JPH01102355A - Sensor for controlling combustion - Google Patents

Sensor for controlling combustion

Info

Publication number
JPH01102355A
JPH01102355A JP62262149A JP26214987A JPH01102355A JP H01102355 A JPH01102355 A JP H01102355A JP 62262149 A JP62262149 A JP 62262149A JP 26214987 A JP26214987 A JP 26214987A JP H01102355 A JPH01102355 A JP H01102355A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
element selected
electrodes
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62262149A
Other languages
Japanese (ja)
Inventor
Koichi Tachibana
立花 弘一
Koji Yamamura
康治 山村
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES ASSOC CONDUCT INORG COMPO
Original Assignee
TECH RES ASSOC CONDUCT INORG COMPO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES ASSOC CONDUCT INORG COMPO filed Critical TECH RES ASSOC CONDUCT INORG COMPO
Priority to JP62262149A priority Critical patent/JPH01102355A/en
Publication of JPH01102355A publication Critical patent/JPH01102355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To measure the concn. of oxygen in combustion exhaust gas with good accuracy over a long period of time, by interposing an intermediate layer between a solid electrolyte and an electrode. CONSTITUTION:A pair of electrodes 2, 4, at least an electrode 4 working as a cathode, provided on a substrate composed of an oxygen ion conductive solid electrolyte 1 is composed of perovskite type composite oxide represented by predetermined formula (wherein Ln is at least one element selected from La, Ce, Pr and Nd, A is at least one element selected from Sr, Ca and Ba, Me is at least one element selected from Ni, Fe, Mn, Cr and V, 0<=x<=1, 0<=y<=1 and delta is an oxygen deficient amount). Electrode lead-out terminals 5, 6 are provided to the electrodes 2, 4 and a gas diffusion layer 7 is provided on the cathode 4 and, further, the outer peripheral side surface of the structure consisting of the electrodes 2, 4, the electrolyte 1 and the diffusion layer 7 is brought to a gas impervious state. Furthermore, an intermediate layer 3 composed of an oxygen ion conductor non-reactive with both of the electrolyte 1 and the electrodes 2, 4 is interposed. By this method, the concn. of oxygen in combustion exhaust gas can be measured with good accuracy over a long period of time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃焼排ガスなどの被測定ガス中の残存酸素濃
度によシ空究と燃料の比を検出し、適正な燃焼状態を維
持するために用いる燃焼制御用センサに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention detects the air/fuel ratio based on the residual oxygen concentration in a gas to be measured such as combustion exhaust gas, and is used to maintain a proper combustion state. This invention relates to a combustion control sensor to be used.

従来の技術 従来、この種のセンサとしては、酸素イオン導電性固体
電解質として安定化ジルコニアを用い、陽極および陰極
として白金を用い、さらに陰極上にガス拡散層を設けた
形のものがある。該センサにおいては、両極間に印加さ
れる電圧によって固体電解質中を酸素イオンが移動し、
これを電流として取り出すことができる。この酸素イオ
ンの移動は陰極上に設けたガス拡散層によって結果的に
律速されるため、出力電流は一定値まで増加した後飽和
する。この飽和電流値は雰囲気中の酸素濃度に応じた値
を示すだめ、電流値を測定することにより排ガス中の酸
素濃度を知ることができ、したがって適正な空燃比にな
るように燃焼を制御することが可能になる。
BACKGROUND OF THE INVENTION Conventionally, this type of sensor has used stabilized zirconia as an oxygen ion conductive solid electrolyte, platinum as an anode and a cathode, and a gas diffusion layer provided on the cathode. In this sensor, oxygen ions move in a solid electrolyte by a voltage applied between two electrodes,
This can be extracted as current. Since this movement of oxygen ions is ultimately rate-limited by the gas diffusion layer provided on the cathode, the output current increases to a certain value and then becomes saturated. This saturation current value indicates a value that corresponds to the oxygen concentration in the atmosphere, so by measuring the current value, it is possible to know the oxygen concentration in the exhaust gas, and therefore combustion can be controlled to achieve an appropriate air-fuel ratio. becomes possible.

これに対して発明者らは、電極材料として白金にかえて
一般式L n 1−、A x Co 1−yM e y
 O3−δで表わされるペロブスカイト型複合酸化物を
用いる燃焼制御用センサを提案した。白金電極の場合に
は電極反応速度が小さいために分極が大きく、該電極自
身の電位が不安定になって相手極に一定の電位が印加さ
れがたい。この点を改善するだめに表面積を増加させる
ことが必要になるが、白金は高温で焼結を起こしやすい
こともあって、均質かつ長期安定性を有する多孔質電極
とすることは極めて困難である。これに対して前記ペロ
プスカイト型複合酸化物を電極材料として用いると、酸
素の酸化還元反応に高い触媒活性を有するだめ、電極反
応に際しての分極が極めて小さく安定した電極電位を与
える。その結果相手極に絶えず一定の電位が印加され、
ばらつきの小さな優れたセンサ特性が得られる。また、
熱的にも安定で長期間にわたって優れた特性を維持する
ことができる。
On the other hand, the inventors used the general formula L n 1-, A x Co 1-y M e y instead of platinum as the electrode material.
We have proposed a combustion control sensor using a perovskite complex oxide represented by O3-δ. In the case of platinum electrodes, polarization is large because the electrode reaction rate is low, and the potential of the electrode itself becomes unstable, making it difficult to apply a constant potential to the other electrode. To improve this point, it is necessary to increase the surface area, but platinum is prone to sintering at high temperatures, so it is extremely difficult to create a porous electrode that is homogeneous and has long-term stability. . On the other hand, when the perovskite type composite oxide is used as an electrode material, it has a high catalytic activity for the oxygen redox reaction, and thus provides a stable electrode potential with extremely low polarization during the electrode reaction. As a result, a constant potential is constantly applied to the other pole,
Excellent sensor characteristics with small variations can be obtained. Also,
It is thermally stable and can maintain excellent properties over a long period of time.

発明が解決しようとする問題点 燃焼排ガス中の酸素濃度を測定する場合、燃焼部近傍の
排ガス通路に直接センサを設置することが一般的である
。そのため、燃焼条件により、あるいは異常燃焼などに
よシセンサ素子が非常々高温にさらされることがある。
Problems to be Solved by the Invention When measuring the oxygen concentration in combustion exhaust gas, it is common to install a sensor directly in the exhaust gas passage near the combustion section. Therefore, depending on combustion conditions or due to abnormal combustion, the sensor element may be exposed to extremely high temperatures.

該センサの特性を左右する大きな要素として電極と固体
電解質の接触界面の特性がある。ペロブスカイト型複合
酸化物電極は前述したように優れた電極特性を示し、熱
的にも安定しているが、950〜10oo℃以上になる
と固体電解質と反応し、異なる結晶構造を有する物質と
なって電極と固体電解質の界面に析出する場合がある。
A major factor that influences the characteristics of the sensor is the characteristics of the contact interface between the electrode and the solid electrolyte. As mentioned above, perovskite-type composite oxide electrodes exhibit excellent electrode properties and are thermally stable, but at temperatures above 950-100°C, they react with the solid electrolyte and become substances with different crystal structures. It may be deposited at the interface between the electrode and solid electrolyte.

その結果、イオン導電性が低下して電極反応に際して分
極が大きくなり、電極電位の安定性が失われる。そのた
め、センサ特性が劣化したりばらつきが大きくなって信
頼性の乏しいものとなる恐れがある。
As a result, ionic conductivity decreases, polarization increases during electrode reactions, and stability of electrode potential is lost. Therefore, there is a risk that sensor characteristics may deteriorate or variations may become large, resulting in poor reliability.

問題点を解決するだめの手段 本溌明は、前記の問題点に着目してなされたもので、固
体電解質と電極の反応を阻止するために、固体電解質と
電極との間に固体電解質と電極の両方に対して非反応性
でかつ熱的に安定な酸素イオン導電体からなる中間層を
介在させるものである。
Means to Solve the Problem This book was developed by focusing on the above-mentioned problem.In order to prevent the reaction between the solid electrolyte and the electrode, a solid electrolyte and an electrode are placed between the solid electrolyte and the electrode. An intermediate layer made of a thermally stable oxygen ion conductor that is non-reactive with respect to both of the two is interposed.

作  用 固体電解質と電極との間に、固体電解質と電極の両方に
対して非反応性であシ、かつ熱的に安定な酸素イオン導
電体からなる中間層を介在させることにより、固体電解
質と電極の反応を阻止できる。また、中間層自体酸素イ
オン導電体を有しておシ、かつ固体電解質と電極の両方
と反応しないため、酸素イオン導電には障害とならない
。その結果、ペロプスカイト型複合酸化物の酸素の酸化
還元に対する優れた触媒作用とそれに基づく電極反応に
際しての分極特性は安定に維持され、均一で安定したセ
ンサ特性が得られる。
Function: By interposing an intermediate layer between the solid electrolyte and the electrode, which is made of a thermally stable oxygen ion conductor that is non-reactive with respect to both the solid electrolyte and the electrode, the solid electrolyte and the electrode are interposed. Can prevent electrode reactions. Further, since the intermediate layer itself has an oxygen ion conductor and does not react with both the solid electrolyte and the electrode, it does not interfere with oxygen ion conduction. As a result, the excellent catalytic action of the perovskite-type composite oxide against oxygen redox and the polarization characteristics during electrode reactions based on this are maintained stably, resulting in uniform and stable sensor characteristics.

実施例 第1図は本発明になるセンサ素子の一実施例を示す模式
的断面図である。1はBmo1%Y2o3−92mo1
%Z r 02からなる酸素イオン導電性固体電解質板
(5,6φX1tm)、2は白金ペーストをスクリーン
印刷によって付着させて形成した陽極(3μmt)、3
は化学式La0.9Ba0.1AIO3,、、aで表わ
される酸化物をフレーム溶射によって形成した中間層(
1o /jmt )、4は化学式%式%ペ ロプスカイト型複合酸化物物をフレーム溶射によって付
着させて形成した陰極(20μmt)、6は陽極引出端
子、6は陰極引出端子、7は無機質の多孔質ガス拡散層
(100μmt)、8はガラス質の気体不透過シールで
ある。比較のため、3の中間層を設けないセンサ素子と
、おなじく中間層を設けずかつ白金ペーストをスクリー
ン印刷によって付着形成した陰極を有するセンサ素子を
それぞれ作製した。
Embodiment FIG. 1 is a schematic sectional view showing an embodiment of a sensor element according to the present invention. 1 is Bmo1%Y2o3-92mo1
% Z r 02 oxygen ion conductive solid electrolyte plate (5,6φX1tm), 2 is an anode (3μmt) formed by attaching platinum paste by screen printing, 3
is an intermediate layer formed by flame spraying an oxide represented by the chemical formula La0.9Ba0.1AIO3,...
1o/jmt), 4 is a cathode (20 μmt) formed by attaching perovskite type composite oxide by flame spraying, 6 is an anode lead terminal, 6 is a cathode lead terminal, 7 is an inorganic porous Gas diffusion layer (100 μmt), 8 is a glassy gas impermeable seal. For comparison, a sensor element without an intermediate layer as in No. 3 and a sensor element without an intermediate layer and having a cathode with a platinum paste deposited by screen printing were fabricated.

以上のようにして作製したセンサを動作特性試験に供し
た。第2図に、センサの出力特性の測定結果を示した。
The sensor fabricated as described above was subjected to an operating characteristic test. FIG. 2 shows the measurement results of the output characteristics of the sensor.

測定は以下のようにして行なった。The measurements were carried out as follows.

電気炉中にセンサ素子を設置し、所定の素子温度になる
ように温度制御を行ない、所定濃度の酸素−窒素混合ガ
スを約1ocIR/!ieCの流速で流通接触させた。
A sensor element is installed in an electric furnace, the temperature is controlled to a predetermined element temperature, and an oxygen-nitrogen mixed gas of a predetermined concentration is supplied at approximately 1ocIR/! Flow contact was carried out at a flow rate of ieC.

このとき、印加する電圧に対する出力電流を測定し、一
定電圧印加時における出力電流を各酸素濃度に対して求
めた。第2図には、例として温度が800℃、電圧が1
vの場合を示した。
At this time, the output current with respect to the applied voltage was measured, and the output current when a constant voltage was applied was determined for each oxygen concentration. In Figure 2, as an example, the temperature is 800°C and the voltage is 1.
The case of v is shown.

なお、実施例、従来例共に各10個の素子について測定
した。ペロプスカイト型複合酸化物陰極を用いたセンサ
の場合は、中間層の有無にかかわらず特性のばらつきが
小さく均一な出力特性を示しているが、従来の白金陰極
を用いたセンサは出力のばらつきが大きく、しかも酸素
濃度が高いほど顕著であった。ペロプスカイト型複合酸
化物は酸妻還元に対する触媒活性が高く、電極反応にお
ける反応速度が大きいために分極が極めて小さく、はぼ
一定の電位を示す電極となる。したがって定電圧駆動に
際しては相手極に一定の電位が印加される結果、流れる
電流は酸素濃度に正確に対応するものとなる。このよう
に優れた電極特性を有するため、センサ個々の電極の微
細構造の差異は出力特性にほとんど影響を及ぼさず、し
たがって特性ばらつきが小さく、高精度で応答性よく酸
素濃度検出ができる。中間層を介在させだセンサの場合
にも、中間層自身が酸素イオン導電体として機能するた
めに、電極特性をなんら損なうことがなく、したがって
ペロプスカイト型複合酸化物陰極を用いたセンサの優れ
た特性を発揮している。これに対して白金陰極では反応
速度が小さく電極反応に際して分極が大きいため、相手
極に印加される電位が安定せず、流れる電流は酸素濃度
を正確に示すものとならない。したがって、電極の多孔
度や表面積などのわずかな違いが特性ばらつきとなって
現われる。微細構造の均一な制御は極めて困難であり、
製造歩留、一定の品質確保に対する大きな障害となるも
のである。測定はこのほか、600〜900℃の範囲で
温度を変えて行なったが、いずれの場合にも700℃の
場合と同様の結果を得た。
In addition, measurements were performed on 10 elements each in both the example and the conventional example. Sensors using perovskite-type composite oxide cathodes show uniform output characteristics with small variations in characteristics regardless of the presence or absence of an intermediate layer, but sensors using conventional platinum cathodes show uniform output characteristics. The larger the size, and the higher the oxygen concentration, the more conspicuous it was. Perovskite-type composite oxides have high catalytic activity for acid reduction and a high reaction rate in electrode reactions, resulting in extremely small polarization and an electrode that exhibits a nearly constant potential. Therefore, in constant voltage driving, a constant potential is applied to the other electrode, and as a result, the flowing current accurately corresponds to the oxygen concentration. Because the sensor has such excellent electrode characteristics, differences in the fine structure of the electrodes of individual sensors have almost no effect on the output characteristics, and therefore characteristic variations are small and oxygen concentration can be detected with high precision and responsiveness. Even in the case of a sensor with an intervening intermediate layer, the intermediate layer itself functions as an oxygen ion conductor, so there is no loss in electrode properties; therefore, the sensor using a perovskite composite oxide cathode has excellent It shows its characteristics. On the other hand, with a platinum cathode, the reaction rate is low and polarization is large during the electrode reaction, so the potential applied to the other electrode is unstable and the flowing current does not accurately indicate the oxygen concentration. Therefore, slight differences in electrode porosity, surface area, etc. appear as variations in characteristics. Uniform control of microstructure is extremely difficult;
This is a major obstacle to manufacturing yield and ensuring constant quality. In addition, the measurements were carried out at different temperatures in the range of 600 to 900°C, and in each case the same results as in the case of 700°C were obtained.

次に、センサ特性の熱室一定性について示す。評価は以
下のようにして行なった。前記のセンサ素子を空気中で
800℃1時間保持−1000℃10分間保持のサイク
ルを連続して60回くりかえした後、soo’cで前記
同様の測定を行ない、出力特性を比較した。その結果を
第3図a、bおよびCに示す。中間層を用いたセンサの
出力特性は第3図aに示すようにほとんど変化していな
い。
Next, the thermal chamber constancy of sensor characteristics will be explained. The evaluation was performed as follows. After the sensor element was subjected to a cycle of holding at 800° C. for 1 hour and holding at 1000° C. for 10 minutes in the air, 60 times in succession, the same measurements as above were carried out using soo'c, and the output characteristics were compared. The results are shown in Figures 3a, b and c. The output characteristics of the sensor using the intermediate layer remain almost unchanged as shown in FIG. 3a.

中間層を用いていないセンサの場合は第3図すに示すよ
うに出力特性が初期に比べて変化し、ばらつきも大きく
なっている。白金を用いたセンサの場合は第3図Cに示
すような特性の変化が認められたが、第3図すに示した
素子の特性に比べて軽度であった。中間層を用いないセ
ンサ素子の固体電解質と陰極との界面を分析した結果、
化学式S r 2 Z r O4で表わされる物質の存
在が認められた。
In the case of a sensor that does not use an intermediate layer, as shown in FIG. 3, the output characteristics change compared to the initial state, and the variation becomes large. In the case of the sensor using platinum, a change in the characteristics as shown in FIG. 3C was observed, but it was milder than the characteristics of the element shown in FIG. 3S. As a result of analyzing the interface between the solid electrolyte and the cathode of a sensor element that does not use an intermediate layer,
The presence of a substance represented by the chemical formula S r 2 Z r O4 was observed.

これは絶縁体であり該物質の生成によって分極特性が悪
くなった結果、センサの出力特性が変化したと考えられ
る。また、白金を用いた場合には、高温雰囲気で徐々に
焼結が進行し、電極の微細構造の変化や表面積の減少に
伴って触媒活性が低下し、出力特性が変化したものであ
る。これに対して、中間層を介在させたセンサの場合に
は固体電解質と中間層との界面および陰極と中間層との
界面には結晶構造の異なる物質の生成が認められず、初
期の構造がよく保たれているため、電極特性にほとんど
変化が生じていない。その結果、センサの出力特性が安
定に維持されたと考えられる。
This is an insulator, and it is thought that the output characteristics of the sensor changed as a result of the polarization characteristics becoming worse due to the production of this substance. Furthermore, when platinum is used, sintering progresses gradually in a high-temperature atmosphere, and as the microstructure of the electrode changes and the surface area decreases, the catalytic activity decreases and the output characteristics change. On the other hand, in the case of a sensor with an intermediate layer, no substances with different crystal structures were observed at the interface between the solid electrolyte and the intermediate layer and between the cathode and the intermediate layer, and the initial structure remained unchanged. Since it is well maintained, there is almost no change in the electrode characteristics. As a result, it is thought that the output characteristics of the sensor were maintained stably.

以上の実施例で明らかなように、本発明になる燃焼制御
用センサは極めて優れた特性を示すものである。実施例
では陰極のみペロプスカイト型複合酸化物で形成した場
合について述べたが陰極。
As is clear from the above examples, the combustion control sensor according to the present invention exhibits extremely excellent characteristics. In the example, the case where only the cathode was formed of a perovskite type composite oxide was described.

陽極共にペロプスカイト型複合酸化物で形成し、かつ中
間層を固体電解質と陽極の間にも介在させたセンサの場
合には、ペロブスカイト型複合酸化物が酸化還元触媒反
応に優れた活性を示し、かつ中間層が優れた酸素イオン
導電体であるため、陰極のみをペロプスカイト型複合酸
化物で形成した場合と比較してより個々のセンサ間の特
性のばらつきが小さく、しかも直線性に優れた出力特性
を示す。また実施例ではLnとしてLa、AとしてSr
、MsとしてFeを用い、かつx = 0.65.7=
0.3  になる場合について示したが、LnがCe、
Pr、Ndの場合もしくはLa、Go、Pr、NdO内
二内板種以上素になる場合、AがCa、Baの場合もし
くはSr、Ca、Baの内板種以上の元素になる場合、
MeがNi、Mn、Cr、Vの場合もしくはNi、Fe
、Mn、Ct、Vの内二種以上0元素になる場合、ある
いは他の組成比の場合にも同様の結果が得られた。さら
に、S r M e ’ 03(M e ’はTi。
In the case of a sensor in which both the anode and the anode are formed of a perovskite-type composite oxide and an intermediate layer is also interposed between the solid electrolyte and the anode, the perovskite-type composite oxide exhibits excellent activity in redox catalytic reactions, In addition, because the intermediate layer is an excellent oxygen ion conductor, the variation in characteristics between individual sensors is smaller than when only the cathode is made of perovskite-type composite oxide, and output with excellent linearity is achieved. Show characteristics. In addition, in the example, Ln is La and A is Sr.
, using Fe as Ms, and x = 0.65.7=
The case where Ln becomes 0.3 was shown, but when Ln is Ce,
In the case of Pr, Nd, or in the case of La, Go, Pr, NdO being an element of two or more inner plate types, in the case of A being Ca, Ba, or in the case of A being an element of more than the inner plate type of Sr, Ca, Ba,
When Me is Ni, Mn, Cr, V or Ni, Fe
Similar results were obtained when two or more of , Mn, Ct, and V were zero elements, or when other composition ratios were used. Furthermore, S r M e ' 03 (M e ' is Ti.

Zr、Hfから選ぶ少なくとも一種の元素)を混合した
場合、白金族元素を添加した場合には、電極特性の均一
性を損なうことなく酸素の酸化還元触媒活性を高める効
果を示す。また、基体として用いる固体電解質には8m
o1%Y2o3−92mo1%Z r 02を用いたが
、同様の機能を有するものであればこれに限定するもの
ではない。中間層材料も同様の機能を有するものであれ
ば実施例に限定するもの士はない。また、ガス拡散層は
多孔質体に限らず拡散孔を設けるなどしてもよく、材料
も陰極材料、リード材料などと非反応性のものであれば
よい。一方、センサ形態も層状平板型に限定するもので
はなく、発明の主旨に反しない限り任意の形態を取り得
るものである。また、電極、ガス拡散層その他の作製法
も実施例に限定するものではなく、焼結、スパッタ、印
刷、塗布熱分解その他の方法およびそれらを組み合わせ
た方法を用いることができるものである。
When at least one element selected from Zr and Hf is mixed, when a platinum group element is added, the effect of increasing the oxygen redox catalytic activity is exhibited without impairing the uniformity of electrode characteristics. In addition, 8 m
Although o1%Y2o3-92mo1%Zr02 was used, it is not limited to this as long as it has a similar function. The intermediate layer material is not limited to the examples as long as it has the same function. Further, the gas diffusion layer is not limited to a porous material, and may be provided with diffusion holes, and the material may be any material as long as it is non-reactive with the cathode material, lead material, etc. On the other hand, the form of the sensor is not limited to the layered flat plate type, and may take any form as long as it does not go against the spirit of the invention. Furthermore, the methods for producing electrodes, gas diffusion layers, and the like are not limited to those in the examples, but may include sintering, sputtering, printing, coating pyrolysis, and other methods, as well as combinations thereof.

発明の効果 以上のように、本発明になる燃焼制御用センサは極めて
安定した特性を示すため、長期間にわたって精度よく燃
焼排ガス中の酸素濃度を測定でき、適正な燃焼状態に制
御することができるものである。
Effects of the Invention As described above, the combustion control sensor of the present invention exhibits extremely stable characteristics, so it is possible to accurately measure the oxygen concentration in the combustion exhaust gas over a long period of time, and to control the combustion to an appropriate state. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる燃焼制御用センサの一実施例を示
す模式的断面図、第2図はセンサ素子の出力特性図、第
3図a、bおよびCはそれぞれ前記実施例、従来例(中
間層なし)および従来例(白金陰極)の各センサ特性の
熱安定性を示す図である。 1・・・・・・酸素イオン導電性固体電解質、2・・・
・・・陽極、3・・・・・・中間層、4・・・・・・陰
極、6・・・・・・陽極引出端子、6・・・・・・陰極
引出端子、7・・・・・・多孔質ガス拡散層、8・・・
・・・気体不透過シール。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
21!1 鹸  禾 メ農 &  (ゾJ 区  −)1砕舒慎1 c’1)             ε碗 快 −鑓 
で ;
FIG. 1 is a schematic sectional view showing one embodiment of the combustion control sensor according to the present invention, FIG. 2 is an output characteristic diagram of the sensor element, and FIG. FIG. 3 is a diagram showing the thermal stability of each sensor characteristic of a conventional example (without intermediate layer) and a conventional example (platinum cathode). 1...Oxygen ion conductive solid electrolyte, 2...
... Anode, 3... Intermediate layer, 4... Cathode, 6... Anode lead terminal, 6... Cathode lead terminal, 7... ...Porous gas diffusion layer, 8...
...Gas impermeable seal. Name of agent: Patent attorney Toshio Nakao and 1 other person
21! 1 Ken He Me-Nong & (Zo J Ward -) 1 Break Shushin 1 c'1) ε Bowl Kai - Yin
in;

Claims (3)

【特許請求の範囲】[Claims] (1)酸素イオン導電性固体電解質(以下、固体電解質
という)からなる基体上に設ける一対の電極の内少なく
とも陰極となる電極が一般式 Ln_1_−_xA_xCo_1_−_yMe_yO_
3_−_δ(LnはLa、Ce、Pr、Ndから選ぶ少
なくとも一種の元素、AはSrCa、Baから選ぶ少な
くとも一種の元素、MeはNi、Fe、Mn、Cr、V
から選ぶ少なくとも一種の元素、0≦x≦1、0≦y≦
1、δは酸素欠損量〕で表わされるペロブスカイト型複
合酸化物からなり、前記一対の電極にそれぞれ電極引出
端子を設け、前記陰極上にガス拡散層を設け、さらに前
記電極、固体電解質基体およびガス拡散層からなる構造
体の外周側面を気体不透過状態になし、前記固体電解質
と前記複合酸化物からなる電極との間に熱的に安定でか
つ固体電解質と酸化物電極の両方に対して非反応性であ
る酸素イオン導電体からなる中間層を介在させることを
特徴とする燃焼制御用センサ。
(1) Among a pair of electrodes provided on a substrate made of an oxygen ion conductive solid electrolyte (hereinafter referred to as solid electrolyte), at least the electrode serving as a cathode has the general formula Ln_1_-_xA_xCo_1_-_yMe_yO_
3_-_δ (Ln is at least one element selected from La, Ce, Pr, and Nd; A is at least one element selected from SrCa and Ba; Me is Ni, Fe, Mn, Cr, and V
At least one element selected from 0≦x≦1, 0≦y≦
1, δ is the amount of oxygen vacancies], each of the pair of electrodes is provided with an electrode lead terminal, a gas diffusion layer is provided on the cathode, and the electrode, solid electrolyte substrate and gas The outer peripheral side surface of the structure consisting of a diffusion layer is made gas-impermeable, and a structure is formed between the solid electrolyte and the composite oxide electrode that is thermally stable and non-permeable to both the solid electrolyte and the oxide electrode. A combustion control sensor characterized by interposing an intermediate layer made of a reactive oxygen ion conductor.
(2)電極材料にSrMe’O_3(Me’はTi、Z
r、Hfから選ぶ少なくとも一種の元素)を前記ペロブ
スカイト型複合酸化物に対して0〜80mol%、望ま
しくは40〜70mol%添加することを特徴とする特
許請求の範囲第1項記載の燃焼制御用センサ。
(2) SrMe'O_3 (Me' is Ti, Z
0 to 80 mol%, preferably 40 to 70 mol% of at least one element selected from r, Hf) is added to the perovskite type composite oxide. sensor.
(3)電極材料に少なくとも一種の白金族元素を添加す
ることを特徴とする特許請求の範囲第1項または第2項
記載の燃焼制御用センサ。
(3) The combustion control sensor according to claim 1 or 2, wherein at least one platinum group element is added to the electrode material.
JP62262149A 1987-10-16 1987-10-16 Sensor for controlling combustion Pending JPH01102355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262149A JPH01102355A (en) 1987-10-16 1987-10-16 Sensor for controlling combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262149A JPH01102355A (en) 1987-10-16 1987-10-16 Sensor for controlling combustion

Publications (1)

Publication Number Publication Date
JPH01102355A true JPH01102355A (en) 1989-04-20

Family

ID=17371739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262149A Pending JPH01102355A (en) 1987-10-16 1987-10-16 Sensor for controlling combustion

Country Status (1)

Country Link
JP (1) JPH01102355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599892A (en) * 1991-10-04 1993-04-23 Fujikura Ltd Thin film gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599892A (en) * 1991-10-04 1993-04-23 Fujikura Ltd Thin film gas sensor

Similar Documents

Publication Publication Date Title
US5755940A (en) Lithium ionic conducting glass thin film and carbon dioxide sensor comprising the glass thin film
JP6195901B2 (en) Sensor using internal reference electrode
JP2015514988A5 (en)
JPS63158451A (en) Combustion control sensor
JP2541530B2 (en) Solid electrolyte device and manufacturing method thereof
US4514277A (en) Oxygen sensor element
JPH01102355A (en) Sensor for controlling combustion
JPH04504170A (en) Sensor element for limiting current sensors for measuring the λ value of gas mixtures
JP2805811B2 (en) Combustion control sensor
JPH02167461A (en) Sensor for combustion control
JPH01102354A (en) Sensor for controlling combustion
JPH02196953A (en) Sensor for combustion control
JPS62144063A (en) Threshold current type oxygen sensor
JPS63158452A (en) Combustion control sensor
JPH0221259A (en) Sensor for combustion control
JPH0197854A (en) Sensor for burning control
JPS63311161A (en) Sensor for burning control
JPS63261150A (en) Sensor for controlling combustion
JPH0531105B2 (en)
JPS6398557A (en) Low temperature operation type oxygen sensor
JPH03120456A (en) Oxygen sensor
JPH08220060A (en) Oxygen sensor
JPH02269947A (en) Sensor for combustion control
JPH0652251B2 (en) Combustion control sensor
JPH01102356A (en) Sensor for controlling combustion