JPS60171273A - Method of bonding ceramic containing si3n4 as chief component - Google Patents

Method of bonding ceramic containing si3n4 as chief component

Info

Publication number
JPS60171273A
JPS60171273A JP59027756A JP2775684A JPS60171273A JP S60171273 A JPS60171273 A JP S60171273A JP 59027756 A JP59027756 A JP 59027756A JP 2775684 A JP2775684 A JP 2775684A JP S60171273 A JPS60171273 A JP S60171273A
Authority
JP
Japan
Prior art keywords
si3n4
bonding
powder
resin
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59027756A
Other languages
Japanese (ja)
Inventor
裕氏 桂
上野 治幸
信博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP59027756A priority Critical patent/JPS60171273A/en
Publication of JPS60171273A publication Critical patent/JPS60171273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Si3N4を主成分とするセラミックの接合
方法、特に同セラミックを複雑形状に展開する上におい
て、有効な接合方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for joining ceramics containing Si3N4 as a main component, and particularly to a method for joining ceramics that is effective in developing the ceramic into a complex shape.

〔従来技術〕[Prior art]

Si3N4を主成分とするセラミックは、高強度で熱衝
撃抵抗性に優れ、高温下での化学的耐食性、耐摩耗性に
優れたセラミックである。即ち、エンジン部材、熱交換
器部材、タービン部材等としてすでに試用され、製鉄、
非鉄、窯炉、ガラス、セメント、原子カニ業、自動車、
化学工学、電子工学分野等に浸透してゆくセラミック材
料である。
Ceramic containing Si3N4 as a main component is a ceramic that has high strength, excellent thermal shock resistance, and excellent chemical corrosion resistance and wear resistance at high temperatures. In other words, it has already been used as engine parts, heat exchanger parts, turbine parts, etc., and is used in steel manufacturing,
Non-ferrous metals, furnaces, glass, cement, nuclear crab industry, automobiles,
It is a ceramic material that is permeating the fields of chemical engineering, electronic engineering, etc.

しかしながら、Si3 N4を主成分とするセラミック
の欠点は、複雑形状を得るのが困難な点であり、上記の
分野に有用な材料として浸透してゆくスピードが遅くな
っているのが現状である。
However, the drawback of ceramics containing Si3N4 as a main component is that it is difficult to obtain complex shapes, and the current situation is that the rate at which ceramics are gaining popularity as a material useful in the above fields is slow.

従来、Si3N4を主成分とするセラミックの接合は、
その接合部分に酸化物を介在させる手法や、金属を介在
させる手法、あるいは接合部分にSt粉末を介在させ窒
化雰囲気下で反応焼結させる手法等がある。このなかで
、接合部分に酸化物や金属を介在させる方法は、Si3
N4を主成分とするセラミック間の連続性を断ち切るこ
とになる。つまリ、Si3N4を主成分とするセラミッ
クの連続した化学結合が、接合部分の酸化物や金属によ
って切断され、当該部分の耐熱性や強度の低下及びクリ
ープが起る。酸化物や金属で接合する限り、Si3N4
を主成分とするセラミックの熱間部材としての適用範囲
が非常に狭く限定される。
Conventionally, joining of ceramics whose main component is Si3N4 is
There are a method in which an oxide is interposed in the joint portion, a method in which a metal is interposed in the joint portion, a method in which St powder is interposed in the joint portion and reaction sintering is performed in a nitriding atmosphere, and the like. Among these methods, the method of interposing oxide or metal in the joint part is Si3
This breaks the continuity between ceramics whose main component is N4. In other words, the continuous chemical bonds of the ceramic mainly composed of Si3N4 are broken by the oxides and metals in the bonded parts, resulting in a decrease in heat resistance and strength and creep in the parts. As long as it is bonded with oxide or metal, Si3N4
The scope of application of ceramics whose main components are as hot members is very narrowly limited.

また、接合部分にSi粉末を介在させ窒化雰囲気下で反
応焼結させる手法の場合は、当該接合部分に生成するS
i3N4の組織はポーラスでかつ被接合体と接合層の界
面での結合が弱いため強度の低下及び他の緒特性が低下
する欠点があった。
In addition, in the case of a method in which Si powder is interposed in the joint part and reaction sintering is performed in a nitriding atmosphere, S
Since the structure of i3N4 is porous and the bond at the interface between the object to be joined and the joining layer is weak, it has the disadvantage of lowering strength and other properties.

〔発明の目的〕[Purpose of the invention]

本発明はSi3N4を主成分とするセラミックの接合に
同じSi3 N4を主成分とするセラミック材料を用い
ることにより信頼度の高い接合部分を有する Si3 
N4を主成分としたセラミックの接合体を得る接合方法
を提供することを目的とする。
The present invention has a highly reliable bonded part by using the same Si3N4-based ceramic material for bonding Si3N4-based ceramics.
The object of the present invention is to provide a joining method for obtaining a ceramic joined body containing N4 as a main component.

〔発明の構成〕[Structure of the invention]

本発明はSi3N4を主成分とするセラミックの接合に
際し、接合部分に44μ以下のSi粉末と樹脂との混合
物を介在させ、窒化性ガス雰囲気下1200〜1500
℃の温度範囲で、接合部分の44μ以下のSi粉末を窒
化せしめ、連続的なSi3N4結合で接合することを特
徴とするSi3N4を主成分とするセラミックの接合方
法である。
In the present invention, when bonding ceramics mainly composed of Si3N4, a mixture of Si powder of 44μ or less and resin is interposed in the bonded part, and
This is a method for joining ceramics mainly composed of Si3N4, which is characterized by nitriding the Si powder of 44 μm or less in the joint part in a temperature range of 10°C and joining by continuous Si3N4 bonding.

本発明の接合方法を以下詳細に述べる。The joining method of the present invention will be described in detail below.

Si3N4を主成分とするセラミックを反応焼結により
生成するSi3N4で接合する場合、当該接合部分の諸
特性即ち、強度、耐食性、耐閘耗性等のレベルは、被接
合体と接合層の界面の結合、及び接合層内の結合に支配
されるのは明白である。
When bonding ceramics whose main component is Si3N4 with Si3N4 produced by reaction sintering, the various properties of the bonded part, such as strength, corrosion resistance, and wear resistance, depend on the interface between the objects to be bonded and the bonding layer. It is clear that the bonding and the bonding within the bonding layer dominate.

つまり、被接合体と接合層の界面の結合においてはSi
3N4を主成分とするセラミックと接合層のSi粒子と
の接触頻度を増し窒化雰囲気下での窒化合成で、被接合
体と接合層の界面に連続的なSi3N4の化学結合を形
成せしめること、接合層内の結合においては、接合層の
si粒子同志の接触頻度を増し、窒化合成で連続的なS
i3N4の化学結合を多量に形成せしめることが、信頼
性の高い−接合強度を得ることにつながる。
In other words, Si
By increasing the frequency of contact between the ceramic mainly composed of 3N4 and the Si particles of the bonding layer, and by nitriding synthesis in a nitriding atmosphere, forming a continuous chemical bond of Si3N4 at the interface between the object to be bonded and the bonding layer, bonding. In intralayer bonding, the frequency of contact between Si particles in the bonding layer is increased, and continuous S
Forming a large amount of i3N4 chemical bonds leads to obtaining highly reliable bonding strength.

しかしながら、本発明者らの数多くの実験ではその手法
のなかで接触頻度を増加させるだけでは信頼性の高い接
合強度は必ずしも得ることができないことが判明した。
However, numerous experiments conducted by the present inventors have revealed that it is not necessarily possible to obtain highly reliable bonding strength simply by increasing the contact frequency.

本発明者らは更に検討を進め、接合部の信頼性を低下せ
しめる要因はSi粉末表面、あるいはSi3N4を主成
分とするセラミック表面の酸化物被膜の存在であること
をつきとめた。
The present inventors further investigated and found that the factor that lowers the reliability of the joint is the presence of an oxide film on the surface of the Si powder or the surface of the ceramic whose main component is Si3N4.

通常、Si粉末やSi3N4を主成分とするセラミック
表面の酸化物被膜は非酸化性雰囲気下で1200℃付近
から分解が起ると言われているが、Si粉末の窒化開始
温度(約1100℃)以下では未だ表面には酸化物被膜
が存在するため、Si粉末粒子同志ではSi粒子−Si
粒子の焼結は行なわれず、酸化物被膜間の焼結が起るだ
けである。しかも酸化物被膜間の焼結は、粒子間収縮を
生せしめる体積拡散は起らず、バルクの収縮は起らない
Normally, it is said that the oxide film on the ceramic surface containing Si powder or Si3N4 as a main component decomposes at around 1200°C in a non-oxidizing atmosphere, but the nitridation starting temperature of Si powder (approximately 1100°C) Below, since there is still an oxide film on the surface, the Si powder particles are separated by Si particles - Si.
No sintering of the particles takes place, only sintering between the oxide coatings. Moreover, the sintering between the oxide films does not cause the volume diffusion that causes interparticle shrinkage, and thus does not cause bulk shrinkage.

つまり、Si粉末粒同志は酸化被膜を介して接触した状
態で窒化が始まることになり、やがて酸化被膜は飛散す
るのでSi粒子−St粒子の直接結合が無いままでSi
3 N4が形成する。またSi粉末粒とSi3N4を主
成分とするセラミック間でも同様である。従って、単純
に、Si3N4を主成分とするセラミック間にSi粉末
を介在させて窒化させても接合強度が低く、接合層のポ
ーラスなものしか得られないのである。
In other words, nitriding begins with the Si powder grains in contact with each other through the oxide film, and the oxide film eventually scatters, leaving the Si powder particles without a direct bond between the Si particles and the St particles.
3 N4 forms. The same applies to Si powder grains and ceramics whose main component is Si3N4. Therefore, even if Si powder is simply interposed between ceramics mainly composed of Si3N4 and nitrided, the bonding strength is low and only a porous bonding layer can be obtained.

そこで、本発明者等は、これらの酸化物被膜を比較的低
温で除去し、表面が脱酸素されたSiとSt及びStと
Si3N4が酸化物被膜を介さない直接接触によって、
蒸発凝縮等のメカニズムによる接触部分のネックの形成
増加を接合反応に導入することで信頼性のある接合体を
得ることができた。
Therefore, the present inventors removed these oxide films at a relatively low temperature, and brought Si and St, whose surfaces were deoxidized, and St and Si3N4 into direct contact without using the oxide film.
By introducing increased neck formation at the contact area through mechanisms such as evaporation-condensation into the joining reaction, a reliable joined body could be obtained.

具体的には、まず、接合剤として使用するSi粉末の接
触頻度を増加させるためには、Si粉末のバッキングを
良くする粒度構成にしかつその樹脂はSi粉末及びSi
3N4を主成分とするセラミック表面の酸化物被膜を除
去する成分を発生する樹脂を使用する。酸化物被膜を除
去する成分は樹脂の分解時に発生する反応活性な水素及
び炭化水素が最も効果的であり、その発生温度域は50
0〜1200℃の範囲が望ましい。それは、500℃以
下では、いくら反応活性な水素及び炭化水素が発生して
も酸化物被膜が熱的に安定なので除去される量が少なく
、またI200°C以上では窒化反応が優先的に起るか
らである。500〜1200°Cの温度範囲で樹脂の分
解により発生する反応活性な水素及び炭化水素が酸化被
膜を除去することにより、窒化開始前に、St粉末粒同
志あるいはSt粉末粒とSi3N4を主成分とするセラ
ミックが直接接触することになるので、Stの蒸発−凝
縮によるネックの形成及び粒界拡散あるいは体積拡散に
よる収縮が生じる。従うて窒化ではこれらSi粒子−S
i粒子の直接結合及びSi粒子とSi3N4を主成分と
するセラミック間の直接結合が形成された連続体を窒化
することになり、窒化後も連続したSi3 N4結合が
確実に形成され、信頼性の高い接合体が得られる。
Specifically, in order to increase the contact frequency of the Si powder used as a bonding agent, the particle size structure should be designed to improve the backing of the Si powder, and the resin should be
A resin that generates a component containing 3N4 as a main component that removes the oxide film on the ceramic surface is used. The most effective components for removing the oxide film are reactive hydrogen and hydrocarbons generated during resin decomposition, and the generation temperature range is 50°C.
A range of 0 to 1200°C is desirable. At temperatures below 500°C, no matter how much reactive hydrogen and hydrocarbons are generated, the oxide film is thermally stable, so only a small amount is removed, and above 200°C, nitriding reactions occur preferentially. It is from. Reactive hydrogen and hydrocarbons generated by decomposition of the resin in the temperature range of 500 to 1200°C remove the oxide film, so that before the start of nitriding, St powder particles or St powder particles and Si3N4 are the main components. Since the ceramics come into direct contact with each other, a neck is formed due to evaporation and condensation of St, and shrinkage occurs due to grain boundary diffusion or volume diffusion. Therefore, in nitriding, these Si particles -S
A continuum in which direct bonds between i-particles and direct bonds between Si particles and ceramics mainly composed of Si3N4 are formed is nitrided, and continuous Si3N4 bonds are reliably formed even after nitriding, ensuring reliability. A highly conjugated product can be obtained.

本発明で言う樹脂は、具体的にはケイ素と炭素を主な骨
格成分とする有機ケイ素高分子化合物。
Specifically, the resin referred to in the present invention is an organosilicon polymer compound whose main skeleton components are silicon and carbon.

フェノール樹脂、フラン樹脂、キシレン樹脂2不飽和ポ
リエステルあるいはエポキシ樹脂などである。ケイ素と
炭素を主な骨格成分とする有機ケイ素化合物(以下、有
機ケイ素ポリマーと呼ぶ)は本発明者等が特開昭56−
120574号で開示した一連のものである。
Examples include phenol resin, furan resin, xylene resin, diunsaturated polyester, and epoxy resin. Organosilicon compounds (hereinafter referred to as organosilicon polymers) whose main skeleton components are silicon and carbon were developed by the present inventors in JP-A-56-
This is the series disclosed in No. 120574.

非酸化性雰囲気下500〜1200°Cの温度範囲での
反応活性な水素及び炭化水素の発生量は例えば有機ケイ
素ポリマーで約30〜40重量%、フェノール樹脂で3
0〜60重量%である。
The amount of reactive hydrogen and hydrocarbons generated in a non-oxidizing atmosphere at a temperature range of 500-1200°C is, for example, about 30-40% by weight for organosilicon polymers and 3% by weight for phenolic resins.
It is 0 to 60% by weight.

Si粉末は44μ以下の粒度を有するもので、接合の目
的あるいは手法に応じた粒度構成にすることが望ましい
。Si粉米粒が44μ以上であれば窒化され難く未反応
Siが残留するので、接合層内がSi3N4とSiとの
混合相になり接合部の信頼性が低下する。
The Si powder has a particle size of 44 μm or less, and it is desirable to have a particle size configuration depending on the purpose or method of joining. If the Si powder rice grain is 44μ or more, it is difficult to be nitrided and unreacted Si remains, resulting in a mixed phase of Si3N4 and Si in the bonding layer, reducing the reliability of the bonded portion.

〔実施例及び発明の効果〕[Examples and effects of the invention]

実施例1 表1に示した4種類のSi3N4を主成分とするセラミ
ックを5 vsm X 15龍X20+iに切り出し、
5龍×15鰭の面を接合面とした。接合剤には44μ〜
サブミクロンまでの広範な粒径を有し、平均粒径が15
μのSi粉末(純度99.1%)と有機ケイ素ポリマー
を用い、その比率はsim末/有機ケイ素ポリマー=8
5/15であった。溶剤はキシレンを用いて、周波数6
011z、振幅0.2龍の振動台上で、2 ml / 
secのスピードで広がる粘度に調整した。
Example 1 Four types of ceramics mainly composed of Si3N4 shown in Table 1 were cut into 5 vsm x 15x20+i.
The surfaces of 5 dragons x 15 fins were used as the joint surfaces. 44 μ~ for bonding agent
Has a wide range of particle sizes down to submicrons, with an average particle size of 15
μ Si powder (purity 99.1%) and organosilicon polymer are used, and the ratio is sim powder/organosilicon polymer = 8
It was 5/15. Using xylene as a solvent, frequency 6
011z, on a vibration table with an amplitude of 0.2, 2 ml/
The viscosity was adjusted to spread at a speed of sec.

5 m X 15mの被接合面に、調整した接合剤を約
1.2鰭の厚みに塗布し、その上からもう一方の被接合
面を当てて振動台上で上記振動条件にて振動させながら
接合剤をはみ出させた。
Apply the adjusted bonding agent to a thickness of approximately 1.2 fins on a 5 m x 15 m surface to be bonded, apply the other surface to be bonded over it, and vibrate on a vibration table under the above vibration conditions. The adhesive was squeezed out.

最終の接合層の厚みを0.5mmにして、150℃で一
昼夜乾燥させた。
The final bonding layer had a thickness of 0.5 mm and was dried at 150° C. for one day.

乾燥後、接合層内及び接合界面にクランク等の欠陥発生
は無かった。
After drying, no defects such as cranks were found within the bonding layer or at the bonding interface.

この接合体を窒素ガス雰囲気下で、昇温速度100℃/
hrで昇温した。途中反応活性な水素及び炭化水素放出
温度範囲内の1000℃で2時間保持し、更に窒化反応
域の1200°C以上では1300°c、 1350℃
及び1420”cで各々5時間保持して窒化の促進をは
かった。
This bonded body was heated at a heating rate of 100℃/in a nitrogen gas atmosphere.
The temperature was raised in hr. During the reaction, the temperature was maintained at 1000°C for 2 hours within the reaction-active hydrogen and hydrocarbon release temperature range, and further at 1300°C and 1350°C in the nitriding reaction region above 1200°C.
and 1420''c for 5 hours to promote nitriding.

こうして得た接合体はすべて接2ζ面と直角方向に収縮
が認められ、マイクロメータで測定した結果接合層は2
.5〜3.5%収縮した。これらの接合体の接合部の強
度を曲げ試験によって評価した。
All of the bonded bodies obtained in this way showed shrinkage in the direction perpendicular to the tangent 2ζ plane, and as a result of measurement with a micrometer, the bonding layer was 2
.. It shrunk by 5-3.5%. The strength of the joints of these joined bodies was evaluated by a bending test.

サンプルは3mmx3m*X4Q+nに切り出されスパ
ン30龍で支持し、最大応力が接合層の中心にくるよう
に注意深くセットして測定した。その結果を表2に示す
The sample was cut out to a size of 3 mm x 3 m * x 4 Q + n, supported with a span of 30, and carefully set so that the maximum stress was at the center of the bonding layer for measurement. The results are shown in Table 2.

表1 表2 実施例2 表1に示した4種類のSi3N4を主成分とするセラミ
ックについて実施例1と同様に、フェノール樹脂(ノボ
ラック型)を用いた接合剤(Si粉末87重量%、フェ
ノール樹脂13重量%)で接合体を作製した。このとき
の収縮は1.8〜2.8%であった。曲げ強さく常温)
の測定結果を表3に示す。
Table 1 Table 2 Example 2 In the same manner as in Example 1, for the four types of ceramics mainly composed of Si3N4 shown in Table 1, a bonding agent (Si powder 87% by weight, phenolic resin 13% by weight). The shrinkage at this time was 1.8 to 2.8%. (bending strength at room temperature)
The measurement results are shown in Table 3.

表3 また、フラン樹脂、キシレン樹脂、不飽和ポリエステル
及びエポキシ樹脂を使用してもほぼ同様な接合強度が得
られた。
Table 3 Furthermore, almost the same bonding strength was obtained even when furan resin, xylene resin, unsaturated polyester, and epoxy resin were used.

比較例1 表1に示した4種類のSi3N4を主成分とするセラミ
ックについて、非酸化性ガス雰囲気下500〜1200
℃の温度範囲で反応活性な水素及び炭化水素を放出しな
いポリビニルブチラールで接合剤を作り実施例1と同様
に接合体を作製した。このときの収縮はほとんど認めら
れなかった。曲げ強さく常温)を表4に示す。
Comparative Example 1 Regarding the four types of ceramics mainly composed of Si3N4 shown in Table 1, the temperature was 500 to 1200 in a non-oxidizing gas atmosphere.
A bonded body was prepared in the same manner as in Example 1 using a bonding agent made of polyvinyl butyral which does not release reactive hydrogen and hydrocarbons in the temperature range of .degree. At this time, almost no contraction was observed. Table 4 shows the bending strength (at room temperature).

表4 実施例1及び2は、有機ケイ素ポリマー及びフェノール
樹脂その信奉文中で列挙した樹脂を用いて接合剤を調整
し、Si3N4を主成分とするセラミックを接合した例
で、被接合体が接合部の強度より低い値を示すもの以外
は接合強度13 kg / w 2以上が得られた。比
較例1は本発明者らが種々の樹脂を使って実験を行なっ
たうちの1例であるが、非酸化性雰囲気下500〜12
00°Cの温度範囲での分解で反応活性な水素及び炭化
水素を放出しない樹脂の場合、収縮はほとんど認められ
ず、接合強度も最低値が極端に小さく、信頼性に乏しい
結果が得られた。
Table 4 Examples 1 and 2 are examples in which ceramics containing Si3N4 as a main component were bonded by adjusting the bonding agent using organosilicon polymers and phenolic resins listed in the text. A bonding strength of 13 kg/w2 or more was obtained except for those exhibiting a value lower than the strength of . Comparative Example 1 is an example of experiments conducted by the present inventors using various resins.
In the case of resins that do not release reactive hydrogen and hydrocarbons upon decomposition in the temperature range of 00°C, almost no shrinkage was observed, and the minimum bond strength was extremely low, resulting in unreliable results. .

実施例3 樹脂に有機ケイ素ポリマー、フェノール樹脂。Example 3 Organosilicon polymer and phenolic resin are used as resin.

ポリビニルブチラール及びアルギン酸ソーダ、以上4種
類を用いた接合剤を作製した。窒素雰囲気下での水素ガ
ス発生は、有機ケイ素ポリマーは250℃付近より発生
し始め1100℃でほぼ終了し、250〜500℃まで
の範囲で1.5重量%、500〜1200℃で3.2重
量%の発生量であった。フェノール樹脂は450°C付
近より発生し始め1200℃でほぼ終了し、この範囲で
の発生量は3.8重量%であった。
A bonding agent was prepared using the above four types of polyvinyl butyral and sodium alginate. Hydrogen gas generation in a nitrogen atmosphere starts from around 250°C for organosilicon polymers and almost ends at 1100°C, and is 1.5% by weight in the range from 250 to 500°C and 3.2% by weight in the range from 500 to 1200°C. The amount generated was % by weight. The generation of phenol resin started around 450°C and almost finished at 1200°C, and the amount generated in this range was 3.8% by weight.

ポリビニルブチラールは500℃で分解がほぼ終了し、
アルギン酸ソーダは380℃で分解がほぼ終了した。
Polyvinyl butyral almost completely decomposes at 500°C.
The decomposition of sodium alginate was almost completed at 380°C.

Si粉末は実施例1と同じものを使用し、有機ケイ素ポ
リマー;15重量%、フェノール樹脂;13重量%、ポ
リビニルブチラール;18重量%及びアルギン酸ソーダ
;16重量%各々を配合した。溶剤には有機ケイ素ポリ
マーはキシレン、フェノール樹脂及びブチルアルコール
はエチルアルコール、アルギン酸ソーダは水を使用し、
溶剤量を調整して実施例1と同じ粘度に調整した。被接
合体は表1に示したBの反応焼結Si3N4を選び、実
施例1と同様に振動台を用いて接合し、溶剤を飛散させ
た。接合層の厚さは約0.5mmに調整し、溶剤飛散後
の寸法と接合合成後の寸法の変化及び接合強度を測定し
た。
The same Si powder as in Example 1 was used, and 15% by weight of an organosilicon polymer, 13% by weight of a phenol resin, 18% by weight of polyvinyl butyral, and 16% by weight of sodium alginate were each blended. The solvent used is xylene for organosilicon polymers, ethyl alcohol for phenolic resins and butyl alcohol, and water for sodium alginate.
The viscosity was adjusted to be the same as in Example 1 by adjusting the amount of solvent. Reactive sintered Si3N4 shown in Table 1 was selected as the object to be joined, and the same as in Example 1 was used for joining using a vibrating table to scatter the solvent. The thickness of the bonding layer was adjusted to about 0.5 mm, and changes in dimensions after solvent scattering and after bonding synthesis, and bonding strength were measured.

接合合成条件は100℃/hrの昇iスピードで反応活
性な水素及び炭化水素発生温度領域の1000℃で2時
間保持し、更に窒化反応域の1200’c以上で130
0℃、 1350℃及び1420℃で各々5時間保持し
た。
The bonding synthesis conditions were to hold the temperature at 1000°C in the reactive hydrogen and hydrocarbon generation temperature range for 2 hours at a rising speed of 100°C/hr, and then to hold the temperature at 130°C over 1200°C in the nitriding reaction range.
The temperature was maintained at 0°C, 1350°C and 1420°C for 5 hours each.

結果を表5に示す。The results are shown in Table 5.

表5 本実施例においては500〜1200℃の温度範囲内で
反応活性な水素及び炭化水素を発生する有機ケイ素ポリ
マーとフェノール樹脂が、500℃以下でほぼ分解の終
了するポリビニルブチラールやアルギン酸ソーダに比較
して収縮効果及び接合強度で格段の差が生じ、本発明が
極めて優秀なることを示すものである。
Table 5 In this example, organosilicon polymers and phenolic resins that generate reactive hydrogen and hydrocarbons within the temperature range of 500 to 1200°C are compared to polyvinyl butyral and sodium alginate, which almost completely decompose at 500°C or below. This results in a significant difference in shrinkage effect and bonding strength, demonstrating that the present invention is extremely superior.

実施例4 実施例3で得た接合体のうち、有機ケイ素ポリマーとフ
ェノール樹脂を使用したものについて接合層内及び接合
界面を透過型電子顕微鏡で観察した結果、連続的な化学
結合はα型あるいはβ型のSi3N4で成り立っており
、それぞれの結晶界面は歪んだ格子像を含んでいること
が判明した。その歪み角度は最大6°程度で、高いエネ
ルギーを有するものと推察され、高い接合強度を発現せ
しめる要因と考えられる。ポリビニルブチラールとアル
ギン酸ソーダを使用したものについても同様に観察した
が、歪を含む結晶界面は非常に少なかった。
Example 4 Among the bonded bodies obtained in Example 3, the inside of the bonding layer and the bonding interface of the bonded body using a phenolic resin were observed using a transmission electron microscope. As a result, continuous chemical bonds were found to be α-type or It was found that it is made of β-type Si3N4, and each crystal interface contains a distorted lattice image. The maximum strain angle is about 6°, which is presumed to have high energy, and is thought to be a factor in developing high bonding strength. A similar observation was made for a sample using polyvinyl butyral and sodium alginate, but there were very few strained crystal interfaces.

実施例5 表1に示した被接合体のうちBの反応焼結体を用いて図
面に示す形状の端封管を作製した。この被接合体1.2
の外径及び内径は60鰭φと50鶴φで、lの長さは5
00鶴、2の厚さは5鶴であった。
Example 5 Of the objects to be joined shown in Table 1, the reaction sintered body B was used to produce an end-sealed tube having the shape shown in the drawings. This object to be joined 1.2
The outer and inner diameters are 60 fin φ and 50 crane φ, and the length of l is 5
The thickness of 00 Tsuru and 2 was 5 Tsuru.

両者に45°の角度でテーパーを取りそのテーパー面を
接合面とした。接合剤は樹脂にキシレン樹脂を使い実施
例1と同様に振動によって接合厚みを0.3+uに調整
した。
Both were tapered at an angle of 45° and the tapered surface was used as the bonding surface. Xylene resin was used as the bonding agent, and the bonding thickness was adjusted to 0.3+u by vibration as in Example 1.

150℃で一昼夜乾燥後、窒素ガス雰囲気下で昇温速度
100℃/hr、反応活性な水素及び炭化水素放出温度
範囲内の1100℃で2時間保持し、更に窒化反応域の
1200℃以上では1300℃、 1350℃及び14
50℃で各々5時間保持した。
After drying at 150°C for a day and night, the heating rate was 100°C/hr under a nitrogen gas atmosphere, and the temperature was maintained at 1100°C for 2 hours within the reaction active hydrogen and hydrocarbon release temperature range, and further at 1300°C above 1200°C in the nitriding reaction zone. ℃, 1350℃ and 14
Each was held at 50°C for 5 hours.

こうして得た端封接合体の接合部より約250鰭を14
00℃に保持された電気炉内に投入して20分加熱した
後引き出して空冷した。1サイクルで全く異常が無かっ
たので更に合計30サイクル繰り返したが異常は認めら
れなかった。
Approximately 250 fins were removed from the joint of the end-sealed joint obtained in this manner.
The sample was placed in an electric furnace maintained at 00°C and heated for 20 minutes, then taken out and cooled in the air. Since there was no abnormality at all after one cycle, a total of 30 cycles were repeated, but no abnormality was observed.

実施例6 実施例5と同様な方法で長さ2000mの端封管を製作
した。接合剤はフラン樹脂12重量%、Si粉末88重
量%のものを使った。800〜900℃のアルミニウム
溶湯中、端封側約1000mmの浸漬で1000時間経
過後も異常が無かった。
Example 6 An end-sealed tube with a length of 2000 m was manufactured in the same manner as in Example 5. The bonding agent used was 12% by weight of furan resin and 88% by weight of Si powder. There was no abnormality after 1000 hours of immersion of approximately 1000 mm of the end sealing side in molten aluminum at 800 to 900°C.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に用いた端封管の縦断面図である
。 代理人 小堀 益(ほか2名) 手続補正書彷力 1.事件の表示 昭和59年特 許 願第 27756号2、発明の名称 SiB N+を主成分とするセラミックの接合方法3、
補正をする者 事件との関係 特許 出 願人 4、代理入 6、補正の対象 明細書及び図面 7、補正の内容 (1) 明細書第19頁1舅テ及び第20頁最下行の「
図面」を「第1図」に補正する。 (2) 図面に沖!氏の通り「第1図」の図番を加入す
る。 第1図
The drawing is a longitudinal sectional view of an end-sealed tube used in an embodiment of the present invention. Agent: Masu Kobori (and 2 others) Procedural amendments: 1. Indication of the case: 1982 Patent Application No. 27756 2, Title of invention: Method for joining ceramics containing SiB N+ as the main component 3,
Relationship with the case of the person making the amendment Patent Applicant 4, Agent 6, Specification subject to amendment and drawings 7, Contents of amendment (1) Specification page 19, page 1, and bottom line of page 20, “
"Drawings" should be corrected to "Figure 1." (2) Off to the drawing! As per the author, the figure number of ``Figure 1'' is added. Figure 1

Claims (1)

【特許請求の範囲】 1、 5i3 N4を主成分とするセラミックの接合に
際し、接合部分に44μ以下のSt粉末と樹脂との混合
物を介在させ、窒化性ガス雰囲気下1200〜1500
℃の温度範囲で、接合部分の44μ以下のSt粉末を窒
化せしめ、連続的なSi3N4結合で接合することを特
徴とするSi3N4を主成分とするセラミックの接合方
法。 2、樹脂が非酸化性ガス雰囲気下500〜1200℃の
温度範囲での分解で水素及び炭化水素を放出する樹脂で
ある特許請求の範囲第1項記載のSi3N4を主成分と
するセラミックの接合方法。
[Claims] 1. When joining ceramics mainly composed of 5i3 N4, a mixture of St powder of 44μ or less and resin is interposed in the joint part, and the temperature is 1200 to 1500 in a nitriding gas atmosphere.
A method for joining ceramics containing Si3N4 as a main component, characterized by nitriding St powder of 44 μm or less in the joint part in a temperature range of 0.degree. C. and joining by continuous Si3N4 bonding. 2. A method for joining ceramics mainly composed of Si3N4 according to claim 1, wherein the resin is a resin that releases hydrogen and hydrocarbons when decomposed in a non-oxidizing gas atmosphere in a temperature range of 500 to 1200°C. .
JP59027756A 1984-02-15 1984-02-15 Method of bonding ceramic containing si3n4 as chief component Pending JPS60171273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59027756A JPS60171273A (en) 1984-02-15 1984-02-15 Method of bonding ceramic containing si3n4 as chief component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59027756A JPS60171273A (en) 1984-02-15 1984-02-15 Method of bonding ceramic containing si3n4 as chief component

Publications (1)

Publication Number Publication Date
JPS60171273A true JPS60171273A (en) 1985-09-04

Family

ID=12229856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027756A Pending JPS60171273A (en) 1984-02-15 1984-02-15 Method of bonding ceramic containing si3n4 as chief component

Country Status (1)

Country Link
JP (1) JPS60171273A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733498A (en) * 1994-02-28 1998-03-31 Honda Giken Kogyo Kabushiki Kaisha Method for producing silicon nitride reaction-sintered body
US5928601A (en) * 1994-02-28 1999-07-27 Honda Giken Kogyo Kabushiki Kaisha Method for producing silicon nitride reaction sintered body
JP2022078029A (en) * 2017-10-19 2022-05-24 ゼネラル・アトミックス Joining and sealing of pressurised ceramic components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733498A (en) * 1994-02-28 1998-03-31 Honda Giken Kogyo Kabushiki Kaisha Method for producing silicon nitride reaction-sintered body
US5928601A (en) * 1994-02-28 1999-07-27 Honda Giken Kogyo Kabushiki Kaisha Method for producing silicon nitride reaction sintered body
JP2022078029A (en) * 2017-10-19 2022-05-24 ゼネラル・アトミックス Joining and sealing of pressurised ceramic components

Similar Documents

Publication Publication Date Title
US8337648B2 (en) Ceramic joining
Yamada et al. Pb-free high temperature solders for power device packaging
JPS62260782A (en) Hot bonded fibrous product
KR960010589A (en) Ceramic assembly and manufacturing method of ceramic assembly
Zhao et al. Novel interface material used in high power electronic die-attaching on bare Cu substrates
Loehman Recent progress in ceramic joining
JPS60171273A (en) Method of bonding ceramic containing si3n4 as chief component
RU2193543C2 (en) Method of manufacturing caked structured ceramic product from aluminum nitride
US4163074A (en) Method for fast adhesion of silver to nitride type ceramics
JP3017372B2 (en) Compound for ceramic joining
JPS586712B2 (en) Method for manufacturing heat-resistant high-strength joined body
JP2004128451A (en) Method of manufacturing low expansive material and semiconductor device using it
JPS60171269A (en) Manufacture of complicated shape silicon nitride sintered body
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JP3154771B2 (en) Silicon nitride ceramic bonding agent
Ahmad et al. Microwave-assisted pyrolysis of SiC and its application to joining
JP3154770B2 (en) Silicon nitride ceramics joints
JPS60251177A (en) Bonding method
JP2582495B2 (en) Inorganic bonding material
Son et al. Thermal shock reliability of micro–nano bimodal Cu–Ag sintered joints
JP2582494B2 (en) Ceramic joint and its joining method
JPS6140874A (en) Adhesive for ceramic member and bonding method
JPH08157275A (en) Method for joining silicon carbide sintered compacts to each other
JP6278394B2 (en) Method for producing boron carbide-containing ceramic joined body and boron carbide-containing ceramic joined body
JP2004182550A (en) Method of combining carbon material and ceramic