JPH03161970A - Solid-state image sensing device - Google Patents

Solid-state image sensing device

Info

Publication number
JPH03161970A
JPH03161970A JP1300703A JP30070389A JPH03161970A JP H03161970 A JPH03161970 A JP H03161970A JP 1300703 A JP1300703 A JP 1300703A JP 30070389 A JP30070389 A JP 30070389A JP H03161970 A JPH03161970 A JP H03161970A
Authority
JP
Japan
Prior art keywords
light
well region
layer
shielding film
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1300703A
Other languages
Japanese (ja)
Inventor
Hirobumi Kishida
博文 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1300703A priority Critical patent/JPH03161970A/en
Publication of JPH03161970A publication Critical patent/JPH03161970A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a solid-state image sensing device of high reliability wherein the generation of smear is restrained, by preventing a light from leaking into a semiconductor substrate part under the vicinity of a transferring part by using a shielding film. CONSTITUTION:A recessed part 23 is formed by caving the surface of a P-type well region 22 where an N-type layer 25 corresponding with a light receiving window 32 is formed. The surface level of said part 23 is positioned at a part lower than the surface of the P-type well region 22. In this manner, the end portion of a light shielding film 31 positioned on the periphery of the light receiving window 32 is set at the same level as the surface of an N-type buried layer 26 constituting a CCD transferring part, or positioned at a part lower than the surface of the layer 26. As the result, when a lot of light enters from the light receiving window 32, the light entering the well region 22 under the vicinity of the buried layer 26 turning to a transferring part is blocked by the shielding film 31, and the light can be prevented from leaking into the region 22 part. Hence an image signal led out from the rear end of the transferring part becomes large, and so-called smear generation is restrained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、固体撮像装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a solid-state imaging device.

(従来の技術) 従来の固体撮像装置としては、第3図に示す構造のもの
が知られている。第3図は、受光部、転送部及びその間
のフィールドシフトゲート部を示す断面図であり、図中
のlはn型シリコン基板である。この基板1表面には、
p−ウエル領域2が選択的に設けられている。このp−
ウエル領域2の表面には、受光部、転送部及びその間の
フィールドシフトゲート部を他の領域と電気的に分離す
るためのp+型チャンネルストッパ領域3が形成されて
いる。このチャンネルストッパ領域3で囲まれた前記ウ
エル領域2表面には、受光部として作用するn型層4が
形成されている。前記ウェル領域2の表面には、CCD
転送部を構成するn型埋込み層5が前記n型層4と所望
距離隔てて形成されている。これらn型層4及びn型埋
込み層5間のチャンネル領域6を含むウエル領域2上に
は、薄い酸化膜7を介して多結晶シリコンからなるゲー
ト電極8が設けられている。なお、前記酸化膜7上には
CCD転送部を構成する転送電極(図示せず)が前記チ
ャンネル領域6のチャンネル長と直交する方向に複数設
けられている。前記ゲート電極B及び図示しない転送電
極を含む酸化膜7上には、例えばSi02からなる絶縁
膜9が被覆されている。この絶縁膜9上には、例えばア
ルミニウムからなる遮蔽膜lOが被覆され、かつ前記n
型層4の一部に対応する前記遮蔽膜10には受光窓1l
が開孔されている。
(Prior Art) As a conventional solid-state imaging device, one having a structure shown in FIG. 3 is known. FIG. 3 is a sectional view showing a light receiving section, a transfer section, and a field shift gate section therebetween, and l in the figure is an n-type silicon substrate. On the surface of this substrate 1,
A p-well region 2 is selectively provided. This p-
A p+ type channel stopper region 3 is formed on the surface of the well region 2 to electrically isolate the light receiving section, the transfer section, and the field shift gate section therebetween from other regions. On the surface of the well region 2 surrounded by the channel stopper region 3, an n-type layer 4 serving as a light receiving portion is formed. A CCD is provided on the surface of the well region 2.
An n-type buried layer 5 constituting a transfer section is formed at a desired distance from the n-type layer 4. A gate electrode 8 made of polycrystalline silicon is provided on the well region 2 including the channel region 6 between the n-type layer 4 and the n-type buried layer 5 with a thin oxide film 7 interposed therebetween. A plurality of transfer electrodes (not shown) constituting a CCD transfer section are provided on the oxide film 7 in a direction perpendicular to the channel length of the channel region 6. An insulating film 9 made of Si02, for example, is coated on the oxide film 7 including the gate electrode B and the transfer electrode (not shown). This insulating film 9 is covered with a shielding film lO made of aluminum, for example, and the n
The shielding film 10 corresponding to a part of the mold layer 4 has a light receiving window 1l.
is drilled.

しかしながら、上述した従来の固体撮像装置では大量の
光が受光されると、遮蔽膜lOの受光窓l1からn型層
4以外の転送部となる埋込み層5ドのウエル領域2にも
に入射される。前記ウェル領域2に光が入射されると、
該領域2でエレクトロンが生成され、埋込み層5に達し
て転送部の後端で取り出される画像信号が大きくなる、
いわゆるスミアを生じる問題があった。
However, in the conventional solid-state imaging device described above, when a large amount of light is received, it also enters the well region 2 of the buried layer 5 which serves as a transfer section other than the n-type layer 4 through the light receiving window l1 of the shielding film lO. Ru. When light is incident on the well region 2,
Electrons are generated in the region 2, reach the buried layer 5, and the image signal taken out at the rear end of the transfer section increases.
There was a problem of so-called smearing.

このようなことから、前記n型層4上に被覆される絶縁
膜9はその厚さを薄くして前記遮蔽膜Inをその上まで
延71:.できるようにして、転送部への遮蔽性を高め
る構造としているしているが、遮蔽膜10による転送部
近傍下のウエル領域2への光の漏れ込み防I1二には限
界があり、スミア量を低減することは自ずと限界があっ
た。
For this reason, the thickness of the insulating film 9 coated on the n-type layer 4 is reduced and the shielding film In is extended 71:. However, there is a limit to the ability of the shielding film 10 to prevent light from leaking into the well region 2 near the transfer section, and the amount of smear can be reduced. There was naturally a limit to reducing this.

(発明が解決しようとする−課題) 本発明は、上記従来の課題を解決するためになされたも
ので遮蔽膜による転送部近傍下の半導体基体部分への光
の漏れ込みを防止し、スミア発生を抑制した高信頼性の
固体撮像装置を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned conventional problems, and prevents light from leaking into the semiconductor substrate portion under the vicinity of the transfer section by a shielding film, thereby causing smearing. The purpose of this invention is to provide a highly reliable solid-state imaging device that suppresses this.

[発明の構或] (課題を解決するための手段) 本発明は、半導体基体と、この基体表面に形成された受
光部として作用する一導電型の不純物層と、この不純物
層と所望距離隔てた前記基体表面部分に形成された転送
部としての一導電型の埋込み層と、前記不純物層と埋込
み層との間のチャンネル領域を含む基体上に薄い絶縁膜
を介して形成された電極と、この電極を含む前記基体上
に被覆された絶縁膜と、この絶縁膜上に被覆され、前記
不純物層の一部に対応する箇所に受光窓が開孔された遮
蔽膜とを具備した固体撮像装置において、前記受光窓に
対応する半導体基体表面を前記埋込み層が形成された半
導体基体表面よりド方に位置させたことを特徴とする固
体撮像装置である。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a semiconductor substrate, an impurity layer of one conductivity type formed on the surface of the substrate that acts as a light receiving portion, and a semiconductor substrate separated from the impurity layer by a desired distance. a buried layer of one conductivity type as a transfer portion formed on the surface portion of the base; and an electrode formed on the base including a channel region between the impurity layer and the buried layer via a thin insulating film; A solid-state imaging device comprising an insulating film coated on the base including the electrode, and a shielding film coated on the insulating film and having a light receiving window opened at a location corresponding to a part of the impurity layer. In the solid-state imaging device, the semiconductor substrate surface corresponding to the light-receiving window is located further away from the semiconductor substrate surface on which the buried layer is formed.

(作用) 本発明によれば、受光窓に対応する半導体基体表面を埋
込み層が形成された半導体基体表面より下方に位置させ
る(例えば受光窓に対応する一導電型の不純物層を含む
半導体基体表面を陥没させて転送部としての埋込み層を
相対的に隆起させる)ことによって、遮蔽膜により転送
部となる埋込み層近傍下の半導体基体領域へ入射しよう
とする光を遮断できる。その結果、遮蔽膜による転送部
近傍下の半導体基体部分への光の漏れ込みを防止し、ス
ミア発生を抑制した高信頼性の固体撮像装置を得ること
ができる。
(Function) According to the present invention, the surface of the semiconductor substrate corresponding to the light receiving window is located below the surface of the semiconductor substrate on which the buried layer is formed (for example, the surface of the semiconductor substrate containing an impurity layer of one conductivity type corresponding to the light receiving window By recessing the buried layer and relatively protruding the buried layer serving as the transfer portion, the shielding film can block light that is about to enter the semiconductor substrate region under the vicinity of the buried layer serving as the transfer portion. As a result, it is possible to obtain a highly reliable solid-state imaging device in which the shielding film prevents light from leaking into the semiconductor substrate portion below the vicinity of the transfer section and suppresses the occurrence of smear.

5 (実施例) 以下、本発明の実施例を第1図を参照して詳細に説明す
る。
5 (Example) Hereinafter, an example of the present invention will be described in detail with reference to FIG.

図中の21はn型シリコン基板である。この基板21表
面には、p−ウエル領域22が選択的に設けられている
。このp−ウェル領域22におけるn型層形成予定部は
、エッチングにより陥没されて四部23が形成されてい
る。前記p−ウエル領域22表面には、受光部、転送部
及びその間のフィールドシフトゲート部を他の領域と電
気的に分離するためのp+型チャンネルストッパ領域2
4が形成されている。このチャンネルストッパ領域24
で囲まれた前記ウエル領域22の凹部23表面には、受
光部として作用するn型層25が形成されている。前記
ウェル領域22の表面には、CCD転送部を構成するn
型埋込み層26が前記n型層25と所望距離隔てて形成
されている。前記n型層25及びn型埋込み層26間の
チャンネル領域27を含むウエル領域22上には、薄い
酸化膜28を介して多結晶シリコンからなるゲート電極
29が設けられている。なお、前記酸化膜6 28上にはCCD転送部を構成する転送電極(図示せず
)が前記チャンネル領域27のチャンネル長と直交する
方向に複数設けられている。前記ゲート電極29及び図
示しない転送電極を含む酸化膜28上には、例えばSi
n2からなる絶縁膜30が被覆されている。この絶縁膜
30上には、例えばアルミニウムからなる遮蔽膜31が
被覆され、かつ前記n型層25の一部に対応する前記遮
蔽膜31には受光窓32が開孔されている。
21 in the figure is an n-type silicon substrate. A p-well region 22 is selectively provided on the surface of this substrate 21. The portion of the p-well region 22 where the n-type layer is to be formed is depressed by etching to form four portions 23. A p+ type channel stopper region 2 is provided on the surface of the p-well region 22 to electrically isolate the light receiving section, the transfer section, and the field shift gate section therebetween from other regions.
4 is formed. This channel stopper area 24
An n-type layer 25 that functions as a light receiving section is formed on the surface of the recess 23 of the well region 22 surrounded by. On the surface of the well region 22, there is a
A type buried layer 26 is formed at a desired distance from the n-type layer 25. A gate electrode 29 made of polycrystalline silicon is provided on the well region 22 including the channel region 27 between the n-type layer 25 and the n-type buried layer 26 with a thin oxide film 28 interposed therebetween. A plurality of transfer electrodes (not shown) constituting a CCD transfer section are provided on the oxide film 628 in a direction perpendicular to the channel length of the channel region 27. For example, Si is formed on the oxide film 28 including the gate electrode 29 and the transfer electrode (not shown).
An insulating film 30 made of n2 is coated. A shielding film 31 made of aluminum, for example, is coated on the insulating film 30, and a light receiving window 32 is formed in the shielding film 31 corresponding to a part of the n-type layer 25.

このような構成によれば、受光窓32に対応するn型層
25が形成されるp−ウエル領域22表面を陥没させて
凹部23を形成し、その表面レベルを埋込み層26が形
成されたp−ウエルル領域22表面より下方に位置させ
ることによって、受光窓32周辺に位置する遮蔽膜3l
の端部をCCD転送部を構或するn型埋込み層26の表
面と同レベルもしくはそれより下側に位置させることが
できる。その結果、受光窓32から大量の光が受光され
た場合、遮蔽膜3lにより転送部となる埋込み層26近
傍下のウェル領域22へ入射しようとする光を遮断でき
る。従って、遮蔽膜31による転送部近傍下のウエル領
域22部分への光の漏れ込みを防1トし、転送部の後端
で取り出される画像信号が大きくなる、いわゆるスミア
発生を抑制した高信頼性の固体撮像装置を得ることがで
きる。
According to such a configuration, the surface of the p-well region 22 where the n-type layer 25 corresponding to the light-receiving window 32 is formed is depressed to form the recess 23, and the surface level is leveled with the p-well region 22 where the n-type layer 25 is formed. - The shielding film 3l located around the light receiving window 32 by being located below the surface of the well region 22
The end portion of the CCD transfer section can be located at the same level as or below the surface of the n-type buried layer 26 constituting the CCD transfer section. As a result, when a large amount of light is received from the light receiving window 32, the shielding film 3l can block the light that is about to enter the well region 22 near and below the buried layer 26, which becomes the transfer section. Therefore, the shielding film 31 prevents light from leaking into the well region 22 under the vicinity of the transfer section, increasing the image signal taken out at the rear end of the transfer section, and achieving high reliability by suppressing so-called smear generation. A solid-state imaging device can be obtained.

なお、本発明に係わる固体撮像装置は上記大施例に限定
されず、第2図に示す構造としてもよい。
Note that the solid-state imaging device according to the present invention is not limited to the above-described large-scale embodiment, and may have the structure shown in FIG. 2.

即、第2図に示す固体撮像装置はp−ウェル領域22に
おけるn型層形成予定部をエッチングにより陥没されて
深い溝部33を形成した構造になっている。かかる構或
の固体撮像装置によれば、受光窓32を前記溝部33を
底部に開孔でき、その周辺に位置する遮蔽膜81の端部
をCCD転送部を構或するn型哩込み層26の表面より
十分に低い下側に位置させることができ、受光窓82か
ら大量の光が受光された場合、遮蔽膜8lにより転送部
となる埋込み層26近傍下のウエル領域22へ入射しよ
うとする光をより確実に遮断できるため、遮蔽膜31に
よる転送部近傍下のウェル領域22部分への光の漏れ込
みを防止し、転送部の後端で取り出される画像信号が大
きくなる、いわゆるスミア発坐を防止することができる
That is, the solid-state imaging device shown in FIG. 2 has a structure in which a portion of the p-well region 22 where the n-type layer is to be formed is depressed by etching to form a deep groove portion 33. According to the solid-state imaging device having such a structure, the light-receiving window 32 can be formed at the bottom of the groove 33, and the end of the shielding film 81 located around the light-receiving window 32 can be formed into an n-type folding layer 26 constituting a CCD transfer section. When a large amount of light is received from the light-receiving window 82, the shielding film 8l causes it to enter the well region 22 near and below the buried layer 26, which becomes the transfer section. Since the light can be blocked more reliably, the shielding film 31 prevents light from leaking into the well region 22 under the vicinity of the transfer section, and the image signal taken out at the rear end of the transfer section becomes larger. can be prevented.

[発明の効果コ 以上詳述した如く、本発明によれば遮蔽膜による転送部
近傍下の半導体基体部分への光の漏れ込みを防止し、ス
ミア発生を抑制した高信頼性の固体撮像装置を提供でき
る。
[Effects of the Invention] As described in detail above, the present invention provides a highly reliable solid-state imaging device in which the shielding film prevents light from leaking into the semiconductor substrate portion under the vicinity of the transfer section and suppresses the occurrence of smear. Can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す固体撮像装置の断面図
、第2図は本発明の他の実施例を示す固体撮像装置の断
面図、第3図は従来の固体撮像装置を示す断面図である
。 2l・・・n型シリコン基板、22・・・p−ウェル領
域、23・・・凹部、25・・・n型層、26・・・n
型埋込み層、29・・・ゲート電極、31・・・遮蔽膜
、32・・・受光窓、33・・・溝部。
FIG. 1 is a sectional view of a solid-state imaging device showing one embodiment of the present invention, FIG. 2 is a sectional view of a solid-state imaging device showing another embodiment of the invention, and FIG. 3 is a sectional view of a conventional solid-state imaging device. FIG. 2l...n-type silicon substrate, 22...p-well region, 23...recess, 25...n-type layer, 26...n
Mold buried layer, 29... Gate electrode, 31... Shielding film, 32... Light receiving window, 33... Groove.

Claims (1)

【特許請求の範囲】[Claims] 半導体基体と、この基体表面に形成された受光部として
作用する一導電型の不純物層と、この不純物層と所望距
離隔てた前記基体表面部分に形成された転送部としての
一導電型の埋込み層と、前記不純物層と埋込み層との間
のチャンネル領域を含む基体上に薄い絶縁膜を介して形
成された電極と、この電極を含む前記基体上に被覆され
た絶縁膜と、この絶縁膜上に被覆され、前記不純物層の
一部に対応する箇所に受光窓が開孔された遮蔽膜とを具
備した固体撮像装置において、前記受光窓に対応する半
導体基体表面を前記埋込み層が形成された半導体基体表
面より下方に位置させたことを特徴とする固体撮像装置
A semiconductor substrate, an impurity layer of one conductivity type formed on the surface of this substrate and acting as a light receiving section, and a buried layer of one conductivity type as a transfer section formed on a portion of the surface of the substrate separated by a desired distance from this impurity layer. an electrode formed on a base including a channel region between the impurity layer and the buried layer via a thin insulating film; an insulating film coated on the base including this electrode; In the solid-state imaging device, the buried layer is formed on the surface of the semiconductor substrate corresponding to the light-receiving window. A solid-state imaging device characterized in that it is located below the surface of a semiconductor substrate.
JP1300703A 1989-11-21 1989-11-21 Solid-state image sensing device Pending JPH03161970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1300703A JPH03161970A (en) 1989-11-21 1989-11-21 Solid-state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300703A JPH03161970A (en) 1989-11-21 1989-11-21 Solid-state image sensing device

Publications (1)

Publication Number Publication Date
JPH03161970A true JPH03161970A (en) 1991-07-11

Family

ID=17888069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300703A Pending JPH03161970A (en) 1989-11-21 1989-11-21 Solid-state image sensing device

Country Status (1)

Country Link
JP (1) JPH03161970A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351081A (en) * 1990-11-16 1994-09-27 Sony Corporation Solid-state imaging device having a light barrier layer
JP2008177220A (en) * 2007-01-16 2008-07-31 Fujifilm Corp Solid-state imaging element
WO2010047412A1 (en) * 2008-10-24 2010-04-29 日本ユニサンティスエレクトロニクス株式会社 Solid-state imaging element, solid-state imaging device and method for manufacturing same
JP2010103540A (en) * 2008-10-24 2010-05-06 Unisantis Electronics Japan Ltd Solid-state imaging device, solid-state imaging apparatus, and method of manufacturing the same
US7956388B2 (en) 2008-10-24 2011-06-07 Unisantis Electronics (Japan) Ltd. Solid-state image pickup element and solid-state image pickup device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351081A (en) * 1990-11-16 1994-09-27 Sony Corporation Solid-state imaging device having a light barrier layer
JP2008177220A (en) * 2007-01-16 2008-07-31 Fujifilm Corp Solid-state imaging element
WO2010047412A1 (en) * 2008-10-24 2010-04-29 日本ユニサンティスエレクトロニクス株式会社 Solid-state imaging element, solid-state imaging device and method for manufacturing same
WO2010046994A1 (en) * 2008-10-24 2010-04-29 日本ユニサンティスエレクトロニクス株式会社 Solid-state image sensor, solid-state image pickup device and its manufacturing method
JP2010103540A (en) * 2008-10-24 2010-05-06 Unisantis Electronics Japan Ltd Solid-state imaging device, solid-state imaging apparatus, and method of manufacturing the same
US7956388B2 (en) 2008-10-24 2011-06-07 Unisantis Electronics (Japan) Ltd. Solid-state image pickup element and solid-state image pickup device
US8115237B2 (en) 2008-10-24 2012-02-14 Unisantis Electronics Singapore Pte Ltd. Solid-state image pickup element and solid-state image pickup device having a transfer electrode formed on the entire sidewall of a hole
US8114695B2 (en) 2008-10-24 2012-02-14 Unisantis Electronics Singapore Pte Ltd. Solid-state image pickup element, solid-state image pickup device and production method therefor

Similar Documents

Publication Publication Date Title
US5736756A (en) Solid-state image sensing device with lght shielding film
CN110034139A (en) Imaging sensor
US4695860A (en) Gate structure for an integrated circuit comprising elements of the gate-insulator-semiconductor type and a method of fabrication of an integrated circuit using said structure
US4748486A (en) Solid-state image sensor
KR100218849B1 (en) Manufacturing method of solid-state image pickup device
KR100238922B1 (en) Solid-state image pickup device with high melting point metal shield
US5041392A (en) Method for making solid state image sensing device
JPH03161970A (en) Solid-state image sensing device
US5327004A (en) Solid-state imaging device with an electrically connected light shield layer
JPS6149465A (en) Solid-state image pickup device
US5389805A (en) Solid-state image sensing device
JP2002231929A (en) Solid-state image pickup device
JPS59129463A (en) Solid-state image pickup device
JPH0697416A (en) Solid-state image sensing device and manufacture thereof
JP2748493B2 (en) Solid-state imaging device
JPS6345856A (en) Solid-state image sensor
KR930006278B1 (en) Photo shield structure of ccd imager
US5744850A (en) Photoelectric conversion semiconductor device
JPH03190272A (en) Solid-state camera device
KR950010532B1 (en) Ccd structure
JP2786076B2 (en) Solid-state imaging device and manufacturing method thereof
JPH04225563A (en) Solid state image sensor
JP2870048B2 (en) Solid-state imaging device
JPH03135069A (en) Solid-state image sensing element
JPS62234368A (en) Photodetector