JPH03159968A - Bonding of ceramics of boron nitride - Google Patents

Bonding of ceramics of boron nitride

Info

Publication number
JPH03159968A
JPH03159968A JP30032489A JP30032489A JPH03159968A JP H03159968 A JPH03159968 A JP H03159968A JP 30032489 A JP30032489 A JP 30032489A JP 30032489 A JP30032489 A JP 30032489A JP H03159968 A JPH03159968 A JP H03159968A
Authority
JP
Japan
Prior art keywords
ceramics
bonding
silicon
temperature
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30032489A
Other languages
Japanese (ja)
Inventor
Munetaka Takeuchi
竹内 宗孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30032489A priority Critical patent/JPH03159968A/en
Publication of JPH03159968A publication Critical patent/JPH03159968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔概要〕 窒化硅素セラミノクスの接合方法に関し、高温において
も優れた接着強度をもつ接合を行うことを目的とし、 窒化硅素セラミックスよりなる戊形体の接合部に、金属
硅素と有機硅素化合物との混合物を塗布して当接し、窒
素ガス雰囲気中で前記金属硅素が窒化硅素に変化し得る
温度で加熱することを特徴として窒化硅素セラミックス
の接合方法を構或する。
[Detailed Description of the Invention] [Summary] Regarding a method for joining silicon nitride ceramics, the purpose of this method is to bond silicon nitride ceramics with excellent adhesive strength even at high temperatures. The method for joining silicon nitride ceramics is characterized in that a mixture with an organic silicon compound is applied and brought into contact, and heated in a nitrogen gas atmosphere at a temperature at which the metal silicon can be changed into silicon nitride.

〔産業上の利用分野〕[Industrial application field]

本発明は高温においても優れた接着強度をもつ窒化硅素
セラミックスの接合方法に関する。
The present invention relates to a method for joining silicon nitride ceramics that has excellent adhesive strength even at high temperatures.

窒化硅素(以下SL3N4)は■000゜Cを越す高温
においても高い機械的強度を示し、軽量で熱衝撃性に優
れた材料として知られている。
Silicon nitride (hereinafter referred to as SL3N4) exhibits high mechanical strength even at high temperatures exceeding 1,000°C, and is known as a lightweight material with excellent thermal shock resistance.

すなわち、Si3N.は高温においても安定であって、
比重は3.185と軽いにも拘らず、モース硬度は9と
高く、また高温の溶融金属にも侵されないなど特異な性
質をもっている。
That is, Si3N. is stable even at high temperatures,
Although it has a light specific gravity of 3.185, it has a high Mohs hardness of 9, and has unique properties such as being uncorrupted by high-temperature molten metal.

そのため、切削工具の刃や高温での剛蝕性が必要な坩堝
やノズルなどの実用化が進められているが、セラミソク
ターボの構或祠や各種の構造部材など広い分野での使用
が期待されている。
For this reason, practical applications such as cutting tool blades and crucibles and nozzles that require high-temperature corrosion resistance are underway, but it is also expected to be used in a wide range of fields such as the construction of ceramic turbos and various structural members. has been done.

〔従来の技術〕[Conventional technology]

Si.N4セラミックスを構造部材として使用する場合
には、構造部材を構或するセラミックス同士の接合が必
要な場合が多い。
Si. When N4 ceramics are used as structural members, it is often necessary to bond the ceramics that make up the structural members.

こ覧で、セラミックスの接合法としては、機械的焼き嵌
め法.接着材法,活性金属法,鑞付け法などが知られて
いる。
As you can see, mechanical shrink fitting is the method for joining ceramics. The adhesive method, active metal method, brazing method, etc. are known.

然し、このような接合法では800〜900℃のような
高温においても高い機械的強度を示す接着は得られない
However, such a bonding method does not provide adhesion that exhibits high mechanical strength even at high temperatures such as 800 to 900°C.

その理由は、これらの接合においてはS+ 3N4セラ
ミノクスよりも使用可能温度が遥かに低い鑞材や接着材
を用い接合を行っているためである。
The reason for this is that these joints are performed using a solder material or adhesive whose usable temperature is much lower than that of S+ 3N4 Ceraminox.

そのため、高温においても優れた機砧的強度を示すS’
iJnセラミックスの特徴を活かすことができなかった
Therefore, S' exhibits excellent mechanical strength even at high temperatures.
It was not possible to take advantage of the characteristics of iJn ceramics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Si3N4セラミックスを構造部材として使用し、この
耐熱性を利用して高温で使用する場合には、セラ兆ソク
ス同士の接合が必要な場合が多い。
When using Si3N4 ceramics as a structural member and using it at high temperatures by taking advantage of its heat resistance, it is often necessary to bond the ceramics together.

然し、従来の接合法では高温には耐えられず、そのため
、SiJ4セラミックスの特徴が活かされない。
However, conventional bonding methods cannot withstand high temperatures, so the characteristics of SiJ4 ceramics cannot be utilized.

そこで、耐熱性の優れた接合法を実用化することが課題
である。
Therefore, the challenge is to put into practical use a bonding method with excellent heat resistance.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題はSi3N+セラ5ソクスよりなる成形体の
接合部に、金属硅素と有機硅素化合物との混合物を塗布
して当接し、窒素ガス雰囲気中で金属硅素がSi3Ng
に変化し得る温度で加熱することを特徴としてSi3N
4セラミックスの接合方法を構戒することにより解決す
ることができる。
The above problem was solved by applying a mixture of metal silicon and an organic silicon compound to the joint of a molded body made of Si3N + Cera5 sox and contacting the joint, and in a nitrogen gas atmosphere, the metal silicon was bonded to Si3Ng.
Si3N is characterized by being heated at a temperature that can change to
This problem can be solved by carefully considering the method of joining 4 ceramics.

〔作用〕[Effect]

発明者は当初、Si3N4セラミックス同士を接合する
方法として窒素(N2)ガス雰囲気中で金属硅素(Si
)粉末を結合材として接合することを考えた。
Initially, the inventor used metallic silicon (Si) in a nitrogen (N2) gas atmosphere as a method for bonding Si3N4 ceramics together.
) We considered joining using powder as a binding material.

然し、この場合には弱い結合しか得られない。However, in this case only a weak bond is obtained.

この理由は、Siが窒化する場合には次の発熱反が急速
に起こるからである。
The reason for this is that when Si is nitrided, the next exothermic reaction occurs rapidly.

4Si(s)  + 2Nz(g) 一Si*Nn(s
)  −{t+ΔGy =153.61 Kcal/m
olこ\で、(11式の窒化反応は急激に起こるために
反応速度のコン1・ロールが困難であり、接合部に多く
の空隙を生じ、このために強固な結合を得ることができ
ない。
4Si(s) + 2Nz(g) 1Si*Nn(s
) −{t+ΔGy =153.61 Kcal/m
(The nitriding reaction of Equation 11 occurs rapidly, so it is difficult to control the reaction rate, and many voids are created at the joint, making it impossible to obtain a strong bond.

そこで、発明者は(11式の反応をコントロールする方
法として、N2雰囲気中で加熱すると分解してSiJ4
となる有機硅素化合物をSi粉末に添加して結合材とし
て使用すると窒化反応をコントロールすることができ、
空隙がなく、然も強固な結合ができることを見出した。
Therefore, the inventor proposed (as a method to control the reaction of formula 11) that SiJ4 decomposes when heated in a N2 atmosphere.
The nitriding reaction can be controlled by adding an organic silicon compound to Si powder and using it as a binder.
It was discovered that there were no voids and a strong bond could be formed.

なお、有機化合物は熱可塑性を有し、高温では溶融状態
となるためバインダとして働くと云う利点もある。
Note that organic compounds have thermoplasticity and are in a molten state at high temperatures, so they also have the advantage of functioning as a binder.

なお、有機硅素化合物の中には常温において固体のもの
があるが、その場合には溶剤により有機硅素化合物を溶
して使用するか、或いは有機硅素化合物を加熱して溶融
し、この中にSi粉末を加えたものを接着材として使用
すればよく、実験の結果は後者のほうが有効であった。
Note that some organosilicon compounds are solid at room temperature, but in that case, the organosilicon compound is dissolved in a solvent before use, or the organosilicon compound is heated and melted, and Si is added into the solution. It is sufficient to use powdered adhesive as an adhesive, and experimental results showed that the latter was more effective.

こ覧で、本発明の実施において有効な有機硅素化合物と
しては、 ポリシラザン: lINcl+3 (SiHzNCl{
J+ allボリシラン :  ( (CH3) zs
i) 2112ポリポロシロキサン:  ((CJs)
zsiOB(0)z )ポリカルボシラン: (−St
−C−)。
From this table, the organic silicon compounds useful in the practice of the present invention include polysilazane: lINcl+3 (SiHzNCl{
J+ all vorisilane: ((CH3) zs
i) 2112 polyporosiloxane: ((CJs)
zsiOB(0)z) Polycarbosilane: (-St
-C-).

などを挙げることができるが、使用材としては加熱によ
りセラくソクスに変化する割合の多いものが望ましい。
For example, it is desirable to use a material that has a high rate of transformation into ceramics when heated.

本発明の実施法1としては、まず高温での加熱分解によ
り効率よくセラミックスに変化し得る有機硅素化合物と
金属St粉末とからなる滌合物を接合すべきセラミック
スの両面に塗りつける。
In method 1 of the present invention, first, a composite consisting of an organosilicon compound that can be efficiently converted into ceramics by thermal decomposition at high temperatures and metal St powder is applied to both sides of the ceramics to be bonded.

そして、両セラミックスを圧着した状態で、N2雰囲気
中で1200℃にまで加熱すれば、有機窒素化合物は分
解した後、窒化してアモルファスのS43N4となって
Si粉末を覆い、またSi粉末も窒化が進行してSi3
Na となる。
Then, when both ceramics are pressed together and heated to 1200°C in an N2 atmosphere, the organic nitrogen compound decomposes and becomes nitrided to form amorphous S43N4, covering the Si powder, and the Si powder is also nitrided. Proceed to Si3
becomes Na.

そして、この温度で加熱して焼結を進行させ、完了後に
降/晶して取り出すものである。
Then, it is heated at this temperature to advance sintering, and after completion of the sintering, it is precipitated/crystallized and taken out.

〔実施例〕〔Example〕

ボリシラリ′ン(平均分子蚤が12000,Si原子と
N原子が全体の98重量%以上を占める)を乾燥したN
2雰囲気ψて300゜Cに加熟して溶融させ、この中乙
こ平均粒径lμmのS1粉末を攪拌しなから混合して接
着{Aを作った。
N
The mixture was melted by heating to 300°C in 2 atmospheres ψ, and the S1 powder having an average particle diameter of 1 μm was mixed without stirring to prepare adhesive A.

次に、別に準備してある直径かLoam,長さが30關
の円↑.)状をし、相対密度が99%以上のSiJ<焼
結体二個の底面に、先の接着材を箆を用いて塗りつり、
密着させて固定したま\冷却した。
Next, a separately prepared circle with a diameter or loam of 30 degrees in length↑. ) shape with a relative density of 99% or more. Apply the above adhesive to the bottoms of the two sintered bodies using a spatula,
It was cooled while it was tightly fixed.

これをホソ1・プレスに入れ、N2雰囲気の下で加圧す
ることな< 1200゜Cに昇温し、1時間熱処理を行
った後、同し温度で50MPaの圧力を30分に互って
加えた。
This was placed in a Hoso 1 press, heated to <1200°C under N2 atmosphere without pressurization, heat treated for 1 hour, and then a pressure of 50 MPa was applied for 30 minutes at the same temperature. Ta.

第1図の実線1はこのよう乙こして得た接合体の高温引
張り拭験結果であり、参名として銀一銅チタン(Ag−
Cu−Ti)からなる゛7l!I性金属鑞材を用い60
0゜Cて接合したもの\高温引張り試験結果を破線2て
示している。
The solid line 1 in Figure 1 is the result of a high-temperature tensile test of the bonded body obtained in this way.
Cu-Ti) ゛7l! 60 using I type metal brazing material
The results of the high-temperature tensile test are shown by the broken line 2, which were bonded at 0°C.

この図から明らかのように、本発明を実施したSi3N
4セラミノクスは引張り強さは室温で約160MPaで
あり、1000’Cまて引張り強さの低下は見られない
のに対し、活性金属法で接着したSi :lN4セラミ
ノクスの引張り強さは130 MF)aと小さく、また
約800 ’Cから急激に減少している。
As is clear from this figure, Si3N in which the present invention was implemented
4 Ceraminox has a tensile strength of about 160 MPa at room temperature, and no decrease in tensile strength is observed up to 1000'C, whereas the tensile strength of Si:lN4 Ceraminox bonded by the active metal method is 130 MF). It is small at a, and decreases rapidly from about 800'C.

〔発明の効果〕〔Effect of the invention〕

本発明に係るSi粉末と有機硅素化合物とからなり、N
2雰囲気中て使用ずる接合材ばsiJ.セラミノクスを
実質的にSj3N4で接合するので耐熱性が優れており
、構造部材としての利用分野を拡大することができる。
Consisting of Si powder and an organic silicon compound according to the present invention, N
2 Bonding materials used in atmosphere siJ. Ceraminox is substantially bonded with Sj3N4, so it has excellent heat resistance and can be used in an expanded range of fields as a structural member.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高温引張り試験結果の説明図である。 FIG. 1 is an explanatory diagram of the high temperature tensile test results.

Claims (1)

【特許請求の範囲】[Claims] 窒化硅素セラミックスよりなる成形体の接合部に、金属
硅素と有機硅素化合物との混合物を塗布して当接し、窒
素ガス雰囲気中で前記金属硅素が窒化硅素に変化し得る
温度で加熱することを特徴とする窒化硅素セラミックス
の接合方法。
A mixture of metal silicon and an organic silicon compound is applied to the joint of a molded body made of silicon nitride ceramics, the mixture is brought into contact with the joint, and the mixture is heated in a nitrogen gas atmosphere at a temperature at which the metal silicon changes to silicon nitride. A method for joining silicon nitride ceramics.
JP30032489A 1989-11-17 1989-11-17 Bonding of ceramics of boron nitride Pending JPH03159968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30032489A JPH03159968A (en) 1989-11-17 1989-11-17 Bonding of ceramics of boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30032489A JPH03159968A (en) 1989-11-17 1989-11-17 Bonding of ceramics of boron nitride

Publications (1)

Publication Number Publication Date
JPH03159968A true JPH03159968A (en) 1991-07-09

Family

ID=17883405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30032489A Pending JPH03159968A (en) 1989-11-17 1989-11-17 Bonding of ceramics of boron nitride

Country Status (1)

Country Link
JP (1) JPH03159968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526060A (en) * 2003-04-23 2006-11-16 インテグレイティッド マテリアルズ インク Silica mixtures particularly useful for bonding silicon adhesives and silicon parts
US20190033175A1 (en) * 2015-08-27 2019-01-31 Copan Italia S.P.A. Device for collecting, transferring and storing samples of biological and/or chemical material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526060A (en) * 2003-04-23 2006-11-16 インテグレイティッド マテリアルズ インク Silica mixtures particularly useful for bonding silicon adhesives and silicon parts
US20190033175A1 (en) * 2015-08-27 2019-01-31 Copan Italia S.P.A. Device for collecting, transferring and storing samples of biological and/or chemical material

Similar Documents

Publication Publication Date Title
JP2000511867A (en) Method for joining parts made of SiC-based material using thick joints by heat-resistant brazing, and heat-resistant thick joints obtained by the method
US4347089A (en) Method for bonding silicon nitride
JPH03159968A (en) Bonding of ceramics of boron nitride
JPS6077186A (en) Ceramic sintered body with metallized surface
JPS59137373A (en) Ceramic bonding method
JPS61132580A (en) Metallization method for nitride ceramic bodies
JPS6077177A (en) Ceramic bonded body
CN109369208B (en) A kind of solder for silicon carbide connection and its preparation method and application
JPS63170279A (en) Ceramics joining method
JPS60171269A (en) Manufacture of complicated shape silicon nitride sintered body
JP7467191B2 (en) Joining Method
JPS5884186A (en) Ceramics bonding method
JP3154771B2 (en) Silicon nitride ceramic bonding agent
JPS61136605A (en) Joining method of sintered hard material and metallic material
JPH0292872A (en) How to join ceramic body and copper material
JPS5864271A (en) Silicon nitride sintered body
JPS60251177A (en) Joining method
JPS61222965A (en) Method of joining ceramic and metal
JPS6121985A (en) Melt adhesible alloy for silicon nitride base ceramic
JPS6077179A (en) Method of adhering silicon nitride ceramic sintered body
JPS63191505A (en) High hardness sintered tool
JPS62265184A (en) Adhesive for ceramics and adhesion
JPS63123879A (en) Bonding method for silicon nitride ceramics and metal
JPS60171273A (en) Method of bonding ceramic containing si3n4 as chief component
JPS6362477B2 (en)