JPH08191048A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH08191048A
JPH08191048A JP296095A JP296095A JPH08191048A JP H08191048 A JPH08191048 A JP H08191048A JP 296095 A JP296095 A JP 296095A JP 296095 A JP296095 A JP 296095A JP H08191048 A JPH08191048 A JP H08191048A
Authority
JP
Japan
Prior art keywords
film
sputtering
nitrogen
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP296095A
Other languages
Japanese (ja)
Inventor
Hidehiko Oshima
秀彦 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu VLSI Ltd
Fujitsu Ltd
Original Assignee
Fujitsu VLSI Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu VLSI Ltd, Fujitsu Ltd filed Critical Fujitsu VLSI Ltd
Priority to JP296095A priority Critical patent/JPH08191048A/en
Publication of JPH08191048A publication Critical patent/JPH08191048A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE: To form easily a TiN film having a purposed film quality. CONSTITUTION: In a method of manufacturing a semiconductor device, which comprises a step of sputtering Ti on a silicon substrate 1 by a sputtering method to form a Ti film 2 on the substrate 1 and a step of nitriding the film 2 by heat-treating the film 2 in a nitrogen atmosphere after the formation of the film 2 to form a TiN film 3 on the substrate 1, nitrogen in the range of a pressure of 1% or higher to 10% or lower to the total pressure of argon gas at the time of the sputtering of the Ti is added to the argon gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に係り、TiN膜の形成技術に適用することができ、特
に、目的の膜質を有するTiN膜を容易に形成すること
ができる半導体装置の製造方法に関する。近年、基板上
にTiN膜を形成する場合、TiN膜は、一般的にスパ
ッタ装置によりTiを窒素ガス雰囲気中で基板上にスパ
ッタする反応性スパッタリングにより形成されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, which can be applied to a technique for forming a TiN film, and in particular, a semiconductor device which can easily form a TiN film having a desired film quality. Manufacturing method. In recent years, when forming a TiN film on a substrate, the TiN film is generally formed by reactive sputtering in which Ti is sputtered on a substrate in a nitrogen gas atmosphere by a sputtering device.

【0002】しかしながら、この反応性スパッタリング
方法で形成されたTiN膜は、スパッタ装置(カソー
ド、チャンバー形状等)、電力、プロセスガス(圧力、
流量等)に大きく依存するため、仮に同じスパッタ装置
でスパッタを行っても異なる膜質のTiN膜が形成され
る場合がある。このため、TiN膜を同じスパッタ条件
で形成する時、所望の膜質を有するTiN膜を安定して
形成することが困難となっている。
However, a TiN film formed by this reactive sputtering method has a sputtering apparatus (cathode, chamber shape, etc.), power, process gas (pressure,
Since it largely depends on the flow rate), a TiN film having different film quality may be formed even if sputtering is performed by the same sputtering apparatus. Therefore, when the TiN film is formed under the same sputtering condition, it is difficult to stably form the TiN film having a desired film quality.

【0003】そこで、TiN膜を同じスパッタ条件で形
成する時、所望の膜質を有するTiN膜を安定して形成
することができる半導体装置の製造方法が要求されてい
る。
Therefore, there is a demand for a method of manufacturing a semiconductor device which can stably form a TiN film having a desired film quality when the TiN film is formed under the same sputtering conditions.

【0004】[0004]

【従来の技術】図8は従来の半導体装置の製造方法を示
す図である。従来では、図8(a)、(b)に示す如
く、まず、Si基板1001上にスパッタ等によりTi
膜1002を形成した後、図8(c)に示す如く、Ti
膜1002を形成したSi基板1001を窒素雰囲気で
アニールしてTi膜1002を表面より窒化することに
よってTiN膜1003を形成する。
2. Description of the Related Art FIG. 8 is a diagram showing a conventional method for manufacturing a semiconductor device. Conventionally, as shown in FIGS. 8A and 8B, first, Ti is sputtered on the Si substrate 1001.
After forming the film 1002, as shown in FIG.
The Si substrate 1001 on which the film 1002 is formed is annealed in a nitrogen atmosphere to nitride the Ti film 1002 from the surface to form a TiN film 1003.

【0005】また、この時、Ti膜1002下の下地基
板1001がSiで構成されているため、熱処理により
TiとSiが反応し、基板1001との界面にはTiS
2膜1004が形成される。このように、窒素雰囲気
でアニールしてTi膜1002を表面より窒化すること
によって形成されたTiN膜1003は、反応性スパッ
タによって形成されたTiN膜に比べて装置依存性等が
少なく、一定の膜質にすることができる。
At this time, since the underlying substrate 1001 under the Ti film 1002 is made of Si, heat treatment causes Ti and Si to react with each other, and TiS is formed at the interface with the substrate 1001.
The i 2 film 1004 is formed. In this way, the TiN film 1003 formed by nitriding the Ti film 1002 from the surface by annealing in a nitrogen atmosphere has less device dependency and the like and has a constant film quality as compared with the TiN film formed by reactive sputtering. Can be

【0006】[0006]

【発明が解決しようとする課題】上記したように、図8
に示す従来の半導体装置の製造方法では、Ti膜100
2を形成したSi基板1001を窒素雰囲気でアニール
してTi膜1002を表面より窒化することによってT
iN膜1003を形成しているため、反応性スパッタに
よって形成されたTiN膜に比べて装置依存性等が少な
く、一定の膜質で形成することができるという利点を有
している。
As described above, FIG.
In the conventional method of manufacturing a semiconductor device shown in FIG.
2 is formed by annealing the Si substrate 1001 in a nitrogen atmosphere to nitride the Ti film 1002 from the surface.
Since the iN film 1003 is formed, it has an advantage that it is less dependent on the device than the TiN film formed by reactive sputtering and can be formed with a constant film quality.

【0007】しかしながら、この従来の半導体装置の製
造方法では、Ti膜1002をスパッタ等により形成し
た後、一旦大気暴露を行うと、Ti膜1002表面が酸
化してTi膜1002表面にTiO2 等の酸化膜が生じ
てしまう。このため、Ti膜1002表面に酸化膜が生
じた状態で窒素雰囲気でアニールを行ってもTi膜10
02表面に生じた酸化膜によりTi膜1002の窒化が
抑制されてTiN膜1003を厚く形成し難いという問
題があった。
However, in this conventional method of manufacturing a semiconductor device, after the Ti film 1002 is formed by sputtering or the like, once exposed to the atmosphere, the surface of the Ti film 1002 is oxidized and the surface of the Ti film 1002 is covered with TiO 2 or the like. An oxide film is generated. Therefore, even if annealing is performed in a nitrogen atmosphere with an oxide film formed on the surface of the Ti film 1002, the Ti film 10
02 There is a problem that the nitriding of the Ti film 1002 is suppressed by the oxide film formed on the surface and it is difficult to form the TiN film 1003 thick.

【0008】また、Ti膜1002下の下地基板100
1がSiで構成されているため、Ti膜1002の窒化
と比べて下地Si基板1001との反応速度が速く、T
iN膜1003を厚く形成し難いという問題があった。
上記問題を解決する方法としては、Ti中に少量の窒素
を添加することにより下地Si基板との反応及び表面の
酸化等を抑制することにより、TiN膜を厚く形成する
方法が検討されているが、その具体的窒素添加量により
形成されるTiN膜の膜質までは言及しておらず、実用
化はされていない。
Further, the underlying substrate 100 under the Ti film 1002
Since 1 is composed of Si, the reaction rate with the underlying Si substrate 1001 is faster than the nitriding of the Ti film 1002, and T
There is a problem that it is difficult to form the iN film 1003 thick.
As a method of solving the above problem, a method of forming a thick TiN film by adding a small amount of nitrogen to Ti to suppress the reaction with the underlying Si substrate and the oxidation of the surface has been studied. However, the quality of the TiN film formed by the specific amount of nitrogen added is not mentioned and it has not been put into practical use.

【0009】そこで、本発明は、目的の膜質を有するT
iN膜を容易に形成することができる半導体装置の製造
方法を提供することを目的としている。
Therefore, according to the present invention, the T having the desired film quality is obtained.
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can easily form an iN film.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は、
スパッタ法によりシリコン基板上にTiをスパッタして
Ti膜を形成した後、該Ti膜を窒素雰囲気で熱処理を
行うことにより該Ti膜を窒化して該シリコン基板上に
TiN膜を形成する半導体装置の製造方法において、T
iスパッタ時のアルゴンガス中に全圧に対して1%以上
10%以下の範囲の窒素を添加することを特徴とするも
のである。
According to the first aspect of the present invention,
A semiconductor device in which a Ti film is formed by sputtering Ti on a silicon substrate by a sputtering method, and then the Ti film is heat-treated in a nitrogen atmosphere to nitride the Ti film to form a TiN film on the silicon substrate. In the manufacturing method of
It is characterized by adding nitrogen in the range of 1% to 10% with respect to the total pressure in the argon gas at the time of i-sputtering.

【0011】請求項2記載の発明は、スパッタ法により
シリコン基板上にTiをスパッタしてTi膜を形成した
後、該Ti膜を窒素雰囲気で熱処理を行うことにより該
Ti膜を窒化して該シリコン基板上にTiN膜を形成す
る半導体装置の製造方法において、Tiスパッタ時アル
ゴンガス中に全圧に対して1%以上3%以下の範囲の窒
素を添加することを特徴とするものである。
According to a second aspect of the present invention, Ti is sputtered on a silicon substrate to form a Ti film by a sputtering method, and then the Ti film is heat treated in a nitrogen atmosphere to nitride the Ti film. In a method of manufacturing a semiconductor device in which a TiN film is formed on a silicon substrate, nitrogen is added to the argon gas during Ti sputtering in a range of 1% to 3% with respect to the total pressure.

【0012】請求項3記載の発明は、スパッタ法により
シリコン基板上にTiをスパッタしてTi膜を形成した
後、該Ti膜を窒素雰囲気で熱処理を行うことにより該
Ti膜を窒化して該シリコン基板上にTiN膜を形成す
る半導体装置の製造方法において、Tiスパッタ時アル
ゴンガス中に全圧に対して5%以上10%以下の範囲の
窒素を添加することを特徴とするものである。
In a third aspect of the present invention, Ti is sputtered on a silicon substrate by a sputtering method to form a Ti film, and the Ti film is heat treated in a nitrogen atmosphere to nitride the Ti film. In a method of manufacturing a semiconductor device in which a TiN film is formed on a silicon substrate, nitrogen is added to the argon gas during Ti sputtering in a range of 5% to 10% with respect to the total pressure.

【0013】請求項4記載の発明は、上記請求項1,
2,3いずれかに記載の発明において、前記熱処理を、
先に650℃以下で行った後、800℃以上で行うこと
を特徴とするものである。請求項5記載の発明は、上記
請求項1,2,3,4いずれかに記載の発明において、
前記Tiスパッタ後一度も大気暴露することなく前記熱
処理を行うことを特徴とするものである。
The invention according to claim 4 is the above-mentioned claim 1,
In the invention described in any of 2 and 3, the heat treatment,
It is characterized in that it is first performed at 650 ° C. or lower and then at 800 ° C. or higher. The invention according to claim 5 is the same as the invention according to any one of claims 1, 2, 3 and 4,
After the Ti sputtering, the heat treatment is performed without being exposed to the atmosphere even once.

【0014】[0014]

【作用】図1〜図3には、各種イオン注入を行ったSi
基板上にスパッタ時のアルゴンガス中に各窒素量を添加
した膜厚80nmのTi膜を形成し、大気暴露すること
なくハロゲンランプアニール装置にて窒素雰囲気で先ず
650℃、1分の熱処理を行った後、連続して800
℃、30秒の熱処理を行い、形成された膜のシート抵抗
測定及びX線回折測定の結果を示す。また、図4〜図6
には、同様にTi膜を形成した後、基板を一旦大気放置
し、その後、同条件で熱処理を行った場合の膜のシート
抵抗測定及びX線回折測定の結果を示す。
1 to 3 show various types of ion-implanted Si.
A Ti film with a thickness of 80 nm is formed by adding each amount of nitrogen to argon gas at the time of sputtering on the substrate, and first heat treatment is performed at 650 ° C. for 1 minute in a nitrogen atmosphere in a halogen lamp annealing device without exposure to the air. And then 800
The results of sheet resistance measurement and X-ray diffraction measurement of the formed film after heat treatment at 30 ° C. for 30 seconds are shown. Moreover, FIGS.
Similarly, the results of sheet resistance measurement and X-ray diffraction measurement of the film when a Ti film is similarly formed, the substrate is temporarily left in the atmosphere and then heat-treated under the same conditions are shown.

【0015】図1に示すシート抵抗測定結果より、窒素
の添加量を10%よりも大きくしたTi膜を窒素雰囲気
で熱処理を行うと、TiN膜のシート抵抗値が極端に大
きくなって実用上好ましくない。また、窒素を添加しな
いTi膜を窒素雰囲気で熱処理を行うと、TiN膜のシ
ート抵抗値を小さくすることができるが、図2,3に示
すX線回折測定結果より窒素を添加しないTi膜を窒素
雰囲気で熱処理を行った場合、X線回折測定を行うと、
TiNのピーク値が低く、TiSi2 のピーク値が高い
ことにより、TiSi2 膜が厚く、TiN膜は薄く形成
されていることが判る。
From the sheet resistance measurement results shown in FIG. 1, when the Ti film having a nitrogen addition amount larger than 10% is heat-treated in a nitrogen atmosphere, the sheet resistance value of the TiN film becomes extremely large, which is preferable for practical use. Absent. Further, when the Ti film without nitrogen added is heat-treated in a nitrogen atmosphere, the sheet resistance value of the TiN film can be reduced, but the Ti film without added nitrogen can be obtained from the X-ray diffraction measurement results shown in FIGS. When X-ray diffraction measurement is performed when heat treatment is performed in a nitrogen atmosphere,
Peak value of TiN is low, by the peak value of the TiSi 2 is high, TiSi 2 film is thick, TiN film is seen that it is formed thin.

【0016】逆に、窒素の添加量を10%よりも大きく
すると、TiSi2 膜のピークはなくなっているが、T
iN膜のピークも段々小さくなり、TiN膜のシート抵
抗も急増することから、正常なTiN膜が形成されてい
ないことが判る。これから、シート抵抗を十分小さくし
て、膜厚を十分厚くしてTiN膜を形成することを考慮
すると、Ti膜スパッタ時に添加する窒素の量は、1%
以上10%以下の範囲にしなければならない。
On the contrary, when the amount of nitrogen added exceeds 10%, the peak of the TiSi 2 film disappears, but T
Since the peak of the iN film is gradually reduced and the sheet resistance of the TiN film is also rapidly increased, it can be seen that the normal TiN film is not formed. From this, considering that the TiN film is formed with a sufficiently small sheet resistance and a sufficiently large film thickness, the amount of nitrogen added during sputtering of the Ti film is 1%.
The range must be 10% or less.

【0017】また、図2,3に示すX線回折測定結果よ
り、窒素添加量1%以上3%以下の範囲の時のTiN膜
は、(111)配向が強く、5%以上10%以下の範囲
では、(200)配向が強くなっていることが判る。こ
れから、窒素添加量を1%以上3%以下の範囲にするこ
とにより、(111)配向が強いTiN膜を形成するこ
とができ、また、窒素添加量を5%以上10%以下の範
囲にすることにより、(200)配向が強いTiN膜を
形成することができる。従って、窒素添加量により異な
る配向性のTiN膜を形成することができる。
From the X-ray diffraction measurement results shown in FIGS. 2 and 3, the TiN film with a nitrogen addition amount in the range of 1% or more and 3% or less has a strong (111) orientation and is 5% or more and 10% or less. It can be seen that the (200) orientation is stronger in the range. From this, it is possible to form a TiN film having a strong (111) orientation by setting the nitrogen addition amount within the range of 1% to 3%, and the nitrogen addition amount within the range of 5% to 10%. As a result, a TiN film having a strong (200) orientation can be formed. Therefore, it is possible to form a TiN film having different orientation depending on the amount of nitrogen added.

【0018】一方、図4〜図6より、Ti膜を形成した
後、一旦大気暴露した場合、Ti膜の表面が酸化される
ため、図1〜図3の大気暴露しなかった場合に比べて、
例えば窒素添加量5%ではTiN膜は薄くなり、TiS
2 膜は厚くなり、シート抵抗は低くなっている。ま
た、窒素添加量10%では、TiN膜もTiSi2 膜も
ほとんど形成されなくなり、シート抵抗も高くなってい
る。
On the other hand, as shown in FIGS. 4 to 6, when the Ti film is formed and then exposed to the air, the surface of the Ti film is oxidized, so that the Ti film is not exposed to the air as shown in FIGS. ,
For example, when the amount of nitrogen added is 5%, the TiN film becomes thin and
The i 2 film is thick and the sheet resistance is low. Further, when the amount of nitrogen added is 10%, almost no TiN film or TiSi 2 film is formed, and the sheet resistance is high.

【0019】これから、Ti膜を形成した後、大気暴露
することなく窒素雰囲気で熱処理を行うことにより、大
気暴露する場合よりも、Ti膜表面への酸化を抑えるこ
とができるため、膜厚が厚く、かつシート抵抗の小さい
安定したTiN膜を容易に形成することができる。
After the Ti film is formed, by performing heat treatment in a nitrogen atmosphere without exposing it to the air, oxidation on the surface of the Ti film can be suppressed more than in the case of exposing it to the air. In addition, a stable TiN film having a small sheet resistance can be easily formed.

【0020】[0020]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図7は本発明に係る一実施例の半導体装置の製造
方法を示す図である。本実施例では、まず、図7
(a)、(b)に示すように、As+ をイオン注入した
Si基板1をHF溶液により表面に生じた自然酸化膜を
除去した後、マグネトロンスパッタ装置にてSi基板1
上に膜厚80nmのTi膜2を形成する。この時、スパ
ッタ時のアルゴンガス中に5%の窒素の添加を行う。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 7 is a diagram showing a method of manufacturing a semiconductor device according to an embodiment of the present invention. In this embodiment, first, referring to FIG.
As shown in (a) and (b), after removing the natural oxide film formed on the surface of the Si substrate 1 into which As + ions have been implanted with an HF solution, the Si substrate 1 is magnetized by a magnetron sputtering device.
A Ti film 2 having a film thickness of 80 nm is formed thereon. At this time, 5% of nitrogen is added to the argon gas at the time of sputtering.

【0021】次に、このように窒素が添加されたTi膜
2を形成した後、大気暴露することなくハロゲンランプ
アニール装置にて窒素含有Ti膜2を窒素雰囲気で熱処
理を行って膜厚100nm程度のTiN膜3を形成す
る。この時、TiN膜3とSi基板1の界面には、Ti
膜2のTiがSi基板1のSiと反応しシリサイド化さ
れてTiSi2 膜4が形成される(図7(c))。ここ
での熱処理は、先に650℃、1分の熱処理で窒素含有
Ti膜2表面の窒化を行った後、800℃、30秒の熱
処理でSi基板1と窒素含有Ti膜2との界面に形成さ
れるTiSi2 膜4の安定化を行う。
Next, after forming the Ti film 2 to which nitrogen is added in this way, the nitrogen-containing Ti film 2 is heat-treated in a nitrogen atmosphere by a halogen lamp annealing apparatus without being exposed to the air, and the film thickness is about 100 nm. Then, the TiN film 3 is formed. At this time, at the interface between the TiN film 3 and the Si substrate 1, Ti
Ti of the film 2 reacts with Si of the Si substrate 1 to be silicidized to form a TiSi 2 film 4 (FIG. 7C). In this heat treatment, the surface of the nitrogen-containing Ti film 2 is first nitrided by heat treatment at 650 ° C. for 1 minute, and then the interface between the Si substrate 1 and the nitrogen-containing Ti film 2 is heated at 800 ° C. for 30 seconds. The formed TiSi 2 film 4 is stabilized.

【0022】このように形成されたTiN膜3は、(2
00)に配向しており、基板1との界面には、TiSi
2 膜4はほとんど形成されない。このため、膜厚の厚い
安定したTiN膜3を容易に形成することができる。な
お、(111)配向のTiN膜3が必要な場合やSi基
板1との界面に比較的厚いTiSi2 膜4が必要な場合
は、Tiスパッタ時の窒素添加量を前述の如く、1%以
上3%以下の範囲にする。
The TiN film 3 formed in this way has (2
00), and TiSi is formed at the interface with the substrate 1.
2 The film 4 is hardly formed. Therefore, the stable TiN film 3 having a large film thickness can be easily formed. When the TiN film 3 having the (111) orientation is required or when the relatively thick TiSi 2 film 4 is required at the interface with the Si substrate 1, the nitrogen addition amount during Ti sputtering is 1% or more as described above. The range is 3% or less.

【0023】一般的に配線の下敷きとしてTiN膜3を
使用する場合は、(111)の配向性が強いTiN膜3
はバリア性が良く、逆に本実施例の如く、(200)の
配向性が強いTiN膜3は、配線がAl合金等の場合、
エレクトロマイグレーション等の信頼性が良いと言われ
ている。そこで、配線Al合金の下敷きとして窒素添加
Ti膜2により形成されるTiN膜3を用いる場合、窒
素添加量をスパッタ初期は、1%以上3%以下の範囲で
行うことにより、下地基板1とのバリア性を向上させる
ことができる。また、スパッタ後期には、窒素添加量を
5%以上10%以下の範囲で行うことにより、配線の信
頼性を向上させることができる。
Generally, when the TiN film 3 is used as an underlay of the wiring, the TiN film 3 having a strong (111) orientation is used.
Has a good barrier property, and conversely, the TiN film 3 having a strong (200) orientation as in this embodiment, when the wiring is an Al alloy or the like,
It is said that reliability such as electromigration is good. Therefore, when the TiN film 3 formed of the nitrogen-added Ti film 2 is used as the underlay of the wiring Al alloy, the amount of nitrogen added is set to be in the range of 1% or more and 3% or less at the initial stage of sputtering, so that The barrier property can be improved. Further, in the latter stage of sputtering, the reliability of the wiring can be improved by adding nitrogen in the range of 5% or more and 10% or less.

【0024】また、本実施例では、下地がSi基板1と
コンタクトをとっている場合、界面にTiSi2 膜4を
適宜形成することができるため、コンタクト抵抗を低減
することができる。また、TiN膜3をバリアメタルと
して用いる場合、一般的には、TiN膜3をスパッタし
た後にバリアアニール等を行い、若干酸化させることに
よりバリア性を向上させているが、この窒素添加Ti膜
2によりTiN膜3を形成する場合、Tiスパッタの中
に任意の酸素添加を行うことで同様の効果を得ることが
できる。
Further, in this embodiment, when the underlying layer is in contact with the Si substrate 1, the TiSi 2 film 4 can be appropriately formed at the interface, so that the contact resistance can be reduced. When the TiN film 3 is used as a barrier metal, generally, the TiN film 3 is sputtered and then subjected to barrier annealing or the like to slightly oxidize the TiN film 3 to improve the barrier property. When the TiN film 3 is formed by the above, the same effect can be obtained by adding arbitrary oxygen during Ti sputtering.

【0025】[0025]

【発明の効果】本発明によれば、目的の膜質を有するT
iN膜を容易に形成することができ、プロセスの安定化
とコストの低減化を実現することができるという効果が
ある。
According to the present invention, T having the desired film quality is obtained.
The iN film can be easily formed, and the process can be stabilized and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】Asイオン、BF2 イオンの各イオン注入を行
ったSi基板上にスパッタ時のアルゴンガス中に各窒素
量を添加したTi膜を形成した後、大気暴露することな
く窒素雰囲気で熱処理して形成したTiN膜のシート抵
抗の測定結果を示す図である。
FIG. 1 shows a Ti film in which each amount of nitrogen is added to argon gas at the time of sputtering is formed on a Si substrate into which As ions and BF 2 ions are implanted, and then heat treatment is performed in a nitrogen atmosphere without exposure to the air. It is a figure which shows the measurement result of the sheet resistance of the TiN film formed in this way.

【図2】Asイオンをイオン注入したSi基板上にスパ
ッタ時のアルゴンガス中に各窒素量を添加したTi膜を
形成した後、大気暴露することなく窒素雰囲気で熱処理
して形成したTiN膜、TiSi2 膜のX線回折の測定
結果を示す図である。
FIG. 2 is a TiN film formed by forming a Ti film in which each amount of nitrogen is added to argon gas at the time of sputtering on a Si substrate into which As ions have been ion-implanted, and then performing a heat treatment in a nitrogen atmosphere without exposing to the atmosphere; is a graph showing measurement results of X-ray diffraction of the TiSi 2 film.

【図3】BF2 イオンをイオン注入したSi基板上にス
パッタ時のアルゴンガス中に各窒素量を添加したTi膜
を形成した後、大気暴露することなく窒素雰囲気で熱処
理して形成したTiN膜、TiSi2 膜のX線回折の測
定結果を示す図である。
FIG. 3 is a TiN film formed by forming a Ti film in which each amount of nitrogen is added to argon gas at the time of sputtering on a Si substrate into which BF 2 ions have been ion-implanted, and then performing heat treatment in a nitrogen atmosphere without exposing to the air. FIG. 5 is a diagram showing the measurement results of X-ray diffraction of a TiSi 2 film.

【図4】Asイオン、BF2 イオンの各イオン注入を行
ったSi基板上にスパッタ時のアルゴンガス中に各窒素
量を添加したTi膜を形成した後、大気暴露し、その後
窒素雰囲気で熱処理して形成したTiN膜のシート抵抗
の測定結果を示す図である。
FIG. 4 shows a Ti film in which each amount of nitrogen is added to argon gas at the time of sputtering is formed on a Si substrate into which As ions and BF 2 ions have been implanted, and then exposed to the atmosphere, and then heat-treated in a nitrogen atmosphere. It is a figure which shows the measurement result of the sheet resistance of the TiN film formed in this way.

【図5】Asイオンをイオン注入したSi基板上にスパ
ッタ時のアルゴンガス中に各窒素量を添加したTi膜を
形成した後、大気暴露し、その後窒素雰囲気で熱処理し
て形成したTiN膜、TiSi2 膜のX線回折の測定結
果を示す図である。
FIG. 5 is a TiN film formed by forming a Ti film in which each amount of nitrogen has been added to argon gas at the time of sputtering on a Si substrate into which As ions have been ion-implanted, and then exposing to the atmosphere, and then performing heat treatment in a nitrogen atmosphere. is a graph showing measurement results of X-ray diffraction of the TiSi 2 film.

【図6】BF2 イオンをイオン注入したSi基板上にス
パッタ時のアルゴンガス中に各窒素量を添加したTi膜
を形成した後、大気暴露し、その後窒素雰囲気で熱処理
して形成したTiN膜、TiSi2 膜のX線回折の測定
結果を示す図である。
FIG. 6 is a TiN film formed by forming a Ti film in which each amount of nitrogen is added in argon gas at the time of sputtering on a Si substrate into which BF 2 ions are ion-implanted, exposing it to the air, and then performing a heat treatment in a nitrogen atmosphere. FIG. 5 is a diagram showing the measurement results of X-ray diffraction of a TiSi 2 film.

【図7】本発明に係る一実施例の半導体装置の製造方法
を示す図である。
FIG. 7 is a diagram showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.

【図8】従来の半導体装置の製造方法を示す図である。FIG. 8 is a diagram showing a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 Si基板 2 Ti膜 3 TiN膜 4 TiSi2 1 Si substrate 2 Ti film 3 TiN film 4 TiSi 2 film

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/324 Z Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/324 Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】スパッタ法によりシリコン基板(1)上に
TiをスパッタしてTi膜(2)を形成した後、該Ti
膜(2)を窒素雰囲気で熱処理を行うことにより該Ti
膜(2)を窒化して該シリコン基板(1)上にTiN膜
(3)を形成する半導体装置の製造方法において、Ti
スパッタ時のアルゴンガス中に全圧に対して1%以上1
0%以下の範囲の窒素を添加することを特徴とする半導
体装置の製造方法。
1. A Ti film (2) is formed by sputtering Ti on a silicon substrate (1) by a sputtering method.
When the film (2) is heat-treated in a nitrogen atmosphere, the Ti
In a method of manufacturing a semiconductor device, which comprises nitriding a film (2) to form a TiN film (3) on the silicon substrate (1),
1% or more of the total pressure in argon gas during sputtering 1
A method of manufacturing a semiconductor device, comprising adding nitrogen in an amount of 0% or less.
【請求項2】スパッタ法によりシリコン基板(1)上に
TiをスパッタしてTi膜(2)を形成した後、該Ti
膜(2)を窒素雰囲気で熱処理を行うことにより該Ti
膜(2)を窒化して該シリコン基板(1)上にTiN膜
(3)を形成する半導体装置の製造方法において、Ti
スパッタ時アルゴンガス中に全圧に対して1%以上3%
以下の範囲の窒素を添加することを特徴とする半導体装
置の製造方法。
2. A Ti film (2) is formed by sputtering Ti on a silicon substrate (1) by a sputtering method.
When the film (2) is heat-treated in a nitrogen atmosphere, the Ti
In a method of manufacturing a semiconductor device, which comprises nitriding a film (2) to form a TiN film (3) on the silicon substrate (1),
1% to 3% of the total pressure in argon gas during sputtering
A method of manufacturing a semiconductor device, comprising adding nitrogen in the following range.
【請求項3】スパッタ法によりシリコン基板(1)上に
TiをスパッタしてTi膜(2)を形成した後、該Ti
膜(2)を窒素雰囲気で熱処理を行うことにより該Ti
膜(2)を窒化して該シリコン基板(1)上にTiN膜
(3)を形成する半導体装置の製造方法において、Ti
スパッタ時アルゴンガス中に全圧に対して5%以上10
%以下の範囲の窒素を添加することを特徴とする半導体
装置の製造方法。
3. A Ti film (2) is formed by sputtering Ti on a silicon substrate (1) by a sputtering method.
When the film (2) is heat-treated in a nitrogen atmosphere, the Ti
In a method of manufacturing a semiconductor device, which comprises nitriding a film (2) to form a TiN film (3) on the silicon substrate (1),
5% or more of total pressure in argon gas during sputtering 10
% Of nitrogen or less is added, The manufacturing method of the semiconductor device characterized by the above-mentioned.
【請求項4】前記熱処理を、先に650℃以下で行った
後、800℃以上で行うことを特徴とする請求項1,
2,3いずれかに記載の半導体装置の製造方法。
4. The heat treatment is performed at 650 ° C. or lower and then at 800 ° C. or higher.
2. A method of manufacturing a semiconductor device according to any one of 2 and 3.
【請求項5】前記Tiスパッタ後一度も大気暴露するこ
となく前記熱処理を行うことを特徴とする請求項1,
2,3,4いずれかに記載の半導体装置の製造方法。
5. The heat treatment is performed without exposing to the atmosphere even once after the Ti sputtering.
2. The method for manufacturing a semiconductor device according to 2, 3, or 4.
JP296095A 1995-01-12 1995-01-12 Manufacture of semiconductor device Withdrawn JPH08191048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP296095A JPH08191048A (en) 1995-01-12 1995-01-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP296095A JPH08191048A (en) 1995-01-12 1995-01-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH08191048A true JPH08191048A (en) 1996-07-23

Family

ID=11543943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP296095A Withdrawn JPH08191048A (en) 1995-01-12 1995-01-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH08191048A (en)

Similar Documents

Publication Publication Date Title
JPH0581664B2 (en)
US6100188A (en) Stable and low resistance metal/barrier/silicon stack structure and related process for manufacturing
JP2002124487A (en) Method of forming silicide
JPH08264448A (en) Preparation of formation of titanium silicide of minute titanium nitridation film and minute titanium nitridation film thin film and semiconductor element using it
US6121139A (en) Ti-rich TiN insertion layer for suppression of bridging during a salicide procedure
JP2004140315A (en) Manufacturing method for semiconductor device using salicide process
JP3432359B2 (en) Semiconductor device and manufacturing method thereof
US7781337B2 (en) Forming method of silicide film
JP3421483B2 (en) Method for manufacturing semiconductor device
JPH08191048A (en) Manufacture of semiconductor device
US6579614B2 (en) Structure having refractory metal film on a substrate
JPH0774129A (en) Semiconductor device and its manufacture
US6207562B1 (en) Method of forming titanium silicide
JPH04350937A (en) Treatment of copper wiring
JPH03166731A (en) Wiring method of copper or copper alloy and structure thereof
JPH0294476A (en) Manufacture of gate electrode of semiconductor device
JPH06177117A (en) Sputter target and fabrication of semiconductor device employing it
JP2865071B2 (en) Manufacturing method of antireflection film
JPS58132951A (en) Method of forming titanium disilicide
JPS59168643A (en) Compacting treatment method of oxide film
JP3403210B2 (en) Method for manufacturing semiconductor device
JPH07263447A (en) Semiconductor device and its manufacture
JPH053172A (en) Semiconductor device and manufacture thereof
JP2946543B2 (en) Method for manufacturing semiconductor device
JP2857170B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402