JPH01227956A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPH01227956A
JPH01227956A JP63053765A JP5376588A JPH01227956A JP H01227956 A JPH01227956 A JP H01227956A JP 63053765 A JP63053765 A JP 63053765A JP 5376588 A JP5376588 A JP 5376588A JP H01227956 A JPH01227956 A JP H01227956A
Authority
JP
Japan
Prior art keywords
sensor
oxygen
electrode
solid electrolyte
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63053765A
Other languages
Japanese (ja)
Other versions
JP2566272B2 (en
Inventor
Kikuji Tsuneyoshi
紀久士 常吉
Kazutaka Mori
一剛 森
Akihiro Sawada
沢田 明宏
Hiromichi Arai
荒井 弘通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63053765A priority Critical patent/JP2566272B2/en
Publication of JPH01227956A publication Critical patent/JPH01227956A/en
Application granted granted Critical
Publication of JP2566272B2 publication Critical patent/JP2566272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To obtain an oxygen sensor which operates surely at a sufficiently high response speed at a low temp. by providing perovskite type composite oxide electrodes expressed by the specific formula on the surface of an oxygen ion-conductive solid electrolyte. CONSTITUTION:The oxygen ion-conductive solid electrolyte formed by adding calcium oxide to cerium oxide is used as a sensor element 1. The mixture prepd. by dissolving the perovskite type composite oxide which is expressed by the formula and is pulverized to <=1mum with an org. solvent such as turpentine oil to form the paste thereof and further mixing a small amt. of n-butyl acetate as a diluent with such paste is applied on the inside and outside surfaces of the solid electrolyte element 1 and is sintered at 800 deg.C in air to form the electrodes 3. The solid electrolyte element 1 is mounted to an alumina ceramics pipe 2 and the juncture thereof is sealed with silver. The oxygen sensor produced in such a manner is operatable at 200-300 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は併ガス処理等の燃焼制御に適し友低温まで作動
可能な酸素センサーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxygen sensor that is suitable for combustion control such as gas processing and can operate down to low temperatures.

〔従来の技術〕[Conventional technology]

従来この櫨のrR素センサーは、改索イオン専屯性のZ
r02−Y2O2糸やZr0l−CaO糸の安定化ジル
コニアと称される固体゛WL解實を用いるもの。
Conventionally, this rR element sensor of Haji is a modified ion specialized Z
Those using solid ``WL analysis'' called stabilized zirconia of r02-Y2O2 yarn and Zr0l-CaO yarn.

お工び、数本欠損型の非化字皺論組成からなるぼ化物半
尋体、たとえばTiOx−aを用いるものである。
This method uses a bokamono half-body consisting of a non-curved and wrinkled composition with several missing lines, such as TiOx-a.

固体*S實型鈑索センサーには、固体電池(改索譲淡′
区池〕の起電力を利用したものと、電圧を印加しておい
て、その時固体電解質申を流れるrR索イオン電流を利
用したものとに分けられる。
The solid-state*S type plate cable sensor uses a solid-state battery
There are two types of methods: those that use the electromotive force of a solid electrolyte and those that use the rR ion current that flows through the solid electrolyte when a voltage is applied.

一方、酸化物半環体型flI索センサーは、重重におけ
る酸化物の化字濾論組成の変化に応じた電子伝24g:
の変化を利用するものである。
On the other hand, the oxide hemicyclic type flI sensor has an electron transfer rate of 24g according to the change in the filtration composition of the oxide under heavy loads:
This method takes advantage of changes in

固体電池型の酸素センサーは、次のような酸素濃淡電池
を構成し、その起電力から P’ol、 Ee /固体1質實/ Ee* ’*  
(Ee:1ii[極〕被検ガス中の版木分圧PLを求め
るものである。
The solid-state battery type oxygen sensor constitutes an oxygen concentration battery as shown below, and from its electromotive force, P'ol, Ee /Solid substance 1 quality / Ee* '*
(Ee: 1ii [Extreme] This is to determine the block partial pressure PL in the test gas.

この電池の理論起電力Eは、(1)式で表わされる。The theoretical electromotive force E of this battery is expressed by equation (1).

P′o1:既知酸素分圧+ pB、 ’被検ガス中のは
累分圧T:杷対龜度、R:気体足数、F:ファラデ一定
数ば素センサーは、固体m鱗質金用いるものも、酸化物
半専体を用いるものも、電気的信号により#jL素濃度
を検出するため、電極が取付けられる。電極としては従
来から白金が用いられている。電体は被検ガス中の僚素
分圧P”o2と固体中のは索イオンめるいは酸素空孔と
の濃度平衡を保つ之めtcM索のやりとり(即ち奄気化
学的反工6ンを行わしめる場としての役割を待つので、
この抛叡素センサーでは極めて重要な部分でおる。白金
′屯憔は′1子伝尋注でbるため、前6己固体電池型の
酸素センサーのしuでは、白金と固体am負と気相の三
相の界面が1気化学反応の反応点となる。酸素センサー
の↓δ答性は、この′電気化学反応がいかに速く進行す
るかに係っており、白金′電極では反Lb点の数を増加
させるため多孔性電極とされる。しかしながら、従来の
酸素センサーは、いずれも約700℃以上の高温でなけ
れば実用的な作動をしないし、多孔性電惨の24屯性(
′4子伝導注ンを確保するために電mk厚くする、即′
C)、白金を多く使用しなければならないといつ問題か
める。
P'o1: known oxygen partial pressure + pB, cumulative partial pressure in test gas T: loquat vs. pressure, R: gas number, F: Faraday constant number In both the type and the type using semi-dedicated oxide, electrodes are attached to detect the #jL element concentration by electrical signals. Conventionally, platinum has been used as an electrode. The electric body is used to maintain the concentration equilibrium between the partial pressure P''o2 of the gas to be detected and the free ions or oxygen vacancies in the solid. We are looking forward to our role as a place to carry out the
This is an extremely important part of this pyrolithic sensor. Since platinum 'tun' is mentioned in the '1 child biography' note, in the case of a solid-state battery type oxygen sensor, the interface between the three phases of platinum, solid am negative and gas phase is one gas chemical reaction. It becomes a point. The ↓δ response of an oxygen sensor depends on how quickly this 'electrochemical reaction proceeds, and a platinum' electrode is made porous to increase the number of anti-Lb points. However, all conventional oxygen sensors cannot be used in practical operation unless the temperature is approximately 700°C or higher, and the 24-ton temperature (
'In order to ensure 4-element conduction injection, make the electric mk thicker, immediately'
C) When do you run into problems when you have to use a lot of platinum?

ま九は素センサーを高温下で使用する時には次のような
問題も生じて来る。
Furthermore, when using elementary sensors at high temperatures, the following problems arise.

■ センサーお工ひその雰囲気を閥温にするための加熱
用の熱源を必要とする。
■ A heat source is required to heat the atmosphere around the sensor.

■ 鍋温であるが故に外界温度による影響を受は易く、
−足一度に維持することが国鐘となる。その結果、酸素
センサー素子に温度勾配を生じ、測定精度を低下させる
ことになる。
■ Because it is at the pot temperature, it is easily affected by the outside temperature;
- Maintaining one foot at a time becomes a national bell. As a result, a temperature gradient occurs in the oxygen sensor element, reducing measurement accuracy.

■ 熱損失も大さい。■ Heat loss is also large.

■ 電解員および電極の劣化が促進され、その寿命が短
かくなる。
■ Accelerates deterioration of the electrolyzer and electrodes, shortening their lifespan.

そこで本発明者らは、特願昭61−245125号にお
いて、1に極としてAI−XA’XBO3−δ(A:L
a、 A’  :アルカリ土類金属、B:遷移金属ンで
表わされるペロプスカイト型複合酸化吻を用いた低温作
jJJfi改素センサーを提案した。この発明の実施ガ
で示すように、固体1!解負として酸化セリウム(Ca
b、 )  に酸化カルシウム(Cab)を10モルg
b添加したものを用い、電極としてLa、、Sr 1L
4coo、−a k用いたセンサーは1FJ300℃と
いう低温まで埋崗起電力を示し、応答速度も早い。一方
同一の固体I!鱗jXを柑い、電極として白金をスパッ
タ法で収り何けたセンサーではFJ600℃までしか理
論起電力金示さない。
Therefore, the present inventors proposed in Japanese Patent Application No. 61-245125 that AI-XA'XBO3-δ (A:L
We proposed a low-temperature-operated jJJfi reformed sensor using a perovskite-type composite oxidation ring represented by a, A': an alkaline earth metal, and B: a transition metal. As shown in the embodiment of this invention, solid 1! As a solution, cerium oxide (Ca
b, ) 10 mol g of calcium oxide (Cab)
1L of La,, Sr as an electrode using
The sensor using 4coo, -ak exhibits buried electromotive force down to a low temperature of 1FJ300°C, and has a fast response speed. On the other hand, the same solid I! A sensor using scale jX and sputtering platinum as an electrode exhibits a theoretical electromotive force of only up to FJ600°C.

〔発明が解決しょうとする課題〕[Problem that the invention seeks to solve]

本発明は上記の低温作@型叡素センサーよりも史に低温
で十分に速い応答速度で確実に作動する酸素センサー全
提供しようとするものである。
The present invention aims to provide an oxygen sensor that operates reliably at a sufficiently faster response speed at lower temperatures than the above-mentioned low-temperature @ type silicon sensors.

〔味j!liIを解決するための手段〕本発明は、本発
明者等が先に提案したA1−エA’XBO,−δで表わ
されるペロブスカイト型複合酸化物!他よりも更に電気
化学反応を速かに進め得るxmt得ようとするもので、
上d己ペロブスカイト型複合酸化物のBも他の遷移金楓
で七の一部を置換したAI−Xj”XBI−アBシ0ト
δで表わされる電極を用いる拳によってセンサーの作動
@度金更に低下させ得る墨を見い出し、本発明を完成す
るに全った〇 νIち、本発明は龍素イオン尋篭性固体篭牌實表向にL
ILI−XSFXCOl−7B’70に−15(B’=
 Ni 、 Fe 、 Cu 。
[Taste j! Means for solving liI] The present invention is directed to a perovskite-type complex oxide represented by A1-A'XBO, -δ, which was previously proposed by the present inventors. The aim is to obtain xmt that can advance electrochemical reactions faster than others,
Activation of the sensor by using an electrode represented by AI-Xj" I found a black ink that could further reduce the level of ink and completed the present invention.
ILI-XSFXCOl-7B'70 to -15 (B'=
Ni, Fe, Cu.

Mn %x =α1〜α5、y=α01〜α1)で表わ
芒れるペロブスカイト型複合叡化物電極を有することを
特徴とする喰索センサーである。
The present invention is a gauging sensor characterized by having a perovskite-type composite silicide electrode represented by Mn % x = α1 to α5, y = α01 to α1).

Xの範囲は、Srの固溶範囲であり、これを越えるとX
線回折に工れはペロプスカイト相の外に、他の相が析出
することが確認されている。
The range of X is the solid solution range of Sr, and beyond this range, X
Linear diffraction has confirmed that other phases are precipitated in addition to the perovskite phase.

yの範囲は、[Lolが置jl!8鎗の最低有効値でお
り、好ましくは[102以上とすることがよい。
The range of y is [Lol is placed jl! The lowest effective value is 8, and preferably 102 or more.

1次、上限のα1は、これ以上lt侯すると逆効果が出
て来る。
If α1, which is the upper limit of the first order, is exceeded, the opposite effect will occur.

酸素イオン導電体としては、  Ce02−CaO糸、
Ce0l−Gd103糸、Zr0l−YxOs糸、Zr
02−CaO糸お工びBi、O,糸の中のいずれか1つ
を使用することができる。符にCe01に10へ40モ
ル襲のCaOを添加したものが好ましい。
As the oxygen ion conductor, Ce02-CaO thread,
Ce0l-Gd103 yarn, Zr0l-YxOs yarn, Zr
02-CaO yarn fabric Any one of Bi, O, and yarns can be used. It is preferable to add 10 to 40 moles of CaO to Ce01.

〔作 川〕[Written by Kawa]

La1−1SrlCO1−yB’y03−δは、At 
−xA’xBOs−6と同様にば索欠損型のペロブスカ
イト型複曾酸化物でろり、版木欠損による酸素イオン伝
導性と電子伝導性とを兼ね備えた親会導電性の機能性材
料でろる◇従って、rR累イオン伝導性を有する固体1
tm質に上記複合酸化物を電極として取り付ければ、(
気相/複合酸化物/固体i%S買)というW遺が得られ
る。まず、(気相/a@酸化’m)界面では、複合酸化
物の触媒作用によって気相中の酸素の成層又は気相中へ
の酸素の脱離が、低鑞でも可逆的に行われるO(a合酸
化物/IAI体電解貝)界面は、複合酸化物が醒索イオ
ン伝24注を有するため、固体電解質中へ酸素イオンを
移行嘔せるための通路になり得る。勿論、白金[極の場
合と同様に気相、[極、電解質の三相の界面がろれば、
そこも電気化学反応の反応点になるが、三相の界面が無
くても複合酸化物電極は、前述のように混合24電性を
有する九め、電子も流れ、改索イオンも流れることから
、電極表向に成層され九酸素は、電極表向のどの部分で
も電子を受は取り改索イオンとなって、’m極バルク内
を移動し、電解質中へは入って行くことがoT症でめる
。。
La1-1SrlCO1-yB'y03-δ is At
- Like xA'xBOs-6, it is made of perovskite-type complex oxide with wire defects, and is made of a functional material with parent conductivity that has both oxygen ion conductivity and electron conductivity due to wood block defects◇ Therefore, the solid 1 with rR cumulative ionic conductivity
If the above composite oxide is attached as an electrode to tm material, (
The result is a mixture of gas phase/complex oxide/solid i%S. First, at the (gas phase/a@oxidation'm) interface, stratification of oxygen in the gas phase or desorption of oxygen into the gas phase occurs reversibly even at low levels of oxygen due to the catalytic action of the composite oxide. (A composite oxide/IAI body electrolyte shell) The interface can become a passageway for transferring oxygen ions into the solid electrolyte, since the composite oxide has a high ion density. Of course, if the interface between the three phases of platinum (gas phase, electrode, and electrolyte) is solid, as in the case of the platinum electrode,
This is also a reaction point for electrochemical reactions, but even without a three-phase interface, a composite oxide electrode has a mixed 24-electrity as described above, so electrons and ions can flow as well. Oxygen, which is stratified on the surface of the electrode, receives electrons at any part of the surface of the electrode, becomes ions, moves within the bulk of the electrode, and enters the electrolyte. Demeru. .

上述の1うに、複合酸化物電極は、触媒作用の点や、酸
素イオンの通路の点で白金を極よりも優れ、センサーの
低温作動性をも窺らすもOと考えられる。
As mentioned above, composite oxide electrodes are considered to be superior to platinum electrodes in terms of catalytic action and passage of oxygen ions, and also suggest low-temperature operability of the sensor.

本発明Iri、Lal−1srzcOO3−(5のCO
の一部ヲ遷移金檎元素B’で直換したLal−1srz
cO1−yB’y03−δで表わされる′IIL極を用
いるが、 CoをB′で−S置換することにより前日己
触媒作用が更に高まジ、′框気化字反すがニジ速く進行
する次め、200℃以下の低温でも作動するという画期
的な酸素センサーの出現をoT症にしたのである。
The present invention Iri, Lal-1srzcOO3-(5 CO
Lal-1srz, in which a part of the transition gold element B' is directly replaced.
The 'IIL pole represented by cO1-yB'y03-δ is used, but by substituting -S for Co with B', the self-catalytic action of the previous day is further enhanced, and the next step is that the vaporization proceeds much faster. The emergence of an innovative oxygen sensor that can operate at temperatures as low as 200 degrees Celsius is what led to OT disease.

〔実施例〕〔Example〕

酸化セリウム(coos )に酸化カルシウム(CaO
)を10モル%添加した酸素イオン24ilL性の固体
tS實((ceo、 ) at(CaO) Hで示す)
を第1図に示す構造のセンサーの素子として用い友。次
に1 μm以下まで微粒子化し次ペロブスカイト型複合
酸化物をテレピン油寺の有機溶剤でペースト化し、さら
に希釈剤として酢[n−ブチルを少菫混ぜ合わせたもの
t−準備し、これを固体電M質索子1の内外表面にm布
し、空気中、800℃で焼きつけて%極5を形成した。
Cerium oxide (coos) and calcium oxide (CaO
) with 10 mol % of oxygen ions added (denoted as (ceo, ) at(CaO) H)
can be used as an element in a sensor having the structure shown in Figure 1. Next, the perovskite-type composite oxide is made into fine particles down to 1 μm or less and made into a paste using an organic solvent such as turpentine. M cloth was applied to the inner and outer surfaces of M cord 1 and baked at 800° C. in air to form % pole 5.

固体電解質菓子1をアルミナa裂管2に収り付け、接続
部金銀シールド(図示しない)した。
The solid electrolyte confectionery 1 was placed in an alumina a-fiber tube 2, and the connection portion was shielded with gold and silver (not shown).

上記酸素センサーを被検ガス中に烙らし、その時の起電
力をt極5に接続した専電性金楓リード端子4工り測定
した。
The above oxygen sensor was heated in a gas to be detected, and the electromotive force at that time was measured using four proprietary gold maple lead terminals connected to the T-pole 5.

被検ガスには酸素ガスを1谷被チお工び10谷皺%混合
した窒素ガスを用い全流址300〜500 d / n
1inで供給した(大気圧下)。参照ガスには純酸素ガ
スを用い500 d/ minで供給した(大気圧下)
The test gas is nitrogen gas mixed with oxygen gas at a concentration of 10% and a total flow rate of 300 to 500 d/n.
1 in. (at atmospheric pressure). Pure oxygen gas was used as the reference gas and supplied at 500 d/min (under atmospheric pressure).
.

この酸素センサーの構成は次のとおりである。The configuration of this oxygen sensor is as follows.

P’0s(On)、 MO/ (ClOs ) at(
CaO)a+/MQ Po、(0,+N、)MO:ペロ
ブスカイト型複合酸化物111極実施例1 Laa4Sra4COOトδのCOをN1お工びMnで
2モル%直換した材料、即ちLacnSriaCOa*
5NiaozOi−δ(A)とLaat8raaCOa
wsMnastOi−δ(B)i!極とした時の酸素セ
ンサーの作動試験′5r実施し几。そのうちセンサー起
電力(Electro uottve Force −
・−EMF)の測足結来を第2図に(A)および(B)
として示した。第2図中の左上りの重縁は、上記(1)
式りり得られる各被検酸素分圧(P気)における理論起
電力Eと1度の関係を示している。
P'0s(On), MO/(ClOs) at(
CaO)a+/MQ Po, (0,+N,)MO: Perovskite-type composite oxide 111 electrode Example 1 Material in which 2 mol% of CO in Laa4Sra4COO and δ was directly replaced with Mn by N1 processing, that is, LacnSriaCOa*
5NiaozOi-δ(A) and Laat8raaCOa
wsMnastOi−δ(B)i! The oxygen sensor's operation test was carried out for 5 hours when it was used as a pole. Of these, the sensor electromotive force
・-EMF) foot measurement results are shown in Figure 2 (A) and (B).
It was shown as The double border on the upper left in Figure 2 is indicated by (1) above.
It shows the relationship between the theoretical electromotive force E and one degree at each test oxygen partial pressure (P gas) obtained by formula.

なお、同図中の(りはLaaa8ra4COOi−δ、
(D)U白金ペーストを焼き付けて電極とし九敗累セン
サーの起電力測定結果で、比較例として示し良ものであ
る。各電極の焼き付けm度は(AXB)(りでは800
℃、(D)は1000℃である。
In addition, (ri in the same figure is Laaa8ra4COOi-δ,
(D) This is the electromotive force measurement result of a nine-time sensor using U platinum paste as an electrode and is shown as a comparative example. The baking degree of each electrode is (AXB) (800
°C, (D) is 1000 °C.

この比較例から明らかなように一般に用いられている白
金1!を極を取付けたeR累センサーの起電力が理論起
電力に従うのは、  (Cent九t(CaOハ1で表
わされるセリア糸固体電M買を用い次場付では約600
℃以上(b)、本発明者寺の先願発明にろるLa、as
r@4COOm−δ電極を取付は友ものでは300℃以
上(C)であつ次。
As is clear from this comparative example, commonly used platinum 1! The reason why the electromotive force of the eR cumulative sensor with the pole attached follows the theoretical electromotive force is (Cent9t (CaO), which is approximately 600
℃ or higher (b), La, as the invention of the inventor's prior application
The r@4COOm-δ electrode should be installed at temperatures above 300℃ (C).

これに対し本実施例のLaam8raaCOa**Ni
a+uOm−J(人)′lLmを用いfc、版木センサ
ーは、第2図の中の(A)に示すとおり190℃台まで
理論起電力に従つft−oこのことは実用的作vJ温度
をおよそ200Cまで低温化できることを意味している
On the other hand, Laam8raaCOa**Ni of this example
Using a+uOm-J(person)'lLm, fc, the block sensor follows the theoretical electromotive force up to 190℃ as shown in (A) in Figure 2, ft-o. This means that the temperature can be lowered to approximately 200C.

La1LaSraiCOaes、MnaotOs−δ(
B)  ′l[極fl (A)はどの効果はないが、第
2図に示すとおり、(C)よりやや低mまで理論起電力
に従った。
La1LaSraiCOaes, MnaotOs-δ(
B) 'l [pole fl (A) has no effect, but as shown in Figure 2, it follows the theoretical electromotive force up to m, which is slightly lower than (C).

次にセンサ一応答性の測足結果金第3図と第4図に示し
友。第5図は、被検ガス中のは累濃度(分圧) p7o
、 f 1 atmからα1 atmに急変させfc時
、1iL4(A)l?付けたセンサーが198℃におい
て+11式で表わされる理論起電力Eに到達する経時的
状況を示したもので、約20分を要している。(EMF
キー22mVに引かれ几水平な巌がこの条件下でのEを
示す)。電極(C)を取付は次センサーについても、比
較の九めに併dピした。第4図ns’1を極(A) ′
1ftO−VC(B) @取付は几センサーのso o
’cにおける↓b応答性示し友もので、酸素分圧P気の
変化は、第3図の場合と同様(1atm−+α1 at
m )である。またgMFキー27 mVに引かれた水
平な?#は、この条件下でのEi示している。′#L極
(A)を取付けたセンサーは1分以内、電極(B)では
2分以内で理論起電力Eに到達している。を極(C)で
は、第3図で与るように198℃では理論起電力に到達
しないし、300℃においては第4図の電極(A) (
B)に比べて更に長時間全装することは第3図のレリか
らも明らかである。また電極(D)では、198℃# 
500℃いずれにおいても理論起電力に到達しない。
Next, the sensor responsiveness measurement results are shown in Figures 3 and 4. Figure 5 shows the cumulative concentration (partial pressure) p7o in the test gas.
, When fc is suddenly changed from f 1 atm to α1 atm, 1iL4(A)l? It shows the time-lapse situation in which the attached sensor reaches the theoretical electromotive force E expressed by the +11 formula at 198°C, and it takes about 20 minutes. (EMF
The key is pulled to 22 mV and the flat rock indicates E under this condition). The electrode (C) was installed next, and the sensor was also attached in the ninth step of the comparison. Figure 4 ns'1 as pole (A)'
1ftO-VC (B) @Installation is so o of the sensor
↓b response at
m). Also gMF key 27 mV horizontal? # indicates Ei under this condition. '#The sensor with the L pole (A) reaches the theoretical electromotive force E within 1 minute, and the sensor with the electrode (B) reaches the theoretical electromotive force E within 2 minutes. At the pole (C), the theoretical electromotive force is not reached at 198°C as shown in Fig. 3, and at 300°C, the theoretical electromotive force at the electrode (A) shown in Fig. 4 is not reached.
It is clear from the reli in Figure 3 that it is fully loaded for a longer time than in case B). In addition, at electrode (D), 198℃#
The theoretical electromotive force is not reached at any temperature of 500°C.

実施1クリ2 Laa4SranCOOi−JのCo ′(i−Ni 
、 Cuお工ひFeで置換し几材料、即ち、  Laa
4Sra4COatiNimssOa−δ(EハLaa
aSraaCOaeNi 、+On−δ (F)  、
  La、Sr a4cOa*5cuastOs−J(
,0)、Laa4SrmiCOaysFems宜0i−
a (H)  を1!極とした時の酸素センサーの作#
ll試験を実施例1と同様に実施し友。
Implementation 1 Crit 2 Laa4SranCOOi-J's Co'(i-Ni
, Cu material is replaced with Fe, namely, Laa
4Sra4COatiNimssOa-δ(EhaLaa
aSraaCOaeNi, +On-δ (F),
La, Sr a4cOa*5custOs-J(
,0),Laa4SrmiCOaysFems yi0i-
a (H) 1! Construction of oxygen sensor when used as a pole #
The ll test was conducted in the same manner as in Example 1.

第5図に電極(E)と(F)のEMF測定結果を電極(
A) (C)と対比して示した。電極(E)と(F)の
場合は1を極(A)より劣るものの210〜220℃ま
では理論起電力に従い電極(C)工りも低温作動性に優
れている。
Figure 5 shows the EMF measurement results of electrodes (E) and (F).
A) Shown in comparison with (C). In the case of electrodes (E) and (F), 1 is inferior to electrode (A), but up to 210 to 220°C, electrode (C) has excellent low-temperature operation according to the theoretical electromotive force.

第6図は′1を極(E)と(F)の応答性を電極(A)
と対比して示し次もので300℃でP″”Ox k 1
 atmからCL1atmvc急変させた時の測だ例で
ある。
Figure 6 shows the responsivity of pole (E) and (F) with '1 as electrode (A).
In comparison with
This is an example of measurement when suddenly changing CL1atmvc from atm.

P気質化の初期段階で応答性は(A) > (E)>(
F)の順となっているが、理論起電力に到達する時間は
ほぼ同等である。
At the initial stage of P temperamentization, responsiveness is (A) > (E) > (
F), but the time to reach the theoretical electromotive force is almost the same.

第7図は電極(())と(H)のEMF測足結果をm極
(A)と対比して示したものである。電極(A)工す省
るものの250℃まで理論起電力に従い 。
FIG. 7 shows the EMF measurement results of the electrodes (()) and (H) in comparison with the m-pole (A). According to the theoretical electromotive force up to 250℃, electrode (A) is not required.

電極CC)よりも低温作動性に優れている。It has better low temperature operability than electrode CC).

実施例3 La+uSratCoOs−δのCOをN1 で2モル
%[換した材料、即ちLaa*Sra*C0atsNi
aexOiJ (I )を電極とし′fc時のrR索セ
ンサーの作動試験を実施例1と同様にして実施した。
Example 3 Material in which 2 mol% of CO in La+uSratCoOs-δ was replaced with N1, i.e., Laa*Sra*C0atsNi
An operation test of the rR cord sensor during 'fc was carried out in the same manner as in Example 1 using aexOiJ (I) as an electrode.

第8図に電極(I)と比wRPJとしてのLaa @S
 r□COOトδ(J)のE M F l141J定粕
果を示した。11L極(J)が360℃程度まで理論起
電力に従うのに対し電極(I)ではF1250℃まで理
論起電力に従っており、100℃程度の作動温度の低温
化が達成されている。
Figure 8 shows electrode (I) and Laa @S as ratio wRPJ.
EM F 1141J fixed lees fruit of r□COOto δ(J) was shown. While the 11L electrode (J) follows the theoretical electromotive force up to about 360°C, the electrode (I) follows the theoretical electromotive force up to F1250°C, achieving a lower operating temperature of about 100°C.

〔発明の効果〕〔Effect of the invention〕

本発明は、上se慣成を採用することに工り、200〜
300℃で作動可能となり従来のものより作動温度範囲
を低温側に更に拡大し、用途の拡大を可能とした。なお
、酸素センサーを重視で使用する際の上記問題点■〜■
が解消嘔れることは百うまでもない。
The present invention is designed to adopt the upper se convention,
It can operate at 300°C, expanding the operating temperature range further to the lower temperature side than conventional products, making it possible to expand the range of applications. In addition, the above problems when using the oxygen sensor with emphasis ■~■
It goes without saying that you will get vomiting after it is resolved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で使用した一福封じチューブ型
酸素センサーの断面模式図、第2図〜第8図は実施例で
用いた咳索センサーの特性を示す図である。 亀1図において1は固体1!解質累子、2はアルミナ磁
製管、3は電極、4は導電性金属リード端子である。
FIG. 1 is a schematic cross-sectional view of the Ippuku sealed tube type oxygen sensor used in the example of the present invention, and FIGS. 2 to 8 are diagrams showing the characteristics of the cough cord sensor used in the example. In the turtle 1 diagram, 1 is solid 1! 2 is an alumina porcelain tube, 3 is an electrode, and 4 is a conductive metal lead terminal.

Claims (1)

【特許請求の範囲】[Claims] 酸素イオン導電性固体電解質表面にLa_1_−_xS
r_xCo_1_−_yB′yO_3_−_δ(B′=
Ni、Fe、Cu、Mn、x=0.1〜0.5、y=0
.01〜0.1)で表わされるペロブスカイト型複合酸
化物電極を有することを特徴とする酸素センサー。
La_1_-_xS on the surface of the oxygen ion conductive solid electrolyte
r_xCo_1_-_yB'yO_3_-_δ(B'=
Ni, Fe, Cu, Mn, x=0.1-0.5, y=0
.. An oxygen sensor comprising a perovskite-type composite oxide electrode represented by 01 to 0.1).
JP63053765A 1988-03-09 1988-03-09 Oxygen sensor Expired - Lifetime JP2566272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053765A JP2566272B2 (en) 1988-03-09 1988-03-09 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053765A JP2566272B2 (en) 1988-03-09 1988-03-09 Oxygen sensor

Publications (2)

Publication Number Publication Date
JPH01227956A true JPH01227956A (en) 1989-09-12
JP2566272B2 JP2566272B2 (en) 1996-12-25

Family

ID=12951911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053765A Expired - Lifetime JP2566272B2 (en) 1988-03-09 1988-03-09 Oxygen sensor

Country Status (1)

Country Link
JP (1) JP2566272B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261550A (en) * 1988-08-26 1990-03-01 Matsushita Electric Ind Co Ltd Sensor for combustion control
JPH03165253A (en) * 1989-11-24 1991-07-17 Matsushita Electric Ind Co Ltd Oxygen sensor
US5393397A (en) * 1992-12-25 1995-02-28 Nippondenso Co., Ltd. Oxygen sensor
US6129862A (en) * 1994-10-04 2000-10-10 Nissan Motor Co., Ltd. Composite oxides of A-site defect type perovskite structure
JP2003517606A (en) * 1999-12-15 2003-05-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Gas sensor and its use for measuring the concentration of a gas component in a gas mixture
JP5181072B1 (en) * 2012-06-01 2013-04-10 株式会社神鋼環境ソリューション Biogas deoxygenation method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158451A (en) * 1986-12-23 1988-07-01 Tech Res Assoc Conduct Inorg Compo Combustion control sensor
JPH0197854A (en) * 1987-10-09 1989-04-17 Tech Res Assoc Conduct Inorg Compo Sensor for burning control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158451A (en) * 1986-12-23 1988-07-01 Tech Res Assoc Conduct Inorg Compo Combustion control sensor
JPH0197854A (en) * 1987-10-09 1989-04-17 Tech Res Assoc Conduct Inorg Compo Sensor for burning control

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261550A (en) * 1988-08-26 1990-03-01 Matsushita Electric Ind Co Ltd Sensor for combustion control
JPH03165253A (en) * 1989-11-24 1991-07-17 Matsushita Electric Ind Co Ltd Oxygen sensor
US5393397A (en) * 1992-12-25 1995-02-28 Nippondenso Co., Ltd. Oxygen sensor
US6129862A (en) * 1994-10-04 2000-10-10 Nissan Motor Co., Ltd. Composite oxides of A-site defect type perovskite structure
JP2003517606A (en) * 1999-12-15 2003-05-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Gas sensor and its use for measuring the concentration of a gas component in a gas mixture
JP4763203B2 (en) * 1999-12-15 2011-08-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Gas sensor and its use for measuring the concentration of gas components in a gas mixture
JP5181072B1 (en) * 2012-06-01 2013-04-10 株式会社神鋼環境ソリューション Biogas deoxygenation method and apparatus

Also Published As

Publication number Publication date
JP2566272B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
Xu et al. Humidity sensors using manganese oxides
Slade et al. Investigation of protonic conduction in Yb-and Y-doped barium zirconates
JP2882104B2 (en) Proton conductor and method for producing the same
US4276202A (en) Process for the manufacture of electrodes having perovskite structure for electrochemical high temperature cells
US4931214A (en) Oxidic bodies with ionic and electronic conductivity
Navarro et al. n‐Type conductivity in gadolinia‐doped ceria
Yamaura et al. Cathodic polarization of strontium-doped lanthanum ferrite in proton-conducting solid oxide fuel cell
Chockalingam et al. Praseodymium and gadolinium doped ceria as a cathode material for low temperature solid oxide fuel cells
US5427740A (en) Tin oxide gas sensors
Flint et al. Comparison of calcium-doped barium cerate solid electrolytes prepared by different routes
Zipprich et al. Improved preparation of La1− xMexCoO3− δ (Me= Sr, Ca) and analysis of oxide ion conductivity with ion conducting microcontacts
JPH01227956A (en) Oxygen sensor
JP2541530B2 (en) Solid electrolyte device and manufacturing method thereof
Tao et al. Study on the structural and electrical properties of the double perovskite oxide SrMn 0.5 Nb 0.5 O 3− δ
WO1997042495A1 (en) Solid state electrochemical cell for measuring components of a gas mixture, and related measurement method
JPS6349181B2 (en)
JPH06231611A (en) Mixed ion conductor
Alcock et al. A fluoride-based composite electrolyte
Badwal et al. Nernstian behaviour of zirconia oxygen sensors incorporating composite electrodes
JPS6161344B2 (en)
Wakagi et al. Fast amperometric response of ambient temperature oxygen sensor based on PbSnF4; iron (II) phthalcyanine-based sensing electrodes containing carbon microbeads
CN110044989B (en) Multi-gas sensor
JPS637342B2 (en)
Trofimenko et al. Structure, oxygen stoichiometry and electrical conductivity in the system Sr-Ce-Fe-O
Eguchi et al. Towards a room temperature, solid state, oxygen gas sensor