JPH03166731A - Wiring method of copper or copper alloy and structure thereof - Google Patents

Wiring method of copper or copper alloy and structure thereof

Info

Publication number
JPH03166731A
JPH03166731A JP30462289A JP30462289A JPH03166731A JP H03166731 A JPH03166731 A JP H03166731A JP 30462289 A JP30462289 A JP 30462289A JP 30462289 A JP30462289 A JP 30462289A JP H03166731 A JPH03166731 A JP H03166731A
Authority
JP
Japan
Prior art keywords
copper
wiring
crystal grain
grain size
oxidation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30462289A
Other languages
Japanese (ja)
Inventor
Atsushi Numata
敦 沼田
Michio Ogami
大上 三千男
Shigeru Kawamata
川又 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP30462289A priority Critical patent/JPH03166731A/en
Publication of JPH03166731A publication Critical patent/JPH03166731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve the oxidation resistance of copper, and to form a copper wiring having high reliability by inactivating chemically active copper, extremely increasing crystal grain size as large as or larger than the wiring width of the copper wiring. CONSTITUTION:A copper film 1 is applied onto a substrate 3, crystal grain size is increased extremely, and the crystal grain size is made larger than the wiring width of a copper wiring. Consequently, crystal grain size is grown and a diffusion rate into the copper film 1 of oxygen is decreased in the active copper film 1, thus improving oxidation resistance. Since the copper film 1 is inactivated, a copper surface is not oxidized under the temperature at the time of applying, even if other metal or alloy is applied for the purpose of enhancing oxidation resistance subsequently. Likewise, stable copper nitride and copper fluoride can be formed because no copper oxide is formed on the copper surface even when nitriding treatment and fluorination treatment are executed. Accordingly, the reliability of the wiring can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は銅合金配線の表面処理方法に関するものである
。本来銅は耐酸化性が低く微量の酸素雰囲気でも表面が
酸化され、銅配線の信頼性が低下する。そこで、この問
題を解決するために銅配線の表面処理法が必要となって
くる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for surface treatment of copper alloy wiring. Copper originally has low oxidation resistance, and its surface is oxidized even in a trace amount of oxygen, reducing the reliability of copper wiring. Therefore, in order to solve this problem, a surface treatment method for copper wiring is required.

〔従来の技術〕[Conventional technology]

従来(特開昭62− 290150号)はCnの耐酸化
性を向上させるために別の金属や合金で覆う構造が提案
されている。しかしプロセスが複雑であり、しかもその
後の熱履歴により、銅とその上に覆われた金属との反応
も懸念される。そのために配線抵抗の増大や酸化、腐食
の進行が進み配線の信頼性の低下を招くという問題もあ
った。
Conventionally (Japanese Unexamined Patent Publication No. 62-290150), a structure in which Cn is covered with another metal or alloy has been proposed in order to improve the oxidation resistance of Cn. However, the process is complicated, and there are concerns about reactions between the copper and the metal covering it due to the subsequent thermal history. This has led to problems such as an increase in wiring resistance and progress of oxidation and corrosion, leading to a decrease in the reliability of the wiring.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明が解決しようとする問題点は、鋼の耐酸化性を向
上させるために、他の金属や合金で覆う方法や単に銅を
窒化処理する方法では、その後の熱履歴により銅が酸化
される懸念があった。銅膜は、通常スパッタリング法や
蒸着法により被着されるが,被着後の結晶粒径は通常0
.1〜0.2μmであり微量酸素でも100℃程度で酸
化が進行する。そのため,#i表面を他の金属で覆う選
択CVD法や窒化法フッ化法の処理温度でも銅表面は酸
化されてしまう.その結果、金属や合金で覆うか又は窒
化フツ化処理しても、銅表面は残留酸素と反応し酸化銅
が形成されており、その上に耐酸化性膜が被着されてい
る構造であった.これでは、その後の熱履歴により銅表
面の酸化銅は膜中に進行し、配線の信頼性の低下を招く
という問題があった. また銅膜はS i Oz膜との接着性が低く,上記に示
すように選択CVD法窒化処理,フツ化処理さらにはパ
ターン形戒のためのエッチング処理時に、銅膜がはがれ
るという問題があった。
The problem that the present invention aims to solve is that in order to improve the oxidation resistance of steel, methods of covering it with other metals or alloys or simply nitriding copper oxidize the copper due to the subsequent thermal history. There were concerns. Copper films are usually deposited by sputtering or vapor deposition, but the crystal grain size after deposition is usually 0.
.. The diameter is 1 to 0.2 μm, and oxidation proceeds at about 100° C. even in the presence of trace amounts of oxygen. Therefore, the copper surface is oxidized even at the treatment temperature of the selective CVD method, nitriding method, or fluoriding method in which the #i surface is covered with another metal. As a result, even if the copper surface is covered with a metal or alloy or treated with nitride fluoride, copper oxide is formed by reacting with residual oxygen, and an oxidation-resistant film is deposited on top of the copper oxide. Ta. In this case, there was a problem in that copper oxide on the copper surface progressed into the film due to the subsequent thermal history, leading to a decrease in the reliability of the wiring. In addition, the copper film has poor adhesion with the SiOz film, and as shown above, there was a problem that the copper film would peel off during selective CVD nitriding, fluoridation, and etching for pattern formation. .

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するための本発明は、基板上に銅膜を
被着後、結晶粒径を巨大化し、さらには接着性を向上さ
せるためにアニール処理を施こすことにより達或される
。アニール条件としては,雰囲気中に酸素の巻き込みを
避けるために真空中で行なうか,不活性ガス,窒素,水
素で行なうことが望ましい.またこの場合,微量酸素を
還元する目的で数%の水素を不活性ガス,窒素中に添加
してもかまわない。
The present invention to solve the above-mentioned problems is achieved by depositing a copper film on a substrate, enlarging the crystal grain size, and then performing an annealing treatment to improve adhesion. Regarding the annealing conditions, it is preferable to perform the annealing in a vacuum to avoid the inclusion of oxygen in the atmosphere, or to perform the annealing using an inert gas, nitrogen, or hydrogen. In this case, several percent of hydrogen may be added to the inert gas, nitrogen, for the purpose of reducing trace amounts of oxygen.

あるいは、銅膜を被着時に基板温度を上げ、結晶を或長
させながら被着してもかまわない。
Alternatively, the copper film may be deposited while increasing the substrate temperature and elongating the crystal to a certain extent.

〔作用〕[Effect]

上記手段を施こすことにより、活性な銅膜は結晶粒径が
成長し、酸素の銅膜中への拡散速度が低下するため耐酸
化性が向上する.また銅膜は不活性化するため,その後
に耐酸化性を向上させる目的で、他の金属や合金を被着
しても、被着時の温度により銅表面が酸化されることは
ない。同様に窒化処理,フツ化処理を施こす場合でも、
銅表面には酸化銅が形成されていないので、安定な窒化
銅フツ化銅を形戒することができる。
By applying the above measures, the crystal grain size of the active copper film grows, and the diffusion rate of oxygen into the copper film decreases, thereby improving oxidation resistance. Furthermore, since the copper film is inactivated, even if other metals or alloys are subsequently deposited for the purpose of improving oxidation resistance, the copper surface will not be oxidized due to the temperature during deposition. Similarly, even when nitriding or fluoridating,
Since no copper oxide is formed on the copper surface, stable copper nitride and copper fluoride can be used.

一方銅とSiC)z界面の脱ガス反応が起こり、銅とS
iOzの接着性は向上する。
On the other hand, a degassing reaction occurs at the interface between copper and SiC), and copper and S
The adhesion of iOz is improved.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)は熱酸化膜2を形成したSi基板上に、例
えばDCマグネトロンスパツタ法により銅を例えば50
00A被着させたものである.被着させたままの状態で
は、銅の結晶粒径は0.2μm程度の細かいものである
.それを例えば(b)に示すように窒素雰囲気中で40
0℃程度の温度でアニールする.それにより銅の結晶粒
径は戒長し,lμm程度になる。次に(c)に示すよう
にレジスト4をマスクに銅をエッチングする。銅は周知
のように難エッチング性であり、高温で行なう必要があ
る。このとき鋼のグレインは既に巨大化しているため配
IIA幅が例えば0.5μmの場合、配線幅より結晶粒
径のほうが大きいため結晶粒界からの酸素の拡散は抑さ
えられる.その後レジストを酸素プラズマ中で除去する
場合でも、問題はない。次に(d)に示すように層間絶
縁膜5を被着した場合でもある程度の高温に耐えること
ができる. 第2図は,本発明を用いない通常の方法で銅配線を形成
した場合の模式図である。(a)に示すように、銅を被
着後グレインを巨大化することなく,エッチングを行な
う場合を示す.レジスト4をマスクとして、エッチング
する場合、レジスト塗布前の加熱で結晶粒界からの酸素
の拡散により酸化される。その後のドライエッチング工
程でも、前記のように高温雰囲気で行なうため、エッチ
ング後は(b)のように全面が酸化銅6で覆われさらに
膜中に酸素が拡散する。レジスト4を除去し、(c)の
ように層間絶縁膜5を被着する。この場合でもある程度
の高温で銅1の酸化は進行し、実質的な銅1の断面積は
減少し、抵抗増加を招く。
In FIG. 1(a), for example, 50% of copper is deposited on a Si substrate on which a thermal oxide film 2 is formed, for example, by a DC magnetron sputtering method.
It is coated with 00A. In the as-adhered state, the crystal grain size of copper is as fine as about 0.2 μm. For example, as shown in (b), 40
Anneal at a temperature of about 0℃. As a result, the copper crystal grain size increases to about 1 μm. Next, as shown in (c), copper is etched using the resist 4 as a mask. As is well known, copper is difficult to etch and requires etching at high temperatures. At this time, the grains of the steel have already become huge, so if the wiring IIA width is, for example, 0.5 μm, the grain size is larger than the wiring width, so oxygen diffusion from the grain boundaries is suppressed. There is no problem even if the resist is subsequently removed in oxygen plasma. Next, as shown in (d), even when an interlayer insulating film 5 is deposited, it can withstand high temperatures to a certain extent. FIG. 2 is a schematic diagram when copper wiring is formed by a normal method that does not use the present invention. As shown in (a), the case where copper is deposited and then etched without making the grains large is shown. When etching is performed using the resist 4 as a mask, the resist is oxidized by diffusion of oxygen from grain boundaries during heating before coating. Since the subsequent dry etching step is also carried out in a high temperature atmosphere as described above, after etching, the entire surface is covered with copper oxide 6 as shown in (b), and oxygen is further diffused into the film. The resist 4 is removed and an interlayer insulating film 5 is deposited as shown in (c). Even in this case, oxidation of copper 1 proceeds at a certain high temperature, and the substantial cross-sectional area of copper 1 decreases, leading to an increase in resistance.

第3図,第4図は耐酸化性を向上させるための方法とし
て,銅表面を選択CVD法により他の金属で覆う場合を
示す。第3図は,銅を被着後結晶粒径を巨大化すること
なくエッチングし、その後他の金属で覆う場合を示す。
FIGS. 3 and 4 show the case where the copper surface is covered with another metal by selective CVD as a method for improving oxidation resistance. FIG. 3 shows the case where copper is deposited and then etched without enlarging the crystal grain size, and then covered with another metal.

(a)に示すようにエッチング後活性な銅lの全面は酸
化銅6で覆われている。その後(b)に示すように例え
ば選択CVD法により他の金属7例えばMo,W等を被
着する。この場合、ある程度の高温例えばOO℃にする
必要があり,残留酸素と銅1が反応し酸化が進行し、そ
の結果酸化銅6の膜厚が増え、酸化銅6の全面が金属7
で覆われている構造となり、耐酸化性の低い配線構造と
なる。一方、本発明を用いて同様な配線構造を形成した
ものが第4図である。第1図に示す様に、パターニング
前に不活性ガス中又は真空中又は窒素中又は水素を数%
含んだフオーミングガス中でアニールするか、被着時に
基板温度を上げ結晶粒径を巨大化したものは耐酸化性に
秀れており,第4図(a)に示すように表面は酸化され
ておらず、純粋な銅1のみである。その後金属7を選択
CVD法により被着しても、被着時に酸化されず,銅1
の全面が金属7で覆われており、耐酸化性のみならず、
耐マイグレーション性にも秀れた配線構造となる。
As shown in (a), the entire surface of the active copper 1 is covered with copper oxide 6 after etching. Thereafter, as shown in (b), another metal 7 such as Mo, W, etc. is deposited by, for example, selective CVD. In this case, it is necessary to raise the temperature to a certain degree, e.g.
This results in a wiring structure with low oxidation resistance. On the other hand, FIG. 4 shows a similar wiring structure formed using the present invention. As shown in Figure 1, before patterning, in an inert gas, vacuum, nitrogen, or several percent hydrogen.
Materials that are annealed in a forming gas that contains them, or that increase the substrate temperature during deposition to increase the crystal grain size, have excellent oxidation resistance, and as shown in Figure 4 (a), the surface is not oxidized. It is only pure copper 1. Even if metal 7 is then deposited by selective CVD, it is not oxidized during deposition, and copper 1
The entire surface is covered with metal 7, which not only has oxidation resistance but also
The wiring structure also has excellent migration resistance.

第5図,第6図は耐酸化性を向上させるための他の方法
として、銅表面を窒化,フッ素化する場合を示す。第5
図は、銅を被着後結晶粒径を巨大化することなくエッチ
ングし,その後窒素又はアンモニア雰囲気中で窒化.N
Fa又はSFs等のフツ化物雰囲気中でのフツ化処理す
る場合を示す。
FIGS. 5 and 6 show another method for improving oxidation resistance in which the copper surface is nitrided or fluorinated. Fifth
The figure shows that after copper is deposited, it is etched without increasing the crystal grain size, and then nitrided in a nitrogen or ammonia atmosphere. N
The case of fluorination treatment in a fluoride atmosphere such as Fa or SFs is shown.

銅工は(b)の様に酸化銅6で覆われているため,窒化
又はフツ化処理しても窒化銅又はフツ化銅は形成されず
、処理時の残留酸素の影響で酸化が進行する.そのため
窒化又はフツ化処理しても耐酸化性は向上しない。
As the copperwork is covered with copper oxide 6 as shown in (b), copper nitride or copper fluoride is not formed even if it is nitrided or fluoridated, and oxidation progresses due to the influence of residual oxygen during the treatment. .. Therefore, oxidation resistance does not improve even if the nitriding or fluoriding treatment is performed.

一方、本発明を用いて窒化又はフツ化処理する場合を第
6図に示す。第6図(a)は、第4図(a)と同様な方
法で形威したものである。その後(b)に示すように窒
化又はフツ化処理を行なう。この時銅表面は酸化されな
いため、銅1と窒素又はフッ素は反応し、全面が窒化銅
又はフツ化銅8で覆われ、耐酸化性が向上する。
On the other hand, FIG. 6 shows the case of nitriding or fluoriding using the present invention. FIG. 6(a) is a diagram produced in the same manner as FIG. 4(a). Thereafter, nitriding or fluoriding treatment is performed as shown in (b). At this time, since the copper surface is not oxidized, the copper 1 reacts with nitrogen or fluorine, and the entire surface is covered with copper nitride or copper fluoride 8, improving oxidation resistance.

第7図は第5図又は第6図で記述した様に、窒化処理前
にグレインを巨大化する一方法として水素を数%含有し
た窒素ベースのフオーミングガス中で450℃、工時間
アニールしたものと,アズデボの状態つまりアニールな
しのものを窒化処理し、その後酸化したものである。グ
ラフの横軸に酸化時間,後軸に酸化銅の膜厚をとったも
のである。明らかに、アニールを施こし、銅の結晶粒径
を巨大化したもののほうが、アニールを施こさず微細な
結晶粒径のものより銅の酸化される速度が遅く、例えば
10分後でも酸化銅の膜厚は300入程度である。この
ように、同じ窒化処理を施こす場合でも,グレインを巨
大化したもののほうが耐酸化性は向上する。さらには,
実質的な銅の断面積の減少もないので,電流密度は増加
することなく、耐マイグレーション性にも秀れた配線が
形成できる。
Figure 7 shows that as described in Figures 5 and 6, as a method of enlarging grains before nitriding, annealing was performed at 450°C for a processing time in a nitrogen-based forming gas containing several percent hydrogen. One is in an as-devo state, that is, without annealing, and then nitrided and then oxidized. The horizontal axis of the graph is the oxidation time, and the back axis is the copper oxide film thickness. Obviously, the rate of oxidation of copper is slower when the copper crystal grain size is enlarged by annealing than when the copper crystal grain size is finer than when the copper is not annealed. The film thickness is about 300 pieces. In this way, even when the same nitriding treatment is applied, the oxidation resistance is improved when the grains are made larger. Furthermore,
Since there is no substantial reduction in the cross-sectional area of copper, a wiring with excellent migration resistance can be formed without increasing current density.

第8図はアズデボ時.400℃,500℃ア二一ルした
銅膜をX線回折法により配向性を調べたものである。5
00℃アニール時の(1 1 1)強度を1とするとア
ズデポ時は約0.6 5,4 0 0℃アニール時では
約0.85 となっており配向性が高くなることも耐酸
化性を向上させている。
Figure 8 is at the time of as-devotion. The orientation of a copper film annealed at 400°C and 500°C was investigated by X-ray diffraction. 5
If the (1 1 1) strength at 00°C annealing is 1, it is approximately 0.65 at as-deposited, and approximately 0.85 at 400°C annealing, and the increased orientation also improves oxidation resistance. Improving.

アズデボ時と500℃アニール時の表面の結晶粒径をS
EM観察によれば,アズデポ時の結晶粒径は0.1〜0
.2μmであるのに対し、500℃アニール時はl〜2
μmと或長じており、この結果結晶粒界からの酸素の侵
入が,抑制される。
The crystal grain size on the surface during as-debossing and annealing at 500°C is
According to EM observation, the crystal grain size during as-deposited is 0.1 to 0.
.. 2 μm, whereas when annealing at 500°C, it is l~2 μm.
As a result, the intrusion of oxygen from the grain boundaries is suppressed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば化学的に活性な銅
を不活性化し結晶粒径を巨大化することにより、銅の耐
酸化性は向上し信頼性の高い銅配線を形成することがで
きる。
As explained above, according to the present invention, by inactivating chemically active copper and increasing the crystal grain size, the oxidation resistance of copper is improved and highly reliable copper wiring can be formed. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は本発明を用いて銅配線を形戒後、層間絶縁膜の
形成を示す図、第2図は従来の方法を示す図、第3図,
第4図は銅配線の全面に金属を被着した構造であり、第
3図は従来法を示す図、第4図は本発明法を示す図、第
5図,第6図は銅配線の全面を窒化又はフツ化処理した
構造であり、第5図は従来法を示す図、第6図は本発明
法を示す図、第7図は本発明を用いた場合に窒化処理し
た銅の酸化銅の膜厚増加を結晶粒径が0.2  μmと
1μmで比較した図、第8図はアニール処理による配向
性の変化図である。 1・・・銅、2・・・熱酸化膜、3・・・シリコン基板
、4・・・レジスト、5・・・層間絶縁膜,6・・・酸
化銅,7・・・金第 1 図 第 2 図 第 3 図 階 4 図 5−1÷ 5 図 第6図 第7図 呈化人理俊/)m教化・1生比較 アニー)v1:よる@の配句It生
Fig. 1 shows the formation of an interlayer insulating film after forming copper wiring using the present invention, Fig. 2 shows the conventional method, Fig. 3,
Figure 4 shows a structure in which the entire surface of the copper wiring is coated with metal, Figure 3 shows the conventional method, Figure 4 shows the method of the present invention, and Figures 5 and 6 show the structure of the copper wiring. This is a structure in which the entire surface is nitrided or fluorinated. Figure 5 shows the conventional method, Figure 6 shows the method of the present invention, and Figure 7 shows the oxidation of nitrided copper using the present invention. FIG. 8 is a diagram comparing the increase in copper film thickness between crystal grain sizes of 0.2 μm and 1 μm, and a diagram showing changes in orientation due to annealing treatment. DESCRIPTION OF SYMBOLS 1... Copper, 2... Thermal oxide film, 3... Silicon substrate, 4... Resist, 5... Interlayer insulating film, 6... Copper oxide, 7... Gold Figure 1 Figure 2 Figure 3 Figure Level 4 Figure 5-1 ÷ 5 Figure 6 Figure 7 Figure 7 Presentation by Jinri Shun /) m indoctrination / 1st life comparison Annie) v1: Yoru @'s haiku It student

Claims (1)

【特許請求の範囲】 1、少なくとも銅を含む配線の構造において、その結晶
粒径は銅配線の配線幅以上であることを特徴とする銅又
は銅合金の配線構造。 2、特許請求の範囲第1項において、銅配線の構造は、
2つの結晶が形成する結晶粒界は、銅配線の配線幅以上
かつ配線厚さ以上のものであることを特徴とする銅の配
線構造。 3、少なくとも銅を含む配線の形成方法において、銅又
は銅合金の結晶粒径を巨大化する工程と、該工程後パタ
ーニングする工程と、該工程後耐酸化性処理を施こし、
該工程後層間絶縁膜を形成する工程を有することを特徴
とする銅又は銅合金の配線方法。 4、特許請求の範囲第2項において、銅又は銅合金の結
晶粒径を巨大化する工程は、銅又は銅合金を被着後、ア
ニールするか、被着時に基板温度を高温にすることを特
徴とする銅又は銅合金の配線方法。 5、特許請求の範囲第3項において、アニール雰囲気は
銅又は銅合金を酸化させない不活性ガス、窒素又はそれ
らと水素を含んだ混合ガス、水素ガス又は真空中で行な
うことを特徴とする銅又は銅合金の配線方法。
[Scope of Claims] 1. A wiring structure of copper or copper alloy containing at least copper, characterized in that the crystal grain size is larger than the wiring width of the copper wiring. 2. In claim 1, the structure of the copper wiring is as follows:
A copper wiring structure characterized in that a crystal grain boundary formed by two crystals is larger than the wiring width and wiring thickness of the copper wiring. 3. A method for forming a wiring containing at least copper, including a step of enlarging the crystal grain size of copper or copper alloy, a patterning step after the step, and an oxidation-resistant treatment after the step,
A wiring method for copper or copper alloy, comprising a step of forming an interlayer insulating film after the step. 4. In claim 2, the step of enlarging the crystal grain size of the copper or copper alloy involves annealing after depositing the copper or copper alloy or raising the substrate temperature to a high temperature during deposition. Features copper or copper alloy wiring method. 5. In claim 3, the annealing atmosphere is an inert gas that does not oxidize the copper or copper alloy, nitrogen, a mixed gas containing these and hydrogen, hydrogen gas, or vacuum. Copper alloy wiring method.
JP30462289A 1989-11-27 1989-11-27 Wiring method of copper or copper alloy and structure thereof Pending JPH03166731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30462289A JPH03166731A (en) 1989-11-27 1989-11-27 Wiring method of copper or copper alloy and structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30462289A JPH03166731A (en) 1989-11-27 1989-11-27 Wiring method of copper or copper alloy and structure thereof

Publications (1)

Publication Number Publication Date
JPH03166731A true JPH03166731A (en) 1991-07-18

Family

ID=17935243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30462289A Pending JPH03166731A (en) 1989-11-27 1989-11-27 Wiring method of copper or copper alloy and structure thereof

Country Status (1)

Country Link
JP (1) JPH03166731A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670639B1 (en) 1999-06-22 2003-12-30 Nec Corporation Copper interconnection
JP2006028642A (en) * 2005-07-22 2006-02-02 Dowa Mining Co Ltd Internal wiring of semiconductor device
JP2006216986A (en) * 2006-04-24 2006-08-17 Dowa Mining Co Ltd Semiconductor element
WO2009063930A1 (en) * 2007-11-15 2009-05-22 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine
WO2010143355A1 (en) * 2009-06-12 2010-12-16 三菱マテリアル株式会社 Wiring layer structure and process for manufacture thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670639B1 (en) 1999-06-22 2003-12-30 Nec Corporation Copper interconnection
JP2006028642A (en) * 2005-07-22 2006-02-02 Dowa Mining Co Ltd Internal wiring of semiconductor device
JP2006216986A (en) * 2006-04-24 2006-08-17 Dowa Mining Co Ltd Semiconductor element
JP4555797B2 (en) * 2006-04-24 2010-10-06 Dowaホールディングス株式会社 Semiconductor element
WO2009063930A1 (en) * 2007-11-15 2009-05-22 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine
US8344604B2 (en) 2007-11-15 2013-01-01 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine
JP5200013B2 (en) * 2007-11-15 2013-05-15 日本特殊陶業株式会社 Spark plug for internal combustion engine
WO2010143355A1 (en) * 2009-06-12 2010-12-16 三菱マテリアル株式会社 Wiring layer structure and process for manufacture thereof
JP2010287791A (en) * 2009-06-12 2010-12-24 Mitsubishi Materials Corp Wiring layer structure and process for manufacture thereof
US8624397B2 (en) 2009-06-12 2014-01-07 Mitsubishi Materials Corporation Electrode layer structure for a thin-film transistor and process for manufacture thereof

Similar Documents

Publication Publication Date Title
JP3379070B2 (en) Method of forming oxidation passivation film having chromium oxide layer on surface
US5817424A (en) Method of forming passive oxide film based on chromium oxide, and stainless steel
JPH08176823A (en) Formation of thin film of high melting point metal
JPH04259242A (en) Manufacture of semiconductor device
JP3379071B2 (en) Method of forming oxide passivation film containing chromium oxide as main component and stainless steel
EP0329227A1 (en) Method of manufacturing a semiconductor device
JPH03166731A (en) Wiring method of copper or copper alloy and structure thereof
JP2874618B2 (en) Silicon semiconductor substrate and method of manufacturing the same
JP2584551B2 (en) Surface hardening method for titanium material
JPH09232264A (en) Method for manufacturing semiconductor device
JPH01234578A (en) Dry etching method for thin copper film
JPH06177117A (en) Sputter target and fabrication of semiconductor device employing it
JP3178947B2 (en) Thin film formation method
JPH04350937A (en) Treatment of copper wiring
JPS63153273A (en) Method for selective deposition of thin metallic film
JP2546242B2 (en) Aluminum alloy dry etching method
JPS61203652A (en) Manufacture of semiconductor device
JP2555754B2 (en) Thin film formation method
JP2946543B2 (en) Method for manufacturing semiconductor device
JPH08195360A (en) Manufacture of semiconductor device
KR100343452B1 (en) Manufacturing method for dielectric film in semiconductor device
JPH04350938A (en) Manufacture of semiconductor device
Williams et al. Low pressure chemical vapor deposition of tantalum silicide
JPH08191048A (en) Manufacture of semiconductor device
JPH0786285A (en) Wiring pattern and forming method for the same