JPH03165253A - Oxygen sensor - Google Patents
Oxygen sensorInfo
- Publication number
- JPH03165253A JPH03165253A JP1305453A JP30545389A JPH03165253A JP H03165253 A JPH03165253 A JP H03165253A JP 1305453 A JP1305453 A JP 1305453A JP 30545389 A JP30545389 A JP 30545389A JP H03165253 A JPH03165253 A JP H03165253A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- sensor
- oxygen
- oxygen sensor
- yttria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001301 oxygen Substances 0.000 title claims abstract description 24
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims abstract description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 15
- 230000035939 shock Effects 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 239000007772 electrode material Substances 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 239000010409 thin film Substances 0.000 abstract description 5
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 abstract description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract 1
- 239000007787 solid Substances 0.000 abstract 1
- 229910052726 zirconium Inorganic materials 0.000 abstract 1
- 229910052697 platinum Inorganic materials 0.000 description 7
- 230000007423 decrease Effects 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000003411 electrode reaction Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明41 各種燃焼機器 ボイラー、自動車等に用
((燃焼排ガスなどの被測定ガス中にて燃焼の当量点を
検出し 適正な燃焼状態を維持するために用いる酸素セ
ンサに関するものであム従来の技術
従来 この種のセンサとして(上 酸素イオン導電性固
体電解質であるイツトリア安定化ジルコニアの焼結体に
一対の白金電極を設けた構造のものかあも 該センサは
酸素濃淡電池方式をとり、燃焼の当量点(理論空燃比)
を境に生じる酸素分圧の急変にともなって大きな起電力
変化が得られるものとなっていも
発明が解決しようとする課題
イツトリア安定化ジルコニアは導電性がよく、しかも還
元雰囲気でも安定であるたべ 酸素センサ用固体電解質
として最も一般的に用いられていも しかし イツトリ
ア安定化ジルコニアの焼結体は一般に耐熱衝撃特性が悪
く、急激な温度変化に曝されると焼結体が破壊されるこ
とがあム 従って、このような環境条件ををともなう用
途にこの種のセンサを使用するのは適していな(−本発
明はこの課題に鑑みてなされたものであって、熱衝撃に
強く、長期間にわたって安定した特性を発揮する酸素セ
ンサを提供することを目的とすム
課題を解決するための手段
本発明の酸素センサにおいてはイツトリア安定化ジルコ
ニア等の酸素イオン導電性固体電解質を薄膜化し 熱衝
撃に強い多孔質の基体上に電極と共に積層した感ガス部
を形成するものであ4作用
本発明になる酸素センサにおいて(よ 熱衝撃に強い多
孔質の基体上に薄膜からなる感ガス部を形成しているた
八 熱衡撃特性が向上し長期にわたり安定した特性を示
す。[Detailed description of the invention] Industrial application field Invention 41 Various combustion equipment Used for boilers, automobiles, etc. This relates to an oxygen sensor used for conventional technology.This type of sensor (1) has a structure in which a pair of platinum electrodes is provided on a sintered body of yttria-stabilized zirconia, which is an oxygen ion conductive solid electrolyte. The sensor uses an oxygen concentration cell type, and the combustion equivalence point (stoichiometric air-fuel ratio)
Problems to be solved by the invention Although a large change in electromotive force is obtained due to a sudden change in the oxygen partial pressure that occurs at the boundary, itria-stabilized zirconia has good conductivity and is stable even in a reducing atmosphere. Although it is most commonly used as a solid electrolyte for sensors, sintered bodies of yttria-stabilized zirconia generally have poor thermal shock resistance, and are likely to be destroyed if exposed to sudden temperature changes. Therefore, it is not suitable to use this type of sensor in applications involving such environmental conditions. In the oxygen sensor of the present invention, an oxygen ion conductive solid electrolyte such as yttria-stabilized zirconia is made into a thin film with a porous structure that is resistant to thermal shock. In the oxygen sensor of the present invention, a gas-sensitive part is formed by laminating a thin film on a porous base that is resistant to thermal shock. 8. Improved thermal shock characteristics and exhibits stable characteristics over a long period of time.
実施例
第1図は本発明になるセンサの一実施例を示す模式的断
面図であも 1は多孔質のムライト質基板(7mmφ×
0、5mmt、 平均気孔径0. 1μm)、 2は
化学式L as、*ss r @、esc o *、t
F es 、 s Os−δで表わされるペロブスカイ
ト型複合酸化物をスパッタ蒸着によって付着させて形成
した電極(約1. 5μmt)、 3はスパッタ蒸着に
よって付着させた8mo 1%Y2O3−92m o
1%Zrapからなる酸素イオン導電性固体電解質M(
約5μmt)、 4は予め形成したリード取り出し用白
金電搬 5は耐熱性を有する緻密なチューブ状のセンサ
支持4*、6は電極リード線 7は雰囲気B用の連通孔
であ4 センサ素子は支持体の先端に耐熱シール剤で固
定してあム センサ素子の一対の電極2のう板 第1電
極は多孔質基板1および連通孔7を通して雰囲気Bに接
しており、第2電極は雰囲気Aに接していも なお雰囲
気AとBは図示していない隔壁により相互に分離されて
いも −人 比較のた敢 8mol%Y20暑−92m
ol%Zr0aからなる酸素イオン導電性固体電解質の
ディスク状の緻密な焼結体(7mmφ、0゜5mmt)
に 一対の白金電極ををスパッタ蒸着によって付着形成
したセンサ素子を前記実施例同様に支持体に固定したセ
ンサを作製し 従来例として用い九
以上のようにして作製したセンサを用いてセンサの初期
特性及び耐熱衝撃特性を評価し丸 まず、実施例および
従来例のセンサの初期の出力特性を測定し九 センサを
電気炉中に設置し温度制御を行なっ島 センサ素子温度
は400〜800℃の範囲で所定の温度に設定した そ
して雰囲気Bを基準ガス雰囲気とL 空気を所定の流量
で送給し一方の雰囲気Aを被検ガス雰囲気として、各種
酸素分圧に調整したガスを送給した そして、電極間に
生ずる起電力を測定L−第2図(a)、(b)のグラフ
に示したような結果を得九 この結果Las、*6s
rs、aac os、tF es、aOトδは電極とし
て正常に機能L 本発明になるセンサは優れた出力特性
を示すことが明らかになった 特に Las、*sS
ri、ssc os、vF es、5os−δ電極を有
するセンサは400℃の低温でもほぼ理論値に近い起電
力を示し九 L as、3sSrs、5sco*、yF
es、sOw−δは優れた導電性を有し しかも高い酸
化還元触媒活性を有しているた残 低温においても電極
反応速度が大きく、電極反応がスムースに進むためと考
えられも
な耘 はぼ理論値に近い起電力が得られたことか収 多
孔質基板を用いてもガスの透過はほとんど無視できるこ
とも明らかとなっ九 一方、従来型のセンサの場合には
500℃以下で起電力が小さくなる傾向がみられ九 白
金の場合、ペロブスカイト型酸化物に比べて低温での電
極反応速度が小さくなるた敢 理論起電力が得られなく
なると考えられも
次番ミ 本センサの熱的安定性を確認するためく熱衡
撃試験を行なっ九 実施例及び従来例のセンサを電気炉
中で900℃15m1n保持した黴ただちに取り出し
約10℃の空気を吹き付けて強制的に冷却した 20個
ずつのセンサについて計10回くり返し試験を行なった
結果 従来型のセンサでl(t、、 約半数の11個
において固体電解質基板に亀裂が生じ九 これに対して
実施例のセンサは20個とも異常が認められなかった
外観上異常が認められなかったセンサについて、前記同
様の方法で800℃における出力特性を測定した測定結
果を初期の出力特性と共に第3図(a)、(b)に示し
九 実施例のセンサの起電力はほぼ理論値に近い値を示
し 熱衝撃試験によるセンサ素子の劣化がほとんどない
ことが明らかになっ九 しかし 従来型のセンサの出力
特性において1上 起電力の低下が認められ九 この理
由4表 白金の焼結が進んだために触媒活性が低下し
その結果電極機能が低下したことによると考えられも一
般(ζ 激しい温度変化をともなう燃焼機器において1
よ センサは熱的にも機械的にも安定した特性を要求さ
れる力丈 本発明になるセンサ1友 この要求を満足す
る優れた特性を有することが明らかになりへ
以上の実施例では電極材料としてペロブスカイト型酸化
物を用いた場合について述べf−o LnとしてLa
を、AとしてSrを、MeとしてFeを用賎 かッx=
0. 65、y=0.3とした場合について示した!>
<、LnがCe、 Pr、 Ndの場合、もしくは
La、Ce、 Pr、Ndの内二種以上の元素になる
場合、AがCa、Baの場合、もしくはSr、Ca、
Baの内二種以上の元素になる場合、MeがNi、M
n、Cr、Vの場合、もしくはN 11 F e、
M n、 Cr、 Vの内二種以上の元素になる
場合、あるいは他の組成比の場合にも同様の結果が得ら
れ丸 さらく 電極材料にSrMe’ Osを添加した
場合 また微量の白金族元素を添加した場合には 電極
特性の均一性を損なう事なく酸素の酸化還元触媒能を高
める効果を示す。そして、 SrMe’ Oxの混合
量は ペロブスカイト型複合酸化物に対して80mol
%以下(望ましくは40〜70mol%)が好まし1〜
また 多孔質基体を用いることの優位性を判断するため
圏 電極材料としてペロブスカイト型酸化物に替えて白
金を用いたセンサ素子を作製して前記同様の熱衝撃試験
を行っ1. その結果 前記従来例同様へ 白金の焼
結に起因すると考えられる起電力の低下が認められたも
のの素子の破壊はなく、熱衝撃に対する多孔質基体を用
いることの優位性が明らかになった
また 実施例として、多孔質基体としてはムライト質材
料を、酸素イオン導電性固体電解質としては8mo 1
%Y*Os −92m o I%ZrO*をそれぞれ用
いた力(同様の機能を有するものであればこれに限定す
るものではなし℃ センサ形状も実施例に限定するもの
ではなく、発明の主旨に反しない限り任意の形態をとり
得るものであム センサの作製法も実施例に限らず、真
空蒸着、印肌溶射その他の公知の方法を用いることがで
き本発明の効果
以上のよう艮 本発明になる酸素センサは極めて優れた
特性を有し 長期間にわたって信頼度の高いセンサとし
て用い得るものであaEmbodiment FIG. 1 is a schematic cross-sectional view showing an embodiment of the sensor according to the present invention. 1 is a porous mullite substrate (7 mmφ×
0.5mmt, average pore diameter 0. 1 μm), 2 is the chemical formula L as, *ss r @, esco *, t
An electrode (approximately 1.5 μmt) formed by depositing a perovskite-type composite oxide represented by Fes, sOs-δ by sputter deposition, 3 is 8mol 1% Y2O3-92mO deposited by sputter deposition
Oxygen ion conductive solid electrolyte M consisting of 1% Zrap (
4 is a pre-formed platinum conductor for lead extraction; 5 is a heat-resistant dense tube-shaped sensor support 4*; 6 is an electrode lead wire; 7 is a communication hole for atmosphere B; 4 is a sensor element; The first electrode is in contact with the atmosphere B through the porous substrate 1 and the communication hole 7, and the second electrode is in contact with the atmosphere A through the porous substrate 1 and the communication hole 7. Furthermore, even if atmospheres A and B are separated from each other by a partition wall (not shown) - 8 mol% Y20 heat - 92 m
Disc-shaped dense sintered body of oxygen ion conductive solid electrolyte consisting of ol%Zr0a (7mmφ, 0°5mmt)
A sensor was fabricated in which a sensor element having a pair of platinum electrodes deposited by sputter deposition was fixed to a support in the same manner as in the previous example, and the initial characteristics of the sensor were determined using the sensor fabricated as described above and used as a conventional example. First, the initial output characteristics of the sensors of the example and conventional example were measured.The sensor was installed in an electric furnace and the temperature was controlled. The temperature was set to a predetermined temperature, the atmosphere B was a reference gas atmosphere, L air was supplied at a predetermined flow rate, and the atmosphere A was a test gas atmosphere, and gases adjusted to various oxygen partial pressures were supplied to the electrodes. Measure the electromotive force generated between
rs, aac os, tF es, aO and δ function normally as electrodes. It has become clear that the sensor of the present invention exhibits excellent output characteristics. Especially Las, *sS
The sensor with ri, ssc os, vF es, 5os-δ electrodes exhibits an electromotive force close to the theoretical value even at a low temperature of 400°C.
es, sOw-δ has excellent conductivity and high redox catalytic activity.It is unlikely that this is because the electrode reaction rate is high even at low temperatures, and the electrode reaction proceeds smoothly. This may be due to the fact that we were able to obtain an electromotive force close to the theoretical value.It is also clear that gas permeation is almost negligible even when using a porous substrate9.On the other hand, in the case of conventional sensors, the electromotive force is small at temperatures below 500°C. In the case of platinum, since the electrode reaction rate at low temperatures is lower than that of perovskite oxides, it is thought that the theoretical electromotive force cannot be obtained. In order to confirm this, a thermal shock test was carried out.9 The sensors of the example and the conventional example were held in an electric furnace at 900°C for 15 ml, and the mold was immediately taken out.
As a result of a total of 10 repeated tests on 20 sensors that were forcibly cooled by blowing air at approximately 10°C, cracks were found in the solid electrolyte substrate in 11 of the conventional sensors (l(t)). Occurrence 9 In contrast, no abnormality was observed in any of the 20 sensors of the example.
The measurement results of the output characteristics at 800° C. of the sensors for which no abnormality was observed in the appearance are shown in FIGS. 3(a) and 3(b) together with the initial output characteristics using the same method as described above. The electromotive force showed a value almost close to the theoretical value, and it became clear that there was almost no deterioration of the sensor element in the thermal shock test.9 However, in the output characteristics of the conventional sensor, a decrease in the electromotive force was observed. Table: Catalytic activity decreases due to advanced sintering of platinum.
Although this is thought to be due to a decline in electrode function, it is common (ζ
The strength of the sensor is required to have thermally and mechanically stable properties.The sensor of the present invention has been shown to have excellent properties that satisfy these requirements. We will discuss the case where a perovskite oxide is used as f-o Ln and La
, use Sr as A, and use Fe as Me.
0. 65, the case where y=0.3 is shown! >
<, when Ln is Ce, Pr, Nd, or when it is two or more elements among La, Ce, Pr, Nd, when A is Ca, Ba, or when Sr, Ca,
When two or more elements of Ba are present, Me becomes Ni, M
In the case of n, Cr, V, or N 11 Fe,
Similar results can be obtained when two or more elements of Mn, Cr, and V are added, or when other composition ratios are used. When the element is added, it shows the effect of increasing the redox catalytic ability of oxygen without impairing the uniformity of electrode characteristics. The amount of SrMe' Ox mixed is 80 mol for the perovskite complex oxide.
% or less (preferably 40 to 70 mol%) is preferably 1 to
In addition, in order to judge the superiority of using a porous substrate, a sensor element was fabricated using platinum instead of perovskite oxide as the material for the sphere electrode, and a thermal shock test similar to that described above was conducted.1. As a result, similar to the conventional example above, although a decrease in electromotive force was observed, which was thought to be due to the sintering of platinum, the device did not break, demonstrating the superiority of using a porous substrate against thermal shock. As an example, a mullite material is used as the porous substrate, and 8 mo 1 is used as the oxygen ion conductive solid electrolyte.
The force using %Y*Os -92m o I%ZrO* (it is not limited to this as long as it has a similar function °C The sensor shape is not limited to the example, and it is consistent with the gist of the invention) The sensor may be manufactured in any form as long as it does not contradict the present invention.The method for manufacturing the sensor is not limited to the embodiments, and vacuum deposition, thermal spraying, and other known methods may be used. The oxygen sensor has extremely excellent characteristics and can be used as a highly reliable sensor for a long period of time.
第1図は本発明の一実施例になる酸素センサの模式的断
面は 第2図(a)、(b)はそれぞれ実施例及び従来
例のセンサの出力特性を示す医 第3図(a>、(b)
はそれぞれ実施例および従来例のセンサの熱衝撃試験後
の出力特性を示す図であもl・・多孔質基体 2・・電
極 3・・酸素イオン導電性固体電解質、 4・・リー
ド取り出し用電& 5・・化FIG. 1 is a schematic cross section of an oxygen sensor according to an embodiment of the present invention. FIGS. 2(a) and (b) are diagrams showing output characteristics of an embodiment and a conventional sensor, respectively. ,(b)
1. Porous substrate 2. Electrode 3. Oxygen ion conductive solid electrolyte 4. Lead extraction electrode & 5...
Claims (4)
、第1電極、酸素イオン導電性固体電解質及び第2電極
を順次積層した構成になる感ガス部を形成したことを特
徴とする酸素センサ。(1) An oxygen sensor characterized by forming a gas-sensitive portion having a structure in which a first electrode, an oxygen ion conductive solid electrolyte, and a second electrode are sequentially laminated on a porous substrate made of a material with excellent thermal shock resistance. sensor.
A_xCo_1_−_yMe_yO_3_−δ(Lnは
La、Ce、Pr、Nd、から選択される少なくとも一
種の元素、Aは、Sr、Ca、Baから選択される少な
くとも一種の元素、MeはNi、Fe、Mn、Cr、V
から選択される少なくとも一種の元素、0≦x≦1、0
≦y≦1、δは酸素欠損量)で表わされるペロブスカイ
ト型複合酸化物からなることを特徴とする請求項1記載
の酸素センサ。(2) At least one electrode has the general formula Ln_1_-_x
A_xCo_1_-_yMe_yO_3_-δ (Ln is at least one element selected from La, Ce, Pr, Nd, A is at least one element selected from Sr, Ca, Ba, Me is Ni, Fe, Mn, Cr,V
At least one element selected from 0≦x≦1, 0
The oxygen sensor according to claim 1, characterized in that it is made of a perovskite-type composite oxide represented by ≦y≦1, and δ is the amount of oxygen vacancies.
r、Hfから選ぶ少なくとも一種の元素)を前記ペロブ
スカイト型複合酸化物に対して0〜80mol%、望ま
しくは40〜70mol%添加することを特徴とする請
求項1または2記載の酸素センサ。(3) SrMe'O_3 (Me' is Ti, Z
3. The oxygen sensor according to claim 1, wherein 0 to 80 mol%, preferably 40 to 70 mol% of at least one element selected from r, Hf is added to the perovskite composite oxide.
ロブスカイト型酸化物に対して添加することを特徴とす
る請求項1、2または3記載の酸素センサ。(4) The oxygen sensor according to claim 1, 2 or 3, wherein at least one platinum group element is added to the perovskite oxide in the electrode material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1305453A JPH03165253A (en) | 1989-11-24 | 1989-11-24 | Oxygen sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1305453A JPH03165253A (en) | 1989-11-24 | 1989-11-24 | Oxygen sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03165253A true JPH03165253A (en) | 1991-07-17 |
Family
ID=17945330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1305453A Pending JPH03165253A (en) | 1989-11-24 | 1989-11-24 | Oxygen sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03165253A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100352270B1 (en) * | 2000-10-19 | 2002-09-12 | 주식회사 아이센스 | Microchip-type oxygen gas sensor based on differential potentiometry |
US7824531B2 (en) | 1997-06-19 | 2010-11-02 | Denso Corporation | Multilayered air-fuel ratio sensor |
DE102016005758A1 (en) | 2015-05-13 | 2016-11-17 | Ngk Spark Plug Co., Ltd. | Sintered electrically conductive oxide for an oxygen sensor electrode and oxygen sensor using the same |
US10379076B2 (en) | 2015-05-13 | 2019-08-13 | Ngk Spark Plug Co., Ltd. | Electrically conductive oxide sintered compact, member for electrical conduction, and gas sensor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5644837A (en) * | 1979-09-21 | 1981-04-24 | Hitachi Ltd | Preparing method for oxygen concentration measuring element |
JPS62144063A (en) * | 1985-12-18 | 1987-06-27 | Sharp Corp | Threshold current type oxygen sensor |
JPS6398557A (en) * | 1986-10-15 | 1988-04-30 | Mitsubishi Heavy Ind Ltd | Low temperature operation type oxygen sensor |
JPS63158451A (en) * | 1986-12-23 | 1988-07-01 | Tech Res Assoc Conduct Inorg Compo | Combustion control sensor |
JPH01227956A (en) * | 1988-03-09 | 1989-09-12 | Mitsubishi Heavy Ind Ltd | Oxygen sensor |
JPH0238964A (en) * | 1988-07-29 | 1990-02-08 | Tanaka Kikinzoku Kogyo Kk | Production of thin film oxygen sensor |
JPH02167461A (en) * | 1988-12-21 | 1990-06-27 | Matsushita Electric Ind Co Ltd | Sensor for combustion control |
-
1989
- 1989-11-24 JP JP1305453A patent/JPH03165253A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5644837A (en) * | 1979-09-21 | 1981-04-24 | Hitachi Ltd | Preparing method for oxygen concentration measuring element |
JPS62144063A (en) * | 1985-12-18 | 1987-06-27 | Sharp Corp | Threshold current type oxygen sensor |
JPS6398557A (en) * | 1986-10-15 | 1988-04-30 | Mitsubishi Heavy Ind Ltd | Low temperature operation type oxygen sensor |
JPS63158451A (en) * | 1986-12-23 | 1988-07-01 | Tech Res Assoc Conduct Inorg Compo | Combustion control sensor |
JPH01227956A (en) * | 1988-03-09 | 1989-09-12 | Mitsubishi Heavy Ind Ltd | Oxygen sensor |
JPH0238964A (en) * | 1988-07-29 | 1990-02-08 | Tanaka Kikinzoku Kogyo Kk | Production of thin film oxygen sensor |
JPH02167461A (en) * | 1988-12-21 | 1990-06-27 | Matsushita Electric Ind Co Ltd | Sensor for combustion control |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7824531B2 (en) | 1997-06-19 | 2010-11-02 | Denso Corporation | Multilayered air-fuel ratio sensor |
KR100352270B1 (en) * | 2000-10-19 | 2002-09-12 | 주식회사 아이센스 | Microchip-type oxygen gas sensor based on differential potentiometry |
DE102016005758A1 (en) | 2015-05-13 | 2016-11-17 | Ngk Spark Plug Co., Ltd. | Sintered electrically conductive oxide for an oxygen sensor electrode and oxygen sensor using the same |
JP2016210661A (en) * | 2015-05-13 | 2016-12-15 | 日本特殊陶業株式会社 | Conductive oxide sintered body for oxygen sensor electrode, and oxygen sensor prepared therewith |
US10379076B2 (en) | 2015-05-13 | 2019-08-13 | Ngk Spark Plug Co., Ltd. | Electrically conductive oxide sintered compact, member for electrical conduction, and gas sensor |
US10883192B2 (en) | 2015-05-13 | 2021-01-05 | Ngk Spark Plug Co., Ltd. | Sintered electrically conductive oxide for oxygen sensor electrode, and oxygen sensor using the same |
DE112016002136B4 (en) | 2015-05-13 | 2023-04-27 | Ngk Spark Plug Co., Ltd. | gas sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4940528A (en) | Oxygen sensor elements | |
JPH0437944B2 (en) | ||
KR101843848B1 (en) | NOx Sensor and Method of preparing the same | |
US4692429A (en) | Catalyst composition and multi-functional sensor | |
JPH03165253A (en) | Oxygen sensor | |
US6379514B1 (en) | Composition structure for NOx sensors | |
JPH0558498B2 (en) | ||
JP2805811B2 (en) | Combustion control sensor | |
JP2000019152A (en) | Hydrogen gas sensor | |
JPH02193053A (en) | Exhaust gas sensor and manufacture thereof | |
JPS62144063A (en) | Threshold current type oxygen sensor | |
JPH02167461A (en) | Sensor for combustion control | |
JPH0261550A (en) | Sensor for combustion control | |
JPH02196952A (en) | Sensor for combustion control | |
JPH02167459A (en) | Sensor for combustion control | |
JPH0769296B2 (en) | Combustion control sensor | |
JPH08220060A (en) | Oxygen sensor | |
JPH03120456A (en) | Oxygen sensor | |
JP3450898B2 (en) | Method for manufacturing incomplete combustion detection element for exhaust gas | |
KR100380195B1 (en) | Gas sensor and fabricating sensor method thereof | |
JPS6034062B2 (en) | Air fuel ratio detection device | |
JPH0197854A (en) | Sensor for burning control | |
JPH0769294B2 (en) | Combustion control sensor | |
JPS63311161A (en) | Sensor for burning control | |
JPS63158452A (en) | Combustion control sensor |