range of claws that makes it approximately 50 weight %
R2 is desirable because it has almost the same vapor pressure as R12.
2, R142b and R123a are each about 50 to about 8
5% by weight. O~approximately 50% by weight. Table 2 shows the combination and ○DP of the working fluid at points A2 to F2 in Figure 2, which are particularly desirable.9 Points A2 to C2 is the vapor-liquid equilibrium line (
Point F2 is on the saturated liquid line of vapor-liquid equilibrium line (R12 equivalent to 50°C) 4, and the saturated vapor phase line of vapor-liquid equilibrium line (R12 equivalent to 50°C) 3 The liquid equilibrium line (R12 equivalent to 0℃) 3 must be within the range between the saturated liquidus lines in Table 2.Temperature 0℃・Pressure 2.
At 1 1 6 kg/cm"G (corresponding to the saturated state of Rl 2), there is no vapor-liquid equilibrium state. Also, point D2 and point E2 are on the saturated liquid line of the vapor-liquid equilibrium line (corresponding to R12 0°C) 3, and the gas Liquid equilibrium line (R12 50℃ equivalent) 4 saturated gas phase line and vapor liquid equilibrium line (R12 50
Temperature: 50°C, Pressure: 11. 373kg/cm
Therefore, under the condition of the saturated vapor pressure of R12 at 0°C and 50°C, the working fluid having the composition shown in Table 2 Achieving a saturated state or a vapor-liquid equilibrium state, approximately 0
~ At a usage temperature of approximately 50°C, R12 at the same temperature
By operating at a saturated vapor pressure of R12 (equivalent to 50℃) Force intersection explained only for the points on 4. The hole inside point A2 to point F2. Temperature 0℃・Pressure 2. 116kg/c
m”G and temperature 50℃・pressure 11.37 3 kg/c
By performing the same operation on a working fluid that has a composition that reaches a vapor-liquid equilibrium state at m''G (both correspond to the saturated state of R12), condensation approximately equal to that of R12 can be achieved at a usage temperature of approximately 0 to approximately 50°C. In the above embodiments, the working fluid is composed of a mixture of three types of fluorocarbons. Of course, it is also possible to form the working fluid by a mixture of chlorodifluoromethane, about 45 to about 90% by weight, and chlorodifluoromethane, about 0% by weight.
- about 55 weight group dichlorotrifluoroethane 0 - about 50
% by weight (wt%) Chlorodifluoromethane is desirable because it has almost the same vapor pressure as Rl2 at the operating temperature of about 0 to about 50°C. ~about 50
Weight: Dichlorotrifluoroethane O ~ approximately 50% by weight
A combination range GA such that ~0.06, making it an extremely promising working fluid as an alternative to R12.In addition, such a mixture is a non-azeotropic mixture, with a temperature gradient in the condensation and evaporation processes. By constructing a Lorenz cycle in which chlorine is placed in close proximity to R12, a higher coefficient of performance than R12 can be expected.・A certain mixture of three or more types of fluorocarbons that both contain hydrogen By specifying the range of the combination, (1) rli. α operation to make the effect on the stratospheric ozone layer much smaller than R12. It is possible to expand the range of fluid selection. (2) It has a vapor pressure similar to R12 at the operating temperature of the equipment, and (3) it can be used in current equipment as an alternative to R12. Using the temperature gradient property of the azeotrope, R1
Even if it has the effect of being able to expect a higher precept coefficient than 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図〜第2図C上3種のフロン類の混合物によって構
成される作動流体α 一定温度・一定圧田 力における平衡状態を三角座標を用いて示した官♂であ
も 1.  3・・・気液平衡線(R12  0℃相当)、
2,4・・・気液平衡線(R12  50℃相当)。
Working fluid α composed of a mixture of the three types of fluorocarbons shown in Figures 1 to 2C. 3... Gas-liquid equilibrium line (R12 equivalent to 0°C),
2, 4... Gas-liquid equilibrium line (R12 equivalent to 50°C).

Claims (2)

【特許請求の範囲】[Claims] (1)クロロジフルオロメタン45〜90重量%以下、
クロロジフルオロエタン55重量%以下、ジクロロトリ
フルオロエタン50重量%以下の少なくとも3種のフロ
ン類を含む作動流体。
(1) 45 to 90% by weight of chlorodifluoromethane,
A working fluid containing at least three types of fluorocarbons, 55% by weight or less of chlorodifluoroethane and 50% by weight or less of dichlorotrifluoroethane.
(2)クロロジフルオロメタン50〜85重量%以下、
クロロジフルオロエタン50重量%以下、ジクロロトリ
フルオロエタン50重量%以下の少なくとも3種のフロ
ン類を含む作動流体。
(2) chlorodifluoromethane 50 to 85% by weight or less,
A working fluid containing at least three types of fluorocarbons, 50% by weight or less of chlorodifluoroethane and 50% by weight or less of dichlorotrifluoroethane.
JP1309656A 1989-11-29 1989-11-29 Working fluid Pending JPH03168275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309656A JPH03168275A (en) 1989-11-29 1989-11-29 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309656A JPH03168275A (en) 1989-11-29 1989-11-29 Working fluid

Publications (1)

Publication Number Publication Date
JPH03168275A true JPH03168275A (en) 1991-07-22

Family

ID=17995681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309656A Pending JPH03168275A (en) 1989-11-29 1989-11-29 Working fluid

Country Status (1)

Country Link
JP (1) JPH03168275A (en)

Similar Documents

Publication Publication Date Title
JPH03170594A (en) Working fluid
JPH03170588A (en) Working fluid
JPH03170591A (en) Working fluid
JPH03168275A (en) Working fluid
JPH03170583A (en) Working fluid
JPH03170590A (en) Working fluid
JP2579000B2 (en) Working fluid
JPH03170586A (en) Working fluid
JPH03170589A (en) Working fluid
JPH03168266A (en) Working fluid
JPH03168273A (en) Working fluid
JPH03170593A (en) Working fluid
JPH03170592A (en) Working fluid
JPH03168269A (en) Working fluid
JPH03168285A (en) Working fluid
JPH03168287A (en) Working fluid
JPH03168268A (en) Working fluid
JPH03168265A (en) Working fluid
JPH03168281A (en) Working fluid
JPH03168293A (en) Working fluid
JPH03168270A (en) Working fluid
JPH03168274A (en) Working fluid
JPH03168261A (en) Working fluid
JPH03168276A (en) Working fluid
JPH0517750A (en) Working fluid