JPH01102354A - Sensor for controlling combustion - Google Patents

Sensor for controlling combustion

Info

Publication number
JPH01102354A
JPH01102354A JP62262148A JP26214887A JPH01102354A JP H01102354 A JPH01102354 A JP H01102354A JP 62262148 A JP62262148 A JP 62262148A JP 26214887 A JP26214887 A JP 26214887A JP H01102354 A JPH01102354 A JP H01102354A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
element selected
oxygen
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62262148A
Other languages
Japanese (ja)
Other versions
JPH0692957B2 (en
Inventor
Koichi Tachibana
立花 弘一
Koji Yamamura
康治 山村
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES ASSOC CONDUCT INORG COMPO
Original Assignee
TECH RES ASSOC CONDUCT INORG COMPO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES ASSOC CONDUCT INORG COMPO filed Critical TECH RES ASSOC CONDUCT INORG COMPO
Priority to JP62262148A priority Critical patent/JPH0692957B2/en
Publication of JPH01102354A publication Critical patent/JPH01102354A/en
Publication of JPH0692957B2 publication Critical patent/JPH0692957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the concn. of oxygen in combustion exhaust gas with good accuracy over a long period of time, by constituting an electrode of perovskite type composite oxide and oxygen ion conductive solid electrolyte. CONSTITUTION:A pair of electrodes 2, 3 at least an electrode 3 working as a cathode, provided on a substrate composed of an oxygen ion conductive solid electrolyte 1 consists of perovskite composite oxide 3 represented by formula I (wherein Ln is at least one element selected from La, Ce, Pr and Nd, A is at least one element selected from Sr, Ca and Ba, Me is at least one element selected from Ni, Fe, Mn, Cr and V, 0<=x<=1, 0<=y>=1 and delta is an oxygen deficient amount) and the electrolyte 1. Electrode lead-out terminals 4, 5 are provided to the electrodes 2, 3 and, further, the outer peripheral end surface of the structure consisting of the electrodes 2, 3, the substrate composed of the electrolyte 1 and a gas diffusion layer 6 is brought to a gas impervious state. By this method, the concn. of oxygen in combustion exhaust gas can be measured with good accuracy over a long period of time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃焼排ガスなどの被測定ガス中の残存酸素濃
度によシ空気と燃焼の比を検出し、適正な燃焼状態を維
持するために用いる燃焼制御用センサに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is used to detect the ratio of air to combustion based on the residual oxygen concentration in a gas to be measured such as combustion exhaust gas, and to maintain an appropriate combustion state. This invention relates to a combustion control sensor.

従来の技術 従来、この種のセンサとしては、酸素イオン導電性固体
電解質として安定化ジルコニアを用い、陽極および陰極
として白金を用い、さらに陰極上に力゛ス拡散層を設け
た形のものがある。該センサにおいては1両極間に印加
される電圧によって固体T解質中に酸素イオンが移動し
、これを電流として取シ出すことができる。この酸素イ
オンの移動は陰極上に設けたガス拡散層によって結果的
に律速されるため、出力電流は一定値まで増加した後飽
和する。この飽和電流値は雰囲気中の酸素濃度に応じた
値を示すため、電流値を測定することによシ排ガス中の
酸素濃度を知ることができ、したがって適正な空燃比に
なるように燃焼を制御することが可能になる。
Conventional technology Conventionally, this type of sensor has used stabilized zirconia as the oxygen ion conductive solid electrolyte, platinum as the anode and cathode, and a force diffusion layer on the cathode. . In this sensor, oxygen ions are moved into the solid T solute by a voltage applied between two electrodes, and this can be extracted as an electric current. Since this movement of oxygen ions is ultimately rate-limited by the gas diffusion layer provided on the cathode, the output current increases to a certain value and then becomes saturated. This saturation current value indicates a value that corresponds to the oxygen concentration in the atmosphere, so by measuring the current value, it is possible to know the oxygen concentration in the exhaust gas, and therefore control combustion to achieve an appropriate air-fuel ratio. It becomes possible to do so.

これに対して発明者らは、電極材料として白金にかえて
Lnl−!A、Co1−、Me、03−、5で表わされ
るペロプスカイト型複合酸化物を用いる燃焼制御用セン
サを提案した。白金の場合には電極反応速度が小さいた
めに分極が大きく、該電極自身の電位が不安定になって
相手極に一定の電位が印加されがたい。この点を改善す
るために表面積を増加させることが必要になるが、白金
は高温で焼結を起こしやすいこともあって、均質かつ長
期安定性を有する多孔質電極とすることは極めて困難で
ある。これに対して前記ペロプスカイト型複合酸化物を
電極材料として用いると、酸素の酸化還元反応に高い触
媒活性を有するため、電極反応に際しての分極が極めて
小さく、安定した電極電位を与える。その結果、相手極
に絶えず一定の電位が印加され、ばらつきの極めて小さ
な優れたセンサ特性が得られる。
In contrast, the inventors used Lnl-! instead of platinum as the electrode material. We have proposed a combustion control sensor using perovskite-type composite oxides represented by A, Co1-, Me, 03-, and 5. In the case of platinum, the electrode reaction rate is low, so polarization is large, and the potential of the electrode itself becomes unstable, making it difficult to apply a constant potential to the other electrode. To improve this point, it is necessary to increase the surface area, but platinum tends to sinter at high temperatures, making it extremely difficult to create a porous electrode that is homogeneous and has long-term stability. . On the other hand, when the perovskite-type composite oxide is used as an electrode material, it has high catalytic activity in the redox reaction of oxygen, so polarization during the electrode reaction is extremely small and a stable electrode potential is provided. As a result, a constant potential is constantly applied to the other electrode, resulting in excellent sensor characteristics with extremely small variations.

発明が解決しようとする問題点 一般にベロプスカイ)W複合酸化物は固体電解質に比べ
て熱膨張係数が大きく、熱的な変動を伴う環境に長期間
置かれると、電極と固体電解質の密着性が低下して界面
抵抗が大きくなる傾向があシ、電極特性が変動劣化する
恐れがある。
Problems to be Solved by the Invention In general, W composite oxides have a larger coefficient of thermal expansion than solid electrolytes, and when placed in an environment with thermal fluctuations for a long period of time, the adhesion between electrodes and solid electrolytes decreases. As a result, the interfacial resistance tends to increase, and the electrode characteristics may fluctuate and deteriorate.

問題点を解決するための手段 本発明は前記の問題点に着目してなされたもので、電極
をペロプスカイト型複合酸化物と酸素イオン導電性固体
電解質とから構成するものである。
Means for Solving the Problems The present invention has been made in view of the above-mentioned problems, and consists of an electrode made of a perovskite type composite oxide and an oxygen ion conductive solid electrolyte.

作  用 本発明になる燃焼制御用センサにおいては、電極に含ま
れる固体電解質が結合材として機能し、電極と固体電解
質基体との密着性を高める。
Function: In the combustion control sensor according to the present invention, the solid electrolyte contained in the electrode functions as a binding material and enhances the adhesion between the electrode and the solid electrolyte base.

実施例 第1図は本発明になるセンサ素子の一実施例を示す模式
的断面図である。1は8 mo 1 % Y 20 a
−92mol % ZrO2からなる酸素イオン導電性
固体電解質板(6,6$XIWt)、2は白金ペースト
をスクリーン印刷によって付着させて形成した陽極(3
p m t )、3は化学式”o、asSro、C6”
o、rFeo、顛で表わされるペロプスカイト型複合酸
化物70wt%8 mol%Y O−92mol%Z 
r O2s o vr t%から成る混合物をフレーム
溶射によって付着させて形成した陰極(16μmt)、
4は陽極引出端子、5は陰極引出端子、6は無機質のガ
ス拡散層(70μmt)、7は気体不透過シールである
。比較のため、”0.35SrO,65C00,7”0
.303−8だけからなる陰極を設けたセンサ素子、お
よび白金陰極を設けたセンサ素子をそれぞれ作製した。
Embodiment FIG. 1 is a schematic sectional view showing an embodiment of a sensor element according to the present invention. 1 is 8 mo 1% Y 20 a
- Oxygen ion conductive solid electrolyte plate (6,6 $XIWt) consisting of 92 mol % ZrO2, 2 is an anode (3
p m t ), 3 is the chemical formula “o, asSro, C6”
Peropskite type composite oxide represented by o, rFeo, frame 70wt%8 mol%Y O-92mol%Z
a cathode (16 μmt) formed by flame spraying of a mixture consisting of r O2s o vr t%;
4 is an anode lead terminal, 5 is a cathode lead terminal, 6 is an inorganic gas diffusion layer (70 μmt), and 7 is a gas impermeable seal. For comparison, “0.35SrO,65C00,7”0
.. A sensor element provided with a cathode made of only 303-8 and a sensor element provided with a platinum cathode were respectively produced.

以上のようにして作製したセンナ素子を後に述べる動作
特性試験に供した。一方、電極と固体電解質基板の密着
性を評価するために、amol%Y2o3−92mO1
%ZrO2基板上にL a 0.3sS r□ 、 6
5”O、yF @0.303− J 7C1vvt%。
The Senna element fabricated as described above was subjected to an operating characteristic test to be described later. On the other hand, in order to evaluate the adhesion between the electrode and the solid electrolyte substrate, amol%Y2o3-92mO1
%L a 0.3sS r□ on ZrO2 substrate, 6
5”O, yF @0.303- J 7C1vvt%.

8mol%Y O−92mol%Z r O230vv
 t%からなる混合物をフレーム溶射によシ約115t
μmの厚さに付着させた試料と、比較のためL”0.3
68”0.65”0.7”0.303−J だけを同じ
厚さに付着させた試料をそれぞれ作製した。
8mol%Y O-92mol%Z r O230vv
Approximately 115 tons of the mixture consisting of
For comparison, L”0.3 with a sample attached to a thickness of μm.
Samples were prepared in which only 68"0.65"0.7"0.303-J was deposited to the same thickness.

先ず密着性の評価結果について示す。装置性の評価は次
に述べる方法によって行なった。溶射した試料を電気灯
に設置し、300,2900℃(1000℃/hの昇降
温)のと−トサイクルを100回くりかえした後、粘着
テープを溶射膜表面に貼り付けてから引き剥がし、その
時の溶射膜の剥離の有無を調べた。表1に、各20個の
試料実施例においては溶射膜の剥離は全く生じなかった
が、従来例では26%の率で剥離が生じた。また、ヒー
トサイクルテスト後の溶射膜表面を拡大観観察した結果
、従来例では多数のクラックが生じていたが、実施例で
はクラックにほとんど存在しなかまた。実施例において
は溶射膜中の&no1%Y2o3− g 2 mol%
Z r O2が結合材かつ緩衝材として機能し、と−ト
サイクルによっても基板との密着性の低下や膜内の歪み
の増大がおさえられるため。
First, the evaluation results of adhesion will be shown. Evaluation of device performance was performed using the method described below. The sprayed sample was placed under an electric light, and the cycle of heating and cooling at 300 and 2900°C (1000°C/h temperature rise and fall) was repeated 100 times. Adhesive tape was attached to the surface of the sprayed film and then peeled off. The presence or absence of peeling of the sprayed film was investigated. Table 1 shows that in each of the 20 sample examples, no peeling of the sprayed film occurred, but in the conventional example, peeling occurred at a rate of 26%. Further, as a result of magnifying observation of the surface of the sprayed film after the heat cycle test, it was found that many cracks had occurred in the conventional example, but there were almost no cracks in the example. In the examples, &no1%Y2o3-g2mol% in the sprayed film
This is because Z r O2 functions as a binding material and a buffering material, and even during to-to cycling, a decrease in adhesion to the substrate and an increase in distortion within the film can be suppressed.

クラックの発生や剥離が生じないと考えられる。It is considered that no cracking or peeling occurs.

第2図には、センサの出力特性の測定結果を示した。測
定は以下のようにして行なった。電気炉中にセンサ素子
を設置し、所定の素子温度になるように温度制御を行な
い、所定濃度の酸素−窒素混合ガスを約101/511
cの流速で流通接触させた。
FIG. 2 shows the measurement results of the output characteristics of the sensor. The measurements were carried out as follows. A sensor element is installed in an electric furnace, and the temperature is controlled so that the temperature of the element reaches a predetermined value.
Flow contact was carried out at a flow rate of c.

このとき、印刷する電圧に対する出力電流を測定し、一
定電圧印加時における出力電流を各酸素濃度に対して求
めた。第2図には1例として温度が700℃、電圧が1
vの場合を示した。なお、実施例、従来例共に各10個
の素子について測定した。この結果、従来の白金陰極を
用いたセンサは出力のばらつきが大きく、シかも酸素濃
度が高いほど顕著であった。これに対して本発明になる
センサは、従来の白金陰極を用いたセンサに比べてばら
つきの少ない均一な出力特性を示すだけでなく−LaO
,35Sx0.65”0.7”0.3o3−Jだけから
なる陰極を用いたセンサと同等の特性を示した。
At this time, the output current with respect to the printing voltage was measured, and the output current when a constant voltage was applied was determined for each oxygen concentration. Figure 2 shows an example where the temperature is 700°C and the voltage is 1.
The case of v is shown. In addition, measurements were performed on 10 elements each in both the example and the conventional example. As a result, conventional sensors using platinum cathodes had large variations in output, and the variation was more pronounced as the oxygen concentration was higher. In contrast, the sensor of the present invention not only exhibits uniform output characteristics with less variation compared to conventional sensors using platinum cathodes, but also -LaO
, 35S x 0.65"0.7" 0.3o3-J.

ペロプスカイト型複合酸化物は酸素還元に対する触媒活
性が高く、電極反応における反応速度が大きいために分
極が極めて小さく、はぼ一定の電位を示す電極となる。
Perovskite-type composite oxides have high catalytic activity for oxygen reduction and a high reaction rate in electrode reactions, resulting in extremely small polarization and an electrode that exhibits a nearly constant potential.

したがって定電圧駆動に際しては相手価に一定の電位が
印加される結果、流れる電流は酸素濃度に正確に対応す
るものとなる。
Therefore, in constant voltage driving, a constant potential is applied to the opposite voltage, and as a result, the flowing current accurately corresponds to the oxygen concentration.

このようなペロブスカイト型複合酸化物の優れた特性は
、実施例に示したように、8mol%Y2o3−92 
m、ol % Z r O2を混合することによって阻
害されるものではない。すなわち、8 mo l % 
Y263−92 mol % ZrO2が混在する陰極
は、基板に対して密着性が良く良好な接合状態を呈する
うえ。
The excellent properties of such a perovskite type composite oxide are as shown in the examples.
It is not inhibited by mixing m, ol % Z r O2. That is, 8 mol%
The cathode containing Y263-92 mol % ZrO2 has good adhesion to the substrate and exhibits a good bonding state.

優れた酸素イオン導電性を示すため、陰極上で還元され
た酸素イオンは速やかに固体電解質基体に移動する。こ
のように優れた電極特性を有するため、スンサ個々の電
極の微細構造の差異は出力特性にほとんど影響をおよぼ
さず、したがって特性ばらつきが小さく、高精度で応答
性よく酸素濃度検出ができる。これに対して白金陰極で
は反応速度が小さいため、電極の多孔度や表面積などの
わずかな違いが特性ばらつ尭となって現われる。
Since it exhibits excellent oxygen ion conductivity, oxygen ions reduced on the cathode quickly migrate to the solid electrolyte substrate. Because it has such excellent electrode characteristics, differences in the fine structure of the individual electrodes of Sunsa have almost no effect on the output characteristics, so variations in characteristics are small, and oxygen concentration can be detected with high accuracy and responsiveness. On the other hand, since the reaction rate of platinum cathodes is slow, slight differences in electrode porosity, surface area, etc. will result in variations in properties.

微細構造の均一な制御は極めて困難であり、製造歩留、
一定の品質確保に対する大きな障害となるものである。
Uniform control of the microstructure is extremely difficult, which reduces manufacturing yield and
This is a major obstacle to ensuring a certain level of quality.

測定はこのほか、600〜900℃の範囲で温度を変え
て行なったが、いずれの場合にも7oo℃の場合と同様
の結果を得た。
In addition, the measurements were carried out at different temperatures in the range of 600 to 900°C, but the same results as in the case of 70°C were obtained in each case.

次に、センサ特性の経時安定性について示す。Next, we will discuss the stability of sensor characteristics over time.

評価は以下のようにして行なった。前記のセンサ素子を
空気中で860℃に500時間保持した後。
The evaluation was performed as follows. After holding the sensor element in air at 860° C. for 500 hours.

700℃で前記同様の測定を行ない、出力特性を比較し
た。その結果を第3図(a) 、 (b)および(C)
に示した。本発明になるセンサの出力特性(第3図(a
))は初期とほとんど同じ特性を示した。これに対し。
The same measurements as above were performed at 700° C. and the output characteristics were compared. The results are shown in Figure 3 (a), (b) and (C).
It was shown to. Output characteristics of the sensor according to the present invention (Fig. 3 (a)
)) showed almost the same characteristics as the initial one. Against this.

LaO,35SrO,65”0.7F00.3o3−J
  だけ力゛らなる陰極を用いたセンサの出力特性(同
図(b) )は初期に比べて変化し、ばらつきもやや大
きくなった。
LaO,35SrO,65”0.7F00.3o3-J
The output characteristics of the sensor using a cathode with only a small amount of force (Fig. 2(b)) have changed compared to the initial stage, and the dispersion has become slightly larger.

また、従来の白金を用いたセンサの出力特性(同図(C
))は初期に比べて大きく変化した。本発明になるセン
サにおいては陰極と基板の密着性が優れておシ、熱的に
も安定で接合状態が変化しない。
In addition, the output characteristics of the conventional sensor using platinum (Figure (C)
)) has changed significantly compared to the beginning. In the sensor according to the present invention, the adhesion between the cathode and the substrate is excellent, and the bonding state is not changed due to thermal stability.

そのために電極特性が安定で信頼性が高く、長期にわた
り精度よく酸素濃度を検出することができる・これに対
して−”o、5sSro、e5C0o、7”o、3°3
−δだけからなる陰極を有するセンサにおいては、電極
におけるクラックの形成と一部剥離の発生により、電極
特性が変化したと考えられる。一方、白金陰極の場合に
は、長時間の高温雰囲気で徐々に焼結が進行し、電極の
微細構造の変化や表面積の減少に伴って触媒活性が低下
し、出力特性が変化したものである。
Therefore, the electrode characteristics are stable and reliable, and the oxygen concentration can be detected with high accuracy over a long period of time. - "o, 5sSro, e5C0o, 7"o, 3°3
In the sensor having a cathode made only of −δ, it is thought that the electrode characteristics changed due to the formation of cracks and the occurrence of partial peeling in the electrode. On the other hand, in the case of a platinum cathode, sintering progresses gradually in a high-temperature atmosphere over a long period of time, resulting in a change in the microstructure of the electrode and a decrease in surface area, resulting in a decrease in catalytic activity and a change in output characteristics. .

以上の実施例で明らかのように、本発明になる燃焼制御
用センサは極めて優れたものであることがわかる。実施
例では陰極のみペロプスカイト型複合酸化物と固体電解
質で形成した場合について述べたが陰極、陽極共にペロ
プスカイト型複合酸化物と固体電解質で形成したセンサ
の場合、電極が優れた酸化還元触媒能を発揮するうえ、
電極と固体電解質基板の密着性が優れるため、陰極のみ
をペロプスカイト型複合酸化物と固体電解質で形成した
場合と比穀してより個々のセンサ間の特性のばらつきが
小さく、しかも直線性に優れた出力特性を示す。また実
施例ではLnとしてLa、AとしてSr、MeとしてF
eを用い、x =0.65 、 y=0.3になる場合
について示したが、LnがCo、Pr、Ndの場合もし
くはLa、Ce、Pr、Ndの内二種以上の元素になる
場合、AがCa、Baの場合もしくはSr。
As is clear from the above examples, it can be seen that the combustion control sensor according to the present invention is extremely excellent. In the example, only the cathode was formed of a perovskite-type composite oxide and a solid electrolyte. However, in the case of a sensor in which both the cathode and anode are formed of a perovskite-type composite oxide and a solid electrolyte, the electrode has excellent redox catalytic ability. In addition to demonstrating
Because the adhesion between the electrode and the solid electrolyte substrate is excellent, the variation in characteristics between individual sensors is smaller than when only the cathode is made of perovskite composite oxide and solid electrolyte, and the linearity is excellent. The output characteristics are shown below. In addition, in the example, Ln is La, A is Sr, and Me is F.
The case where x = 0.65 and y = 0.3 using e is shown, but when Ln is Co, Pr, or Nd, or when it is two or more elements among La, Ce, Pr, or Nd. , when A is Ca, Ba or Sr.

Ca、BaO内二種以上の元素になる場合、MeがNi
、Mn、Cr、Vの場合もしくはNi、Fe、Mn、O
r。
When two or more elements are present in Ca and BaO, Me is Ni
, Mn, Cr, V or Ni, Fe, Mn, O
r.

■の内二種以上の元素になる場合、あるいは他の組成比
になる場合にも同様の結果が得られた。さらに、SrM
e’03(Me’はTi、Zr、Hfから選ぶ少なくと
も一種の元素)を混合し光場合、さらには白金族元素を
添加した場合には、電極特性の均一性を損なう事なく酸
素の酸化還元の触媒活性を高める効果を示す。また、電
極材料として混合使用する固体電解質も8mol%Y2
o3→2mol%ZrO2に限らず、同様の機能を有す
るものであればよい。
Similar results were obtained when two or more of the elements (2) or other composition ratios were used. Furthermore, SrM
When e'03 (Me' is at least one element selected from Ti, Zr, and Hf) is mixed with light, or when a platinum group element is added, oxygen oxidation and reduction can be achieved without impairing the uniformity of electrode characteristics. shows the effect of increasing the catalytic activity of In addition, the solid electrolyte mixed and used as an electrode material also contains 8 mol% Y2
It is not limited to o3→2 mol% ZrO2, but any material having a similar function may be used.

一方、基体として用いる固体電解質にも&no 1%Y
2O392mo l %Z r 02を用いたが、同様
の機能を有するものであればこれに限定するものではな
い。また、ガス拡散層も多孔質体に限らず、拡散孔を設
けた形のものでもよく、拡散層材料も電極材料、リード
材料などと非反応性のものであればよい。
On the other hand, the solid electrolyte used as a base also contains &no 1% Y.
Although 2O392mol%Zr02 was used, it is not limited to this as long as it has a similar function. Further, the gas diffusion layer is not limited to a porous material, and may be of a type provided with diffusion holes, and the material of the diffusion layer may be any material as long as it is non-reactive with the electrode material, lead material, etc.

一方、センサの形態も層状平板型に限定するものではな
く、発明の主旨に反しない限シ任意の形態をとり得るも
のである。また、電極、ガス拡散層その他の作製法も実
施例に限定するものではなく焼結、スパッタ、印刷、塗
布熱分解その他の方法およびそれらを組み合わせた方法
を用いることができるものである。
On the other hand, the form of the sensor is not limited to the layered flat plate type, and may take any form as long as it does not go against the spirit of the invention. Furthermore, the methods for producing electrodes, gas diffusion layers, and the like are not limited to those in the examples, but may include sintering, sputtering, printing, coating pyrolysis, and other methods, as well as combinations thereof.

発明の効果 以上のように、本発明になる燃焼制御用センサは極めて
安定した特性を示すため、長期間にわたって精度よく燃
焼排ガス中の酸素濃度を測定でき、適正な燃焼状態に制
御することができる。
Effects of the Invention As described above, the combustion control sensor of the present invention exhibits extremely stable characteristics, so it is possible to accurately measure the oxygen concentration in the combustion exhaust gas over a long period of time, and to control the combustion to an appropriate state. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の燃焼制御用センサの模式的
断面図、第2図は同センサ素子の出力特性図、第3図a
、bおよびCはそれぞれ前記実施例および従来例のセン
サ出力特性の経時安定性を示す図である。 1・・・・・・酸素イオン導電性固体電解質、2・・・
・・・陽極、3・・・・・・陰極、4・・・・・・陽極
引出端子、5・・・・・・陰極引出端子、6・・・・・
・多孔質ガス拡散層、7・・・・・・気体不透過シール
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 酸素濃X(%) 83図 酸!濃度(42 第3図 酸素儂浸(幻
Fig. 1 is a schematic cross-sectional view of a combustion control sensor according to an embodiment of the present invention, Fig. 2 is an output characteristic diagram of the sensor element, and Fig. 3 a
, b and c are diagrams showing the stability over time of the sensor output characteristics of the embodiment and the conventional example, respectively. 1...Oxygen ion conductive solid electrolyte, 2...
... Anode, 3... Cathode, 4... Anode lead-out terminal, 5... Cathode lead-out terminal, 6...
- Porous gas diffusion layer, 7... Gas impermeable seal. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Oxygen concentration X (%) Figure 83 Acid! Concentration (42 Figure 3 Oxygen immersion (illusion)

Claims (4)

【特許請求の範囲】[Claims] (1)酸素イオン導電性固体電解質(以下、固体電解質
という)からなる基体上に設ける一対の電極の内少なく
とも陰極となる電極が一般式 Ln_1_−_xA_xCo_1_−_yMe_yO_
3_−_δ(LnはLa、Ce、Pr、Ndから選ぶ少
なくとも一種の元素、AはSr、Ca、Baから選ぶ少
なくとも一種の元素、MeはNi、Fe、Mn、Cr、
Vから選ぶ少なくとも一種の元素、0≦x≦1、0≦y
≧1、δは酸素欠損量)で表わされるペロブスカイト型
複合酸化物と固体電解質とからなり、前記一対の電極に
電極引出端子を設け、前記陰極上にガス拡散層を設け、
さらに前記電極、固体電解質基体およびガス拡散層から
なる構造体の外周端面を気体不透過状態にすることを特
徴とする燃焼制御用センサ。
(1) Among a pair of electrodes provided on a substrate made of an oxygen ion conductive solid electrolyte (hereinafter referred to as solid electrolyte), at least the electrode serving as a cathode has the general formula Ln_1_-_xA_xCo_1_-_yMe_yO_
3_-_δ (Ln is at least one element selected from La, Ce, Pr, and Nd; A is at least one element selected from Sr, Ca, and Ba; Me is Ni, Fe, Mn, Cr,
At least one element selected from V, 0≦x≦1, 0≦y
≧1, δ is the amount of oxygen vacancies) and a solid electrolyte, an electrode lead terminal is provided on the pair of electrodes, a gas diffusion layer is provided on the cathode,
Furthermore, a combustion control sensor characterized in that an outer peripheral end face of the structure including the electrode, solid electrolyte base, and gas diffusion layer is made gas impermeable.
(2)電極材料にSrMe’O_3(Me’はTi、Z
r、Hrから選ぶ少なくとも一種の元素)を前記ペロブ
スカイト型複合酸化物に対して0〜80mol%、望ま
しくは40〜70mol%添加することを特徴とする特
許請求の範囲第1項記載の熱焼制御用センサ。
(2) SrMe'O_3 (Me' is Ti, Z
The thermal sintering control according to claim 1, characterized in that at least one element selected from r and Hr is added in an amount of 0 to 80 mol%, preferably 40 to 70 mol%, to the perovskite type composite oxide. sensor.
(3)電極材料に少なくとも一種の白金族元素を添加す
ることを特徴とする特許請求の範囲第1項または第2項
記載の燃焼制御用センサ。
(3) The combustion control sensor according to claim 1 or 2, wherein at least one platinum group element is added to the electrode material.
(4)拡散層はMgOあるいはMgOを主体とする材料
からなることを特徴とする特許請求の範囲第1項、第2
項または第3項記載の燃焼制御用センサ。
(4) Claims 1 and 2, characterized in that the diffusion layer is made of MgO or a material mainly composed of MgO.
Combustion control sensor according to item 1 or 3.
JP62262148A 1987-10-16 1987-10-16 Combustion control sensor Expired - Lifetime JPH0692957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262148A JPH0692957B2 (en) 1987-10-16 1987-10-16 Combustion control sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262148A JPH0692957B2 (en) 1987-10-16 1987-10-16 Combustion control sensor

Publications (2)

Publication Number Publication Date
JPH01102354A true JPH01102354A (en) 1989-04-20
JPH0692957B2 JPH0692957B2 (en) 1994-11-16

Family

ID=17371726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262148A Expired - Lifetime JPH0692957B2 (en) 1987-10-16 1987-10-16 Combustion control sensor

Country Status (1)

Country Link
JP (1) JPH0692957B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196952A (en) * 1989-01-26 1990-08-03 Matsushita Electric Ind Co Ltd Sensor for combustion control
JPH02269947A (en) * 1989-04-11 1990-11-05 Matsushita Electric Ind Co Ltd Sensor for combustion control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311160A (en) * 1987-06-15 1988-12-19 Tech Res Assoc Conduct Inorg Compo Sensor for burning control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311160A (en) * 1987-06-15 1988-12-19 Tech Res Assoc Conduct Inorg Compo Sensor for burning control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196952A (en) * 1989-01-26 1990-08-03 Matsushita Electric Ind Co Ltd Sensor for combustion control
JPH02269947A (en) * 1989-04-11 1990-11-05 Matsushita Electric Ind Co Ltd Sensor for combustion control

Also Published As

Publication number Publication date
JPH0692957B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US5755940A (en) Lithium ionic conducting glass thin film and carbon dioxide sensor comprising the glass thin film
JPH07198675A (en) Gas sensor using ion conductor and its manufacture
JPH01119749A (en) Wide-band air fuel ratio sensor and detecting device
JPS63158451A (en) Combustion control sensor
EP0766085B1 (en) Electrochemical device
JPH01102354A (en) Sensor for controlling combustion
JP2805811B2 (en) Combustion control sensor
JPH02167461A (en) Sensor for combustion control
Mo et al. A limiting current oxygen sensor based on (La0. 4Ce0. 6O2-δ) 0.96 (FeO1. 5) 0.04 as dense diffusion barrier
JPS63311161A (en) Sensor for burning control
JPH02196953A (en) Sensor for combustion control
JPH0221259A (en) Sensor for combustion control
JPH01102355A (en) Sensor for controlling combustion
JP2948124B2 (en) Oxygen sensor
JPS62144063A (en) Threshold current type oxygen sensor
JPH0197854A (en) Sensor for burning control
JPS63158452A (en) Combustion control sensor
JPH0531105B2 (en)
JPH02196952A (en) Sensor for combustion control
JPH02269947A (en) Sensor for combustion control
JPH03165253A (en) Oxygen sensor
JPH0652251B2 (en) Combustion control sensor
JPH02167459A (en) Sensor for combustion control
JPH01102356A (en) Sensor for controlling combustion
JPH1123518A (en) Carbon monoxide gas detecting element