JPH0315972B2 - - Google Patents

Info

Publication number
JPH0315972B2
JPH0315972B2 JP9167783A JP9167783A JPH0315972B2 JP H0315972 B2 JPH0315972 B2 JP H0315972B2 JP 9167783 A JP9167783 A JP 9167783A JP 9167783 A JP9167783 A JP 9167783A JP H0315972 B2 JPH0315972 B2 JP H0315972B2
Authority
JP
Japan
Prior art keywords
inspected
inspection
reflection
defect
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9167783A
Other languages
Japanese (ja)
Other versions
JPS59217138A (en
Inventor
Mitsutoshi Maeda
Hiroshi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP9167783A priority Critical patent/JPS59217138A/en
Publication of JPS59217138A publication Critical patent/JPS59217138A/en
Publication of JPH0315972B2 publication Critical patent/JPH0315972B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Description

【発明の詳細な説明】 技術分野 本発明は表面欠陥検査装置、特に回転軌跡面か
ら成る被検査面の欠陥を光学的に検査する装置の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a surface defect inspection device, and more particularly to an improvement in a device for optically inspecting a surface to be inspected consisting of a rotation locus surface for defects.

背景技術 被検査体の所望検査面の表面欠陥を検査するこ
とは各種の加工部品の検査工程において主要な検
査項目の1つであり、金属あるいはプラスチツク
等の内部欠陥に基づくピンホール、割れあるいは
亀裂そして加工時におけるひつかき傷等の検査と
して好適である。特に、油気圧装置の密封シール
バルブの擦り合わせ面等のように良好な表面仕上
げ精度を必要とする部品に対してはこのような表
面欠陥を確実に検出することが要望され、従来に
おいても各種の検査装置が実用化されている。
BACKGROUND ART Inspecting surface defects on the desired inspection surface of an object to be inspected is one of the main inspection items in the inspection process of various processed parts.It is one of the main inspection items in the inspection process of various processed parts. It is also suitable for inspecting scratches, etc. during processing. In particular, it is required to reliably detect such surface defects for parts that require good surface finishing accuracy, such as the rubbing surfaces of seal valves in hydraulic pressure equipment. inspection equipment has been put into practical use.

近年の検査装置として例えば特開昭50−16593
に示されるごとく、レーザ光を利用して表面欠陥
を検査する装置が提案されており、この従来装置
では、例えば金属細線の表面欠陥を検査するため
にレーザ光を被検査体である金属細線に直交する
ように走査してこの時発生する回折パターンが表
面欠陥に従つて特定のパターンを示すことが利用
されている。すなわち、細線の表面に欠陥がある
場合、レーザ光の回折によつて中央ピーク値が減
少しまた周辺光が増加するという特性を用い、回
折パターンの形状に合わせて光電変換素子を配置
し、この時電気的に検出される光強度最強点の移
動を検出し前記回折パターンの特性から表面欠陥
の有無が検査される。
For example, as a recent inspection device, JP-A-16593
As shown in , a device that uses laser light to inspect surface defects has been proposed. In this conventional device, for example, in order to inspect surface defects in a thin metal wire, a laser beam is applied to the thin metal wire that is the object to be inspected. It is utilized that the diffraction pattern generated during orthogonal scanning exhibits a specific pattern according to surface defects. In other words, when there is a defect on the surface of a thin wire, the central peak value decreases and the peripheral light increases due to laser beam diffraction, and this is achieved by arranging photoelectric conversion elements according to the shape of the diffraction pattern. The presence or absence of surface defects is inspected based on the characteristics of the diffraction pattern by detecting the movement of the point of the strongest light intensity which is detected electrically.

前述した従来装置によれば、回折パターンに対
応して配置された2列の光電変換素子は被検査体
である金属細線に近接して配置されており、細線
表面の微小欠陥に対しては極めて良好な感度を示
すが、比較的広い検査面を有する各種の加工部品
に対して被検査面全域に渡つて確実な検査が行い
得ないという欠点があつた。
According to the conventional device described above, two rows of photoelectric conversion elements arranged corresponding to the diffraction pattern are placed close to the thin metal wire that is the object to be inspected, and are extremely sensitive to minute defects on the surface of the thin wire. Although it exhibits good sensitivity, it has the disadvantage that it is not possible to reliably inspect the entire surface to be inspected for various processed parts that have a relatively wide inspection surface.

例えば、車両エンジンに用いられる吸排気バル
ブのバルブ面を検査するような場合、その表面欠
陥はピンホール、傷、欠肉あるいは黒皮等種々の
欠陥があり、このような各種の欠陥に対しては前
述した従来装置におけるレーザ検査光は非対称な
散乱を起こしあるいは回折光が充分にでない場合
が多く、実用上満足できる検査精度を上げること
ができないという欠点があつた。
For example, when inspecting the valve surface of intake and exhaust valves used in vehicle engines, there are various surface defects such as pinholes, scratches, missing parts, and black spots. However, in the conventional apparatus described above, the laser inspection light is often asymmetrically scattered or the diffracted light is not sufficient, and the inspection accuracy cannot be increased to a level that is satisfactory for practical use.

また、前記吸排気バルブにおいては、その被検
査面が載頭円錐形状であり、その稜長で示される
バルブ幅方向が所定値でないような欠陥あるいは
部品加工誤差に対しては前述した回折パターンに
よる検査では対処できないという問題があつた。
In addition, in the above-mentioned intake and exhaust valves, the surface to be inspected has a truncated conical shape, and defects such as the valve width direction indicated by the ridge length not being a predetermined value or parts processing errors can be detected using the above-mentioned diffraction pattern. There were problems that could not be addressed through testing.

従来の他の検査装置としてレーザ光のような単
色鋭指向特性を有する検査光を用いた光学的表面
検査装置も各種提案されているがこれらはいずれ
も単に被検査面からの正反射のみを検出して欠陥
の有無を検査するものであり、バルブ面のように
高い表面精度を要求される被検査体に対しては満
足できる検査結果を期待することができなかつ
た。
As other conventional inspection devices, various optical surface inspection devices have been proposed that use inspection light with monochromatic sharp directional characteristics such as laser light, but all of these devices simply detect specular reflection from the surface to be inspected. However, it is not possible to expect satisfactory inspection results for objects to be inspected that require high surface accuracy, such as valve surfaces.

発明の目的 本発明は上記従来の課題に鑑み為されたもので
あり、その目的は、車両用吸排気バルブ等のよう
な回転軌跡面からなる被検査面を有する被検査体
の表面欠陥を高精度でかつ迅速に検査可能な改良
された表面欠陥検査装置を提供することにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to improve the surface defects of an inspected object having an inspected surface consisting of a rotation locus surface, such as a vehicle intake/exhaust valve. An object of the present invention is to provide an improved surface defect inspection device capable of inspecting accurately and quickly.

発明の構成 上記目的を達成するために、本発明は、非検査
表面からの正反射と乱反射の両者を用いて表面欠
陥を検査するとともに、検査光の検査幅と正反射
により得られた反射幅との比較を行うことにより
回転軌跡面を有する被検査面の幅方向に対する欠
陥あるいは部品加工誤差をも同時に検査できるこ
とを特徴とする。
Composition of the Invention In order to achieve the above object, the present invention inspects surface defects using both specular reflection and diffused reflection from a non-inspection surface, and also examines the inspection width of the inspection light and the reflection width obtained by specular reflection. The feature is that defects or parts machining errors in the width direction of a surface to be inspected having a rotation locus surface can be simultaneously inspected by comparing with the rotation trajectory surface.

実施例 以下図面に基づいて本発明の好適な実施例を説
明する。
Embodiments Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には被検査体10として車両用エンジン
用吸排気バルブを用い、その気密シール面である
被検査面10aの表面欠陥が検査され、周知のよ
うにこの検査面10aは回転軌跡面からなる載頭
円錐形状を有する。
In FIG. 1, an intake/exhaust valve for a vehicle engine is used as an object to be inspected 10, and a surface defect on the inspection surface 10a, which is an airtight sealing surface, is inspected.As is well known, this inspection surface 10a is It has a truncated conical shape.

前記被検査体10は回転載物台12の上に載置
保持され、回転載物台12の回転軸(x軸)は被
検査面10aの回転軌跡軸と一致して設けられて
いる。実際上、回転載物台12はその表面の少な
くとも一部に被検査体10の位置決め突起あるい
は位置決め爪を有し、被検査体10を単に載物台
12上に載置するのみで前記両軸の一致がとられ
るように構成されている。
The object to be inspected 10 is placed and held on a rotary stage 12, and the rotation axis (x-axis) of the rotary stage 12 is provided to coincide with the rotation locus axis of the surface to be inspected 10a. In practice, the rotary stage 12 has a protrusion or a positioning claw for positioning the object 10 on at least a part of its surface, and by simply placing the object 10 on the stage 12, it is possible to It is configured so that a match is taken.

回転載物台12の下方には歯車14が固定され
ており、該歯車14にはモータ16の主軸に固定
されたウオーム18が噛合しており、これによつ
て、前記モータ16の回転によつて回転載物台1
2すなわち被検査体10を所定の速度で回転駆動
することができる。
A gear 14 is fixed below the rotary stage 12, and a worm 18 fixed to the main shaft of a motor 16 meshes with the gear 14. Rotating stage 1
2, the object to be inspected 10 can be rotated at a predetermined speed.

一方、被検査面10aの光学的表面欠陥検査の
ために該面10aには検査光100が照射され、
本発明において該検査光100は単色鋭指向特性
を有するレーザ光が用いられ、このレーザ光は前
記回転軸(x軸)と垂直(y軸)にかつ平行な所
定周期で走査される細光線として照射される。
On the other hand, the surface 10a to be inspected is irradiated with inspection light 100 for optical surface defect inspection of the surface 10a,
In the present invention, the inspection light 100 is a laser beam having monochromatic sharp directional characteristics, and this laser beam is scanned at a predetermined period perpendicular (y-axis) to the rotation axis (x-axis) and parallel to the rotation axis (x-axis). irradiated.

すなわち、実施例における単色鋭指向の細光線
としてはレーザ光が用いられ、このレーザ光はレ
ーザ発振器20から出力され、これがガルバノミ
ラー等からなる光偏向器22及び投光レンズ24
を介して前述した回転軸に垂直なかつ平行に走査
される細光線として被検査面10aに照射され
る。
That is, in the embodiment, a laser beam is used as the monochromatic, sharply oriented thin beam, and this laser beam is output from a laser oscillator 20, which is then passed through an optical deflector 22 such as a galvanometer mirror and a light projecting lens 24.
The surface to be inspected 10a is irradiated with a narrow beam of light that is scanned perpendicularly and parallel to the rotation axis described above.

光偏向器22は周知の周期的な偏向作用を行い
その偏向周期T1は発振器26の発振周期によつ
て制御されており、光偏向器22からのセクタビ
ームが投光レンズ24によつて平行光線に変換さ
れる。
The optical deflector 22 performs a well-known periodic deflection action, and its deflection period T1 is controlled by the oscillation period of the oscillator 26, and the sector beam from the optical deflector 22 is collimated by the projection lens 24. converted into light rays.

前記光偏向器22及び発振器26からなる検査
光走査機構はその偏向周期T1が前記回転載物台
12の回転周期T2より充分に小さい周期に設定
されており、これによつて、被検査面10aの表
面には符号200で示される光走査軌跡が描か
れ、これによつて被検査面10aの全面に渡つて
洩れなく検査光100の走査が行われることとな
る。
The inspection light scanning mechanism consisting of the optical deflector 22 and the oscillator 26 has a deflection period T 1 that is sufficiently smaller than the rotation period T 2 of the rotary stage 12. A light scanning locus indicated by reference numeral 200 is drawn on the surface of the surface 10a, so that the inspection light 100 is scanned over the entire surface of the surface to be inspected 10a without omission.

本発明において、前記検査光走査機構による検
査光100の走査幅は被検査面10aを十分にカ
バーする大きさに設定され、この走査幅は被検査
体10の形状あるいは寸法によつて任意に調整可
能である。
In the present invention, the scanning width of the inspection light 100 by the inspection light scanning mechanism is set to a size that sufficiently covers the inspected surface 10a, and this scanning width is arbitrarily adjusted depending on the shape or size of the inspected object 10. It is possible.

周知のように、被検査面10aでの検査光10
0の反射は被検査面10aが表面欠陥を有してい
ない場合、面10aの法線に対して対称な方向す
なわち正反射方向にその主たるエネルギーが進行
する。従つて、本発明においては、この正反射を
電気的に検出するために前記正反射方向には正反
射検出手段28が設けられ、例えば光電変換素子
によつてこの正反射検出手段が形成される。
As is well known, the inspection light 10 on the surface to be inspected 10a
When the surface 10a to be inspected has no surface defects, the main energy of the 0 reflection travels in a direction symmetrical to the normal to the surface 10a, that is, in a regular reflection direction. Therefore, in the present invention, in order to electrically detect this specular reflection, specular reflection detection means 28 is provided in the specular reflection direction, and the specular reflection detection means is formed by, for example, a photoelectric conversion element. .

また、本発明においては、被検査面10aに欠
陥が存在している場合に生じる回折あるいは散乱
等の乱反射を検出するために乱反射検出手段が設
けられており、実施例における乱反射検出手段は
前記正反射の両側方であつて被検査面10aの近
傍に一端が開口した一対の光フアイバ束30a,
30bが設けられ、両光フアイバ束30の他端に
は光電変換素子からなる光検出器32が設けられ
ている。従つて、この乱反射検出手段によつて被
検査面10aに欠陥が存在する場合には該欠陥か
ら生じる回折あるいは散乱等の乱反射を確実に光
検出器32で電気的な信号として検出することが
できる。
Further, in the present invention, a diffused reflection detection means is provided to detect diffused reflection such as diffraction or scattering that occurs when a defect exists on the surface to be inspected 10a. A pair of optical fiber bundles 30a with one end open near the surface to be inspected 10a on both sides of the reflection,
30b, and a photodetector 32 made of a photoelectric conversion element is provided at the other end of both optical fiber bundles 30. Therefore, if a defect exists on the surface to be inspected 10a, this diffused reflection detection means allows the photodetector 32 to reliably detect the diffused reflection caused by the defect, such as diffraction or scattering, as an electrical signal. .

前記両反射検出手段はそれぞれ被検査面10a
からの正反射及び乱反射を検査光100の全走査
領域において十分に捕捉可能な検出幅を有するよ
うに構成されており、これによつて、検査光10
0の各偏向走査毎に正反射及び乱反射を電気的な
信号として検出可能である。
Both of the reflection detection means each have a surface to be inspected 10a.
It is configured to have a detection width that can sufficiently capture specular reflection and diffuse reflection from the inspection light 100 in the entire scanning area of the inspection light 100.
Specular reflection and diffused reflection can be detected as electrical signals for each deflection scan of zero.

従つて、これら正反射及び乱反射によつて表面
欠陥の有無が電気的な信号として検出され、両信
号はそれぞれ信号処理回路34及び36(実施例
では、例えば、AD変換器)によつてデジタル信
号に変換された後オア回路38に供給され、これ
ら信号処理回路34,36及びオア回路38から
なる欠陥判別回路40によつて被検査面10aの
欠陥の有無が正反射及び乱反射信号に基づいて検
出される。
Therefore, the presence or absence of a surface defect is detected as an electrical signal by these regular reflections and diffuse reflections, and both signals are converted into digital signals by signal processing circuits 34 and 36 (in the embodiment, for example, an AD converter), respectively. A defect determination circuit 40 comprising these signal processing circuits 34, 36 and the OR circuit 38 detects the presence or absence of a defect on the surface to be inspected 10a based on the regular reflection and diffuse reflection signals. be done.

本発明においては、更に、前記被検査面10a
の幅方向における欠陥あるいは部品加工精度を判
別するために幅検査回路42を有し、実施例にお
ける幅検査回路42は比較回路からなり、前述し
た検査光走査機構の発振器26から得られる偏向
走査信号と前記正反射検出手段28から得られる
正反射信号とを比較し、検査光走査機構によつて
定められた検査光100の偏向走査幅に対して正
反射の幅が所定値より小さい場合に幅欠陥があつ
たことを検出する。
In the present invention, further, the surface to be inspected 10a
A width inspection circuit 42 is provided to determine defects in the width direction or component processing accuracy, and the width inspection circuit 42 in the embodiment is composed of a comparison circuit, and is configured to detect deflection scanning signals obtained from the oscillator 26 of the inspection light scanning mechanism described above. and the specular reflection signal obtained from the specular reflection detection means 28, and if the width of specular reflection is smaller than a predetermined value with respect to the deflection scanning width of the inspection light 100 determined by the inspection light scanning mechanism, the width is determined. Detect defects.

前記欠陥判別回路40及び幅検査回路42の両
検出信号は表示部44に供給され、被検査体10
の検査結果が表示される。
Both the detection signals of the defect discrimination circuit 40 and the width inspection circuit 42 are supplied to a display section 44, and
The test results will be displayed.

本発明の実施例は以上の構成からなり、以下に
第2図のタイムチヤートを用いてその作用を説明
する。
The embodiment of the present invention has the above configuration, and its operation will be explained below using the time chart shown in FIG.

まず欠陥判別回路40による被検査面10aの
欠陥の有無に関する判別作用が第2図A〜Eに示
される。第2図Aは被検査面10aに対する検査
光100の光走査軌跡200が拡大して示されて
おり、その偏向周期T1の間に検査光100は被
検査面10aの幅Wを充分に上回るだけの走査幅
で偏向走査される。このような偏向走査が行われ
るとき、正反射検出手段28及び乱反射検出手段
の光検出器32からは第2図B及びCで示される
ような検出信号が得られ、これらは共に被検査面
10aに欠陥がない状態を示す。すなわち、欠陥
のない状態では、検査光100はほとんど被検査
面10aにおいて正反射され、この結果、正反射
検出信号102は光走査軌跡200が被検査面1
0aを横切る間ほぼ一定のハイレベルを保ち、一
方乱反射信号104はほぼ一定のローレベルを保
つ。
First, the operation of determining the presence or absence of a defect on the surface to be inspected 10a by the defect determining circuit 40 is shown in FIGS. 2A to 2E. FIG. 2A shows an enlarged optical scanning trajectory 200 of the inspection light 100 with respect to the surface to be inspected 10a, and during the deflection period T1 , the inspection light 100 sufficiently exceeds the width W of the surface to be inspected 10a. Deflection scanning is performed with a scanning width of When such a deflection scan is performed, the specular reflection detection means 28 and the photodetector 32 of the diffuse reflection detection means obtain detection signals as shown in FIG. Indicates that there are no defects. That is, in a state where there is no defect, most of the inspection light 100 is specularly reflected at the surface to be inspected 10a, and as a result, the specular reflection detection signal 102 shows that the light scanning locus 200 is aligned with the surface to be inspected 10a.
The signal 104 maintains a substantially constant high level while crossing 0a, while the diffusely reflected signal 104 maintains a substantially constant low level.

一方、被検査面10aに何等かの欠陥がある場
合には、その欠陥部分において乱反射が起こり、
第2図D及びEで示されるように正反射102′
及び乱反射104′はそれぞれ欠陥に対応した信
号変化a及びbを呈する。
On the other hand, if there is some kind of defect on the surface to be inspected 10a, diffuse reflection occurs at the defective part,
Specular reflection 102' as shown in FIG. 2D and E.
and the diffused reflection 104' exhibit signal changes a and b corresponding to the defect, respectively.

従つて、これら信号変化a,bを欠陥判別回路
40において電気的に演算処理すれば、被検査面
10aにおける欠陥の有無を確実に検出可能であ
る。
Therefore, by electrically processing these signal changes a and b in the defect discrimination circuit 40, it is possible to reliably detect the presence or absence of a defect on the surface to be inspected 10a.

本発明によれば、被検査面10aにおける正反
射ばかりでなく乱反射をも同時に検出しているの
で、欠陥の種類による反射特性の相違に係わらず
あらゆる欠陥を確実に検出可能である。すなわ
ち、第2図D及びEにおいては欠陥が正反射及び
乱反射のいずれの検出信号にも現われている状態
が示されているが、ある種の欠陥においては正反
射あるいは乱反射のいずれか一方にしか現われな
い反射特性もあり、このような場合においても、
本発明によれば、欠陥判別回路40は正反射及び
乱反射のいずれに対しても欠陥検出を行つている
ため、このような欠陥の検出ミスを犯すことがな
く極めて確実な欠陥判別を行うことが可能であ
る。
According to the present invention, not only regular reflection but also diffuse reflection on the surface to be inspected 10a is detected at the same time, so that all defects can be reliably detected regardless of differences in reflection characteristics depending on the type of defect. In other words, although Fig. 2 D and E show a state in which the defect appears in both specular reflection and diffuse reflection detection signals, some types of defects appear only in either specular reflection or diffuse reflection. There are some reflection characteristics that do not appear, and even in such cases,
According to the present invention, since the defect discrimination circuit 40 detects defects for both specular reflection and diffuse reflection, it is possible to perform extremely reliable defect discrimination without making such defect detection errors. It is possible.

本発明においては、前記被検査面10aの表面
欠陥を単に反射ばかりでなく、被検査面10aの
幅方向における正反射幅を監視することにより欠
肉あるいは黒皮等に主として起因する幅方向での
欠陥及び寸法誤差その他任意の幅方向誤差を極め
て良好に検出可能であり、この状態が第2図F〜
Kに示されている。
In the present invention, surface defects on the surface to be inspected 10a are detected not only by reflection but also by monitoring the specular reflection width in the width direction of the surface to be inspected 10a, thereby detecting defects in the width direction mainly caused by underfilling, black spots, etc. Defects, dimensional errors, and any other errors in the width direction can be detected extremely well, and this state is shown in Figure 2 F~
It is shown in K.

すなわち、黒皮その他の寸法誤差あるいは欠陥
によつて被検査面10aの幅方向の長さが短縮し
た場合、正反射検出手段28からの検出信号は第
2図Fで示されるようにその信号幅が短縮し(1
02″)これが電気的に検出可能である。
That is, when the widthwise length of the surface to be inspected 10a is shortened due to a black spot or other dimensional error or defect, the detection signal from the specular reflection detection means 28 has a signal width as shown in FIG. 2F. is shortened (1
02″) This can be detected electrically.

本発明において、前記幅方向の信号と比較する
ために検査光走査機構の発振器26からは偏向走
査信号106(第2図G)が出力されており、そ
のパルス幅が第2図Hで示されるごとくクロツク
パルスによりカウントされる。一方、前記第2図
Fの正反射検出信号102″は第2図Iで示され
るように波形変換された後第2図Jのごとくクロ
ツクパルスによつてカウントされる。そして、両
クロツクパルス第2図H及びJは互いに比較さ
れ、その出力が第2図Kのごとく検出され、この
検出値が所定値より大きくなつた場合に被検査面
10aの幅が設定値より不足していることを判別
し、これによつて幅欠陥が確実に判別可能であ
る。
In the present invention, a deflection scanning signal 106 (FIG. 2G) is outputted from the oscillator 26 of the inspection light scanning mechanism for comparison with the signal in the width direction, and its pulse width is shown in FIG. 2H. It is counted by clock pulses. On the other hand, the specular reflection detection signal 102'' of FIG. 2F is converted into a waveform as shown in FIG. H and J are compared with each other, and the output thereof is detected as shown in FIG. , thereby making it possible to reliably identify width defects.

従つて、本発明によれば、単なる被検査面の正
反射のみならず乱反射を重ね合わせ判別し、また
被検査面の幅をも同時に検査可能であるため、極
めて高精度の検査を行うことが可能となる。
Therefore, according to the present invention, it is possible to superimpose and distinguish not only the regular reflection of the surface to be inspected but also the diffused reflection, and the width of the surface to be inspected can be inspected at the same time, making it possible to perform extremely high-precision inspection. It becomes possible.

なお、上記実施例においては、両反射検出手段
の検出信号は信号処理回路34,36によりデジ
タル信号変換されており、欠陥判別回路40とし
て、第3図で示されるように、信号処理回路3
4,36を用いて両信号出力をオア回路38にて
取出しており、第3図において、両信号処理回路
34,36はそれぞれハイパスフイルタ140、
微分回路142及びウインドコンパレータ144
を含み、第2図に示される正反射検出信号102
及び乱反射検出信号104を電気的に処理して欠
陥検出を行うことができる。
In the above embodiment, the detection signals of both reflection detection means are converted into digital signals by the signal processing circuits 34 and 36, and the signal processing circuit 3 is used as the defect discrimination circuit 40 as shown in FIG.
4 and 36, both signal outputs are taken out by an OR circuit 38, and in FIG.
Differentiation circuit 142 and window comparator 144
including a specular reflection detection signal 102 shown in FIG.
and the diffused reflection detection signal 104 can be electrically processed to detect defects.

発明の効果 以上説明したように、本発明によれば、回転軌
跡面からなる被検査面を単色鋭指向検査光によつ
て所定幅偏向走査し、この検査光に基づく正反射
及び乱反射の両者を検出して被検査面の欠陥を判
別し、かつ前記所定幅の偏向走査と正反射信号の
検出幅とを比較して被検査面の幅検査を同時に行
いこれら両検査の組み合わせにより被検査面の全
体的な表面欠陥検査を行うため、従来装置と比較
して極めて検査精度の高いかつ安定した表面検査
が可能となる利点を有す。
Effects of the Invention As explained above, according to the present invention, a surface to be inspected consisting of a rotation trajectory surface is deflected and scanned over a predetermined width using a monochromatic sharp directional inspection light, and both specular reflection and diffuse reflection based on this inspection light are detected. The defects on the surface to be inspected are determined by detecting them, and the width of the surface to be inspected is simultaneously inspected by comparing the deflection scan of the predetermined width with the detection width of the specular reflection signal. Since the entire surface defect inspection is performed, it has the advantage of being able to perform surface inspection with extremely high inspection accuracy and stability compared to conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る表面欠陥検査装置の好適
な実施例を示す概略説明図、第2図は第1図の作
用を説明するタイムチヤート図、第3図は第1図
における欠陥判別回路の他の実施例を示すブロツ
ク回路図である。 10……被検査体、10a……被検査面、12
……回転載物台、20……レーザ発振器、22…
…光偏向器、26……発振器、28……正反射検
出手段、30a,30b……光フアイバ束、32
……光検出器、40……欠陥判別回路、42……
幅検査回路、100……検査光、102……正反
射検出信号、104……乱反射検出信号、200
……光走査軌跡。
FIG. 1 is a schematic explanatory diagram showing a preferred embodiment of the surface defect inspection device according to the present invention, FIG. 2 is a time chart explaining the operation of FIG. 1, and FIG. 3 is a defect discrimination circuit in FIG. 1. FIG. 3 is a block circuit diagram showing another embodiment of the invention. 10... object to be inspected, 10a... surface to be inspected, 12
...Rotating stage, 20...Laser oscillator, 22...
... Optical deflector, 26 ... Oscillator, 28 ... Regular reflection detection means, 30a, 30b ... Optical fiber bundle, 32
...Photodetector, 40...Defect discrimination circuit, 42...
Width inspection circuit, 100...Test light, 102...Specular reflection detection signal, 104...Diffuse reflection detection signal, 200
...Light scanning trajectory.

Claims (1)

【特許請求の範囲】[Claims] 1 回転軌跡面からなる被検査面を有する被検体
を前記回転軌跡面の軸を中心として回転可能に載
置する回転載物台と、前記被検査面に向かつて単
色かつ鋭指向の細光線を回転載物台の回転軸に対
して垂直にかつ少なくとも前記被検査面を越える
所定幅で平行に走査する検査光走査機構と、検査
光の被検査面からの正反射を検出する正反射検出
手段と、検査光の被検査面による乱反射を検出す
る乱反射検出手段と、前記両検出手段の検出信号
を電気的に処理して被検査面の反射特性から欠陥
の有無を検出する欠陥判別回路と、前記正反射検
出手段の検出信号と前記検査光走査機構の走査信
号とを比較して被検査面の幅検査を行う幅検査回
路と、を含む表面欠陥検査装置。
1. A rotary stage on which a test object having a surface to be inspected consisting of a rotation trajectory surface is placed rotatably about the axis of the rotation trajectory surface, and a monochromatic and sharply oriented thin beam of light directed toward the surface to be inspected. an inspection light scanning mechanism that scans perpendicularly to the rotation axis of the rotary stage and in parallel with a predetermined width that exceeds at least the surface to be inspected; and specular reflection detection means that detects specular reflection of the inspection light from the surface to be inspected. a diffused reflection detection means for detecting diffused reflection of the inspection light by the surface to be inspected; and a defect determination circuit for electrically processing the detection signals of both the detection means to detect the presence or absence of a defect from the reflection characteristics of the surface to be inspected; A surface defect inspection apparatus comprising: a width inspection circuit that compares the detection signal of the specular reflection detection means with the scanning signal of the inspection light scanning mechanism to inspect the width of the surface to be inspected.
JP9167783A 1983-05-25 1983-05-25 Surface defect inspector Granted JPS59217138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9167783A JPS59217138A (en) 1983-05-25 1983-05-25 Surface defect inspector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9167783A JPS59217138A (en) 1983-05-25 1983-05-25 Surface defect inspector

Publications (2)

Publication Number Publication Date
JPS59217138A JPS59217138A (en) 1984-12-07
JPH0315972B2 true JPH0315972B2 (en) 1991-03-04

Family

ID=14033117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9167783A Granted JPS59217138A (en) 1983-05-25 1983-05-25 Surface defect inspector

Country Status (1)

Country Link
JP (1) JPS59217138A (en)

Also Published As

Publication number Publication date
JPS59217138A (en) 1984-12-07

Similar Documents

Publication Publication Date Title
US5076692A (en) Particle detection on a patterned or bare wafer surface
US5389794A (en) Surface pit and mound detection and discrimination system and method
US6376852B2 (en) Surface inspection using the ratio of intensities of s—and p-polarized light components of a laser beam reflected a rough surface
US7054480B2 (en) System and method for process variation monitor
US4895446A (en) Particle detection method and apparatus
US4630276A (en) Compact laser scanning system
JP4384737B2 (en) Inspection equipment for high-speed defect analysis
US5359416A (en) System and process for detecting and monitoring surface defects
JP3105702B2 (en) Optical defect inspection equipment
JPH0711416B2 (en) Board inspection method
US6346713B1 (en) Method and installation for inspecting an article for defects
JP2594685B2 (en) Wafer slip line inspection method
JPH0315972B2 (en)
JPS5841459B2 (en) BUTSUTAIRIYO BUKETSUKAN KENSAHOHO
JPH01214743A (en) Optical apparatus for checking
JPS63208746A (en) Defect inspecting device
US7184928B2 (en) Extended defect sizing
JPS59147206A (en) Object shape inspecting apparatus
WO1992001923A1 (en) Optical scatter imaging
JP3277400B2 (en) Optical disk defect inspection device
JPH07229832A (en) Method and apparatus for inspecting surface
JPS637322B2 (en)
JPH0694629A (en) Inspecting apparatus for crystal defect
JPS62273405A (en) Surface condition measuring apparatus
GB2348490A (en) Surface inspection device