JPH0197854A - Sensor for burning control - Google Patents

Sensor for burning control

Info

Publication number
JPH0197854A
JPH0197854A JP62255437A JP25543787A JPH0197854A JP H0197854 A JPH0197854 A JP H0197854A JP 62255437 A JP62255437 A JP 62255437A JP 25543787 A JP25543787 A JP 25543787A JP H0197854 A JPH0197854 A JP H0197854A
Authority
JP
Japan
Prior art keywords
cathode
sensor
electrode
oxygen
stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62255437A
Other languages
Japanese (ja)
Inventor
Koichi Tachibana
立花 弘一
Koji Yamamura
康治 山村
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES ASSOC CONDUCT INORG COMPO
Original Assignee
TECH RES ASSOC CONDUCT INORG COMPO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES ASSOC CONDUCT INORG COMPO filed Critical TECH RES ASSOC CONDUCT INORG COMPO
Priority to JP62255437A priority Critical patent/JPH0197854A/en
Publication of JPH0197854A publication Critical patent/JPH0197854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To obtain the uniform, stable characteristics of a sensor and to make it possible to display the stable characteristics for a long period, by using a specified perovskite type composite oxide as an electrode material. CONSTITUTION:An anode 2 and a cathode 3 are provided on a substrate of oxygen-ion conducive solid electrolyte. A porous gas diffused layer 6 is provided on the cathode 3. A seal 7, which does not transmit gas, is provided at the outer end surface. Thus, a burning control sensor, which detects a fuel ratio from the concentration of remaining oxygen in exhaust gas and the like, is formed. When the electrode, which is to become the cathode, is formed with a perovskite type composite oxide shown by the general formula I, uniform, stable sensor characteristics are obtained different from the case where platinum is used. The stable characteristics are displayed for a long time since the electrode is thermally stable. In the formula, Ln is La, Ce, Pr and Nd; Me is at least one element, which is selected among Ni, Fe, Mn, Cr and V; 0<=x<1; 0<=y<1; and delta is missing amount of oxygen.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃焼排ガスなどの被測定ガス中の残存酸素濃
度により空気と燃料の比を検出し、適正な燃焼状態を維
持するために用いる燃焼制御用センサに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention detects the air-to-fuel ratio based on the residual oxygen concentration in a gas to be measured such as combustion exhaust gas, and detects the ratio of air to fuel to maintain a proper combustion state. This relates to sensors for use in

従来の技術 従来、この種のセンサとしては、酸素イオン導電性固体
電解質基体として安定化ジルコニアを用い、陽陰および
陰極として白金を用い、更に陰極上にガス拡散層を設け
た形のものがある。該センサにおいては、両極間に印加
される電圧によって酸素イオン導電性固体電解質基体中
を酸素イオンが移動し、これを電流として取り出すこと
ができる。この酸素イオンの移動は陰極上に設けたガス
拡散層によって結果的に律速されるだめ、出力電流は一
定値まで増加した後飽和する。この飽和電流値は雰囲気
中の酸素濃度に応じた値を示すため、電流値を測定する
ことにより排ガス中の酸素濃度を知ることができ、した
がって適正な空燃比になるように燃焼を制御することが
可能になる。
Conventional technology Conventionally, this type of sensor has used stabilized zirconia as the oxygen ion conductive solid electrolyte base, platinum as the anode and cathode, and a gas diffusion layer on the cathode. . In this sensor, oxygen ions move in the oxygen ion conductive solid electrolyte base by a voltage applied between the two electrodes, and this can be extracted as an electric current. This movement of oxygen ions is ultimately rate-limited by the gas diffusion layer provided on the cathode, so the output current increases to a certain value and then becomes saturated. This saturation current value indicates a value that corresponds to the oxygen concentration in the atmosphere, so by measuring the current value, it is possible to know the oxygen concentration in the exhaust gas, and therefore combustion can be controlled to achieve an appropriate air-fuel ratio. becomes possible.

しかし、白金電極の場合には電極反応速度が小さいため
に分極が大きく、該電極自身の電位が不安定になって相
手極に一定の電位が印加されがたい。この点を改善する
ために表面積を増加させることが必要になるが、白金は
高温で焼結を起こしやすいこともあって、均質かつ長期
安定性を有する多孔質電極とすることは極めて困難であ
る。
However, in the case of a platinum electrode, since the electrode reaction rate is low, polarization is large, and the potential of the electrode itself becomes unstable, making it difficult to apply a constant potential to the other electrode. To improve this point, it is necessary to increase the surface area, but platinum tends to sinter at high temperatures, so it is extremely difficult to create a porous electrode that is homogeneous and has long-term stability. .

発明が解決しようとす−る問題点 該センサの諸特性を左右する大きな要素として電極特性
がある。陰極では酸素が速やかに電極と電解質の界面へ
拡散していき、酸素の還元反応を生じる必要がある。一
方陽極では酸素イオンの酸化度広を速やかに生じる必要
がある。そのだめ、酸素の酸化還元に対する触媒活性が
高く、かつ拡散を容易にするだめに多孔質に形成した白
金電極を用いるのが一般的である。しかし白金の場合に
は電極反応に際して反応速度が小さいため分極が大きい
。その結果、該電極自身の電位の安定性に問題が生じ相
手極に一定の電位が印加されがたい。
Problems to be Solved by the Invention Electrode characteristics are a major factor that influences the various characteristics of the sensor. At the cathode, oxygen must quickly diffuse to the interface between the electrode and electrolyte to cause an oxygen reduction reaction. On the other hand, at the anode, it is necessary to rapidly increase the degree of oxidation of oxygen ions. Therefore, it is common to use a porous platinum electrode that has high catalytic activity for oxygen redox and facilitates diffusion. However, in the case of platinum, the reaction rate during the electrode reaction is slow, so the polarization is large. As a result, a problem arises in the stability of the potential of the electrode itself, making it difficult to apply a constant potential to the other electrode.

すなわち反応速度を一定に保つことが困難になる。In other words, it becomes difficult to keep the reaction rate constant.

そのため、電極の表面積を大きくすることが必要となる
が、均質な多孔質電極を形成することは極めて困難であ
る。また、白金は高温で焼結を起こしやすいなどのため
、触媒活性や拡散抵抗がばらついたり、経時的に変化す
るなどして、センサ特性の均一性、長期安定性に問題が
ある。白金自身が高価である点も問題である。
Therefore, it is necessary to increase the surface area of the electrode, but it is extremely difficult to form a homogeneous porous electrode. In addition, platinum is prone to sintering at high temperatures, causing variations in catalyst activity and diffusion resistance, and changes over time, resulting in problems with the uniformity of sensor characteristics and long-term stability. Another problem is that platinum itself is expensive.

問題点を解決するための手段 本発明は、前記の問題点に着目してなされたもので、電
極材料としてペロブスカイト型複合酸化物を用いるもの
である。
Means for Solving the Problems The present invention has been made in view of the above-mentioned problems, and uses a perovskite type composite oxide as an electrode material.

作  用 本発明になる燃焼制御用センサの電極材料として用いる
ペロブスカイト型複合酸化物は、電子導電性と酸素イオ
ン導電性をあわせ持つ材料である。
Function The perovskite type composite oxide used as the electrode material of the combustion control sensor according to the present invention is a material having both electronic conductivity and oxygen ion conductivity.

このため、該材料からなる電極上での酸素の電気化学的
酸化還元反応に対して優れた触媒活性を示す。白金の場
合には白金、電解質、雰囲気からなる三相界面でしか反
応が起こらないのに対し、該材料の場合には電極表面全
体に反応活性点が分布しているために、酸素の酸化還元
反応が俺めて大きな確率でしかも速やかに進行し、電極
反応に際しての分極が極めて小さい。このため電極電位
が安定し、絶えず一定の電位が相手極に印加される結果
、定電圧を印加した場合の電流は酸素濃度の変化に応じ
るものとなる。その結果、均一で安定したセンサ特性が
得られる。また該材料は熱的にも安定であるため、長期
にわたって安定した特性を発揮することができる。
Therefore, it exhibits excellent catalytic activity for electrochemical redox reactions of oxygen on electrodes made of this material. In the case of platinum, the reaction occurs only at the three-phase interface consisting of platinum, electrolyte, and atmosphere, whereas in the case of this material, the reaction active sites are distributed over the entire electrode surface, so that the oxidation-reduction of oxygen occurs. The reaction progresses quickly and with high probability, and the polarization during the electrode reaction is extremely small. Therefore, the electrode potential is stabilized, and a constant potential is constantly applied to the other electrode, so that the current when a constant voltage is applied corresponds to changes in oxygen concentration. As a result, uniform and stable sensor characteristics can be obtained. Furthermore, since the material is thermally stable, it can exhibit stable characteristics over a long period of time.

実施例 第1図は本発明になるセンサ素子の一実施例を示す模式
的断面図である。1は8mol%Y203−92mol
%Z r O2からなる酸素イオン導電性固体電解質板
(5,5φx 1 t xw )、2は白金ペーストを
スクリーン印刷によって付着させて形成した陽極(3t
μm)、3は化学式LaO,35Sr0.65” 0.
7Fe   Oで表わされるペロブスカイト型抜03 
3−δ 合酸化物をフレーム溶射によって付着させて形成した陰
極(15μm)、4は陽極引き出し端子、5は陰極引き
出し端子、6は無機質のガス拡散層(70tμm)、7
は気体不透過シールである。比較のため、白金陰極を設
けたセンサ素子を作製した。
Embodiment FIG. 1 is a schematic sectional view showing an embodiment of a sensor element according to the present invention. 1 is 8 mol% Y203-92 mol
%Z r O2 oxygen ion conductive solid electrolyte plate (5,5φx 1 t xw ), 2 is an anode (3t
μm), 3 has the chemical formula LaO, 35Sr0.65” 0.
Perovskite die cut 03 represented by 7FeO
3-δ A cathode (15 μm) formed by adhering the composite oxide by flame spraying, 4 is an anode lead terminal, 5 is a cathode lead terminal, 6 is an inorganic gas diffusion layer (70 t μm), 7
is a gas impermeable seal. For comparison, a sensor element equipped with a platinum cathode was fabricated.

以上のようにして作製したセンサを動作特性試験に供し
た。第2図に、センサの出力特性の測定結果を示した。
The sensor fabricated as described above was subjected to an operating characteristic test. FIG. 2 shows the measurement results of the output characteristics of the sensor.

測定は以下のようにして行なった。The measurements were carried out as follows.

電気炉中にセンサ素子を設置し、所定の素子温度になる
ように温度制御を行い、所定濃度の酸素−窒素混合ガス
を約10 CM /sH:の流速で流通接触させた。こ
のとき、印加する電圧に対する出力電流を測定し、一定
電圧印加時における出力電流を各酸素濃度に対して求め
た。第2図には、例として温度が7oo℃、電圧が1v
の場合を示した。なお、実施例、従来例、従来例共に各
10個の素子について測定した。この結果、従来の白金
陰極を用いたセンサは出力のばらつきが大きく、しかも
酸素濃度が高いほど顕著であった。これに対して本発明
になるセンサは、従来の白金陰極を用いたセンサに比べ
てばらつきの少ない均一な出力特性を示した。ペロブス
カイト型複合酸化物は酸素還元に対する触媒活性が高く
、電極反応における反応速度が大きいために分極が極め
て小さく、はぼ一定の電位を示す電極となる。したがっ
て定電圧駆動に際しては相手極に一定の電位が印加され
る結果、流れる電流は酸素濃度に正確に対応するものと
なる。このように優れた電極特性を有するため、センサ
個々の電極の微細構造の差異は出力特性にほとんど影響
を及ぼさず、したがって特性ばらつきが小さく、高精度
で応答性よく酸素濃度検出ができる。これに対して白金
陰極では反応速度が小さいだめ、電極の多孔度や表面積
などのわずかな違いが特性ばらつきとなって現われる。
A sensor element was installed in an electric furnace, the temperature was controlled to a predetermined element temperature, and an oxygen-nitrogen mixed gas of a predetermined concentration was brought into contact with the sensor element by flowing at a flow rate of about 10 CM/sH:. At this time, the output current with respect to the applied voltage was measured, and the output current when a constant voltage was applied was determined for each oxygen concentration. In Figure 2, as an example, the temperature is 70°C and the voltage is 1V.
The case of Note that measurements were performed on 10 elements each in the example, the conventional example, and the conventional example. As a result, conventional sensors using platinum cathodes had large variations in output, and this was more pronounced as the oxygen concentration increased. On the other hand, the sensor according to the present invention exhibited uniform output characteristics with less variation than the conventional sensor using a platinum cathode. Perovskite-type composite oxides have high catalytic activity for oxygen reduction and a high reaction rate in electrode reactions, resulting in electrodes with extremely low polarization and a nearly constant potential. Therefore, in constant voltage driving, a constant potential is applied to the other electrode, and as a result, the flowing current accurately corresponds to the oxygen concentration. Because the sensor has such excellent electrode characteristics, differences in the fine structure of the electrodes of individual sensors have almost no effect on the output characteristics, and therefore characteristic variations are small and oxygen concentration can be detected with high precision and responsiveness. On the other hand, with platinum cathodes, the reaction rate is slow, so slight differences in electrode porosity, surface area, etc. will result in variations in properties.

微細構造の均一な制御は極めて困難であり、製造歩留、
一定の品質確保に対する大きな障害となるものである。
Uniform control of the microstructure is extremely difficult, which reduces manufacturing yield and
This is a major obstacle to ensuring a certain level of quality.

測定はこのほか、600〜900℃の範囲で温度を変え
て行なったが、いずれの場合にも7oo℃の場合と同様
の結果を得た。
In addition, the measurements were carried out at different temperatures in the range of 600 to 900°C, but the same results as in the case of 70°C were obtained in each case.

次に、センサ特性の経時安定性について示す。Next, the stability of sensor characteristics over time will be described.

評価は以下のようにして行なった。前記のセンサ素子を
空気中で5oot:に500時間保持した後、700℃
で前記同様の測定を行ない、出力特性を比較した。その
結果を第3図aおよびbに示す。
The evaluation was performed as follows. After holding the sensor element in air at 5oot: for 500 hours, it was heated to 700°C.
The same measurements as above were performed and the output characteristics were compared. The results are shown in Figures 3a and b.

従来の白金を用いたセンサの出力特性(第3図a)は初
期に比べて大きく変化しているが、これに対して本発明
になるセンサの出力特性(第3図b)は初期にくらべて
ほとんど変化していないことが明らかである。白金の場
合、長時間の高温雰囲気で徐々に焼結が進行し、電極の
微細構造の変化や表面積の減少に伴って触媒活性が低下
し、出力特性が変化したものである。これに対して、ペ
ロブスカイト型複合酸化物の場合には、熱的安定性が極
めて優れているために特性の変化がほとんど生じない。
The output characteristics of the conventional sensor using platinum (Fig. 3a) have changed significantly compared to the initial stage, but on the other hand, the output characteristics of the sensor according to the present invention (Fig. 3 b) have changed compared to the initial stage. It is clear that little has changed. In the case of platinum, sintering progresses gradually in a high-temperature atmosphere over a long period of time, resulting in a change in the fine structure of the electrode and a decrease in surface area, resulting in a decrease in catalytic activity and a change in output characteristics. On the other hand, in the case of perovskite-type composite oxides, the thermal stability is extremely excellent, so that almost no change in properties occurs.

そのために電極特性が安定で信頼性が高く、長期にわた
り精度良く酸素濃度を検出するととができる。
Therefore, the electrode characteristics are stable and reliable, and oxygen concentration can be detected with high accuracy over a long period of time.

以上の実施例で明らかなように、本発明になる燃焼制御
用センサは極めて優れたものであることがわかる。実施
例では陰極のみペロブスカイト型複合酸化物で形成した
場合について述べたが、陰極、陽極共にペロブスカイト
型複合酸化物で形成したセンサの場合、陰極のみを該酸
化物で形成した場合と比較してより個々のセンサ間の特
性のばらつきが小さく、シかも直線性に優れた出力特性
を示す。また実施例ではLnとしてLa、AとしてSr
、MeとしてFeを用いた場合について示したが、Ln
がGo、Pr、Ndの場合もしくはLa、Ce、Pr。
As is clear from the above examples, it can be seen that the combustion control sensor according to the present invention is extremely excellent. In the example, the case where only the cathode is formed of a perovskite-type composite oxide is described, but in the case of a sensor in which both the cathode and anode are formed of a perovskite-type composite oxide, compared to the case where only the cathode is formed of the perovskite-type composite oxide, The variation in characteristics between individual sensors is small, and the sensor exhibits output characteristics with excellent linearity. In addition, in the example, Ln is La and A is Sr.
, the case where Fe was used as Me was shown, but Ln
is Go, Pr, Nd or La, Ce, Pr.

Ndの内二種以上の元素になる場合、AがCa。When two or more elements of Nd are present, A is Ca.

Baの場合もしくはSr、Ca、Baの内二種以上の元
素になる場合、MeがNi、Mn、Cr、Vの場合もし
くはNi、Fe、Mn、Cr、Vの内二種以上の元素に
なる場合にも同様の結果が得られた。さらに、S r 
M e’ 03(M e ’はTi、Zr、Hfから選
ぶ少なくとも一種の元素)を混合した場合、白金族元素
を添加した場合には、電極特性の均一性を損なう事なく
酸素還元の触媒活性を高める効果を示す。また、基体と
して用いる酸素イオン導電性固体電解質には8mol%
Y2o3−92mol%Z r 02を用いたが、同様
の機能を有するものであればこれに限定するものではな
い。また、ガス拡散層材料も陰極材料、リード材料など
と非反応性のものであればよい。一方、センサ形状も層
状平板型に限定するものではなく、発明の主旨に反しな
い限シ任意の、形態を取り得るものである。また、電極
、ガス拡散層その他の作製法も実施例に限定するもので
はなく、スパッタ、印刷、塗布熱分解その他の方法およ
びそれらを組み合わせた方法を用いることができるもの
である。
In the case of Ba or in the case of two or more elements among Sr, Ca, and Ba, in the case of Me in the case of Ni, Mn, Cr, and V, or in the case of two or more elements among Ni, Fe, Mn, Cr, and V. Similar results were obtained in the case of Furthermore, S r
When M e' 03 (M e ' is at least one element selected from Ti, Zr, and Hf) is mixed, when a platinum group element is added, the catalytic activity of oxygen reduction increases without impairing the uniformity of electrode characteristics. Shows the effect of increasing In addition, 8 mol% was added to the oxygen ion conductive solid electrolyte used as the base.
Although Y2o3-92mol%Zr02 was used, it is not limited to this as long as it has a similar function. Further, the gas diffusion layer material may be any material as long as it is non-reactive with the cathode material, lead material, and the like. On the other hand, the shape of the sensor is not limited to the layered flat plate type, and may take any form as long as it does not go against the spirit of the invention. Furthermore, the methods for producing electrodes, gas diffusion layers, and the like are not limited to those in the examples, but may include sputtering, printing, coating thermal decomposition, and other methods, as well as combinations thereof.

発明の効果 以上のように、本発明になる燃焼制御用センサは極めて
安定した特性を示すため、長期間にわたって精度よく燃
焼排ガス中の酸素濃度を測定でき、適正な燃焼状態に制
御することができるものである。
Effects of the Invention As described above, the combustion control sensor of the present invention exhibits extremely stable characteristics, so it is possible to accurately measure the oxygen concentration in the combustion exhaust gas over a long period of time, and to control the combustion to an appropriate state. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる燃焼制御用センサの一実施例を示
す模式的断面図、第2図は同センサ素子の出力特性図、
第3図aおよびbはそれぞれ従来例および上記実施例の
センサ特性の経時安定性を示す図である。 1・・・・・・酸素イオン導電性固体電解質、2・・・
・・・陽極、3・・・・・・陰極、4・・・・・・陽極
引出端子、6・・・・・・陰極引出端子、6・・・・・
・多孔質ガス拡散層、7・・・・・・気体不透過シール
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 酸素凌X(岬 第3図(α) 酸素濃度(%少 第3図(シ) 酸素濃度(%)
FIG. 1 is a schematic sectional view showing an embodiment of the combustion control sensor according to the present invention, and FIG. 2 is an output characteristic diagram of the sensor element.
FIGS. 3a and 3b are diagrams showing the stability over time of the sensor characteristics of the conventional example and the above embodiment, respectively. 1...Oxygen ion conductive solid electrolyte, 2...
... Anode, 3... Cathode, 4... Anode lead-out terminal, 6... Cathode lead-out terminal, 6...
- Porous gas diffusion layer, 7... Gas impermeable seal. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Oxygen level X (Cape Figure 3 (α) Oxygen concentration (%)

Claims (3)

【特許請求の範囲】[Claims] (1)酸素イオン導電性固体電解質からなる基体上に設
ける一対の電極の内、少なくとも陰極となる電陰が一般
式Ln_1_−_xA_xCo_1_−_yMe_yO
_3_−_δ(LnはLa、Ce、Pr、Ndから選ぶ
少なくとも一種の元素、AはSr、Ca、Baから選ぶ
少なくとも一種の元素、MeはNi、Fe、Mn、Cr
、Vから選ぶ少なくとも一種の元素、0≦x≦1、0≦
y≦1、δは酸素欠損量)で表わされるペロブスカイト
型複合酸化物からなり、前記陰極面上にガス拡散層を設
け、陽極および陰極に電極引出端子を設け、更に陽極、
酸素イオン導電性固体電解質基体、陰極、およびガス拡
散層からなる構造体の外周端面を気体不透過状態にする
ことを特徴とする燃焼制御用センサ。
(1) Among a pair of electrodes provided on a substrate made of an oxygen ion conductive solid electrolyte, at least the cathode has the general formula Ln_1_-_xA_xCo_1_-_yMe_yO
_3_-_δ (Ln is at least one element selected from La, Ce, Pr, and Nd, A is at least one element selected from Sr, Ca, and Ba, and Me is Ni, Fe, Mn, and Cr.
, at least one element selected from V, 0≦x≦1, 0≦
y≦1, δ is the amount of oxygen vacancies), a gas diffusion layer is provided on the cathode surface, electrode lead terminals are provided on the anode and the cathode, and an anode,
A combustion control sensor characterized in that an outer peripheral end face of a structure consisting of an oxygen ion conductive solid electrolyte base, a cathode, and a gas diffusion layer is rendered impermeable to gas.
(2)電極材料にSrMe′O_3(Me′はTi、Z
r、Hfから選ぶ少なくとも一種の元素)を前記ペロブ
スカイト型複合酸化物に対して0〜80mol%、望ま
しくは40〜70mol%添加することを特徴とする特
許請求の範囲第1項記載の燃焼制御用センサ。
(2) SrMe'O_3 (Me' is Ti, Z
0 to 80 mol%, preferably 40 to 70 mol% of at least one element selected from r, Hf) is added to the perovskite type composite oxide. sensor.
(3)電極材料に少なくとも一種の白金族元素を添加す
ることを特徴とする特許請求の範囲第1項または第2項
記載の燃焼制御用センサ。
(3) The combustion control sensor according to claim 1 or 2, wherein at least one platinum group element is added to the electrode material.
JP62255437A 1987-10-09 1987-10-09 Sensor for burning control Pending JPH0197854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62255437A JPH0197854A (en) 1987-10-09 1987-10-09 Sensor for burning control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255437A JPH0197854A (en) 1987-10-09 1987-10-09 Sensor for burning control

Publications (1)

Publication Number Publication Date
JPH0197854A true JPH0197854A (en) 1989-04-17

Family

ID=17278756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255437A Pending JPH0197854A (en) 1987-10-09 1987-10-09 Sensor for burning control

Country Status (1)

Country Link
JP (1) JPH0197854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227956A (en) * 1988-03-09 1989-09-12 Mitsubishi Heavy Ind Ltd Oxygen sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531105A (en) * 1991-07-26 1993-02-09 Hitachi Medical Corp X-ray ct system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531105A (en) * 1991-07-26 1993-02-09 Hitachi Medical Corp X-ray ct system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227956A (en) * 1988-03-09 1989-09-12 Mitsubishi Heavy Ind Ltd Oxygen sensor

Similar Documents

Publication Publication Date Title
JPS6118857A (en) Manufacture of electrochemical cell
JPS63158451A (en) Combustion control sensor
JPH04504170A (en) Sensor element for limiting current sensors for measuring the λ value of gas mixtures
JPH02167461A (en) Sensor for combustion control
JPH0197854A (en) Sensor for burning control
JP2805811B2 (en) Combustion control sensor
JPS62144063A (en) Threshold current type oxygen sensor
JPS62198748A (en) Oxygen sensor
JPS63158452A (en) Combustion control sensor
JPH0221259A (en) Sensor for combustion control
JPH02196953A (en) Sensor for combustion control
JPH01102354A (en) Sensor for controlling combustion
JPH01102355A (en) Sensor for controlling combustion
JPH0531105B2 (en)
Oh A planar-type sensor for detection of oxidizing and reducing gases
JPS63311160A (en) Sensor for burning control
JPS63311161A (en) Sensor for burning control
JPH01102356A (en) Sensor for controlling combustion
JPH03165253A (en) Oxygen sensor
JPS63261150A (en) Sensor for controlling combustion
JPH03120456A (en) Oxygen sensor
JPH02167459A (en) Sensor for combustion control
JPH1123518A (en) Carbon monoxide gas detecting element
JPH11271269A (en) Hydrocarbon gas component detecting method, and detecting sensor
JPH02154139A (en) Oxygen sensor