JPS637322B2 - - Google Patents

Info

Publication number
JPS637322B2
JPS637322B2 JP55079832A JP7983280A JPS637322B2 JP S637322 B2 JPS637322 B2 JP S637322B2 JP 55079832 A JP55079832 A JP 55079832A JP 7983280 A JP7983280 A JP 7983280A JP S637322 B2 JPS637322 B2 JP S637322B2
Authority
JP
Japan
Prior art keywords
output
photoelectric detector
rotary table
floating threshold
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55079832A
Other languages
Japanese (ja)
Other versions
JPS576304A (en
Inventor
Hiroshi Ito
Mitsuru Ezaki
Akira Kuno
Kanji Kito
Morihiro Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP7983280A priority Critical patent/JPS576304A/en
Publication of JPS576304A publication Critical patent/JPS576304A/en
Publication of JPS637322B2 publication Critical patent/JPS637322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Description

【発明の詳細な説明】 本発明は円型部材の円錐面検査装置、特に円錐
面を非接触で光学的に自動検査できる改良された
円錐面検査方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conical surface inspection apparatus for a circular member, and more particularly to an improved conical surface inspection method and apparatus that can optically and automatically inspect a conical surface in a non-contact manner.

各種産業分野において密封シールその他多くの
用途に供される円型部材が用いられ、その材質と
してもゴム等の弾性材あるいはプラスチツク等
種々の材質が使用されている。この種の円型部材
はシール部等を形成する円錐面を有し、この円錐
面の欠陥が大きな問題となる場合があり、従来に
おいても、この円錐面の欠陥を精密に検査する方
式が要望されていた。
BACKGROUND ART Circular members are used in various industrial fields for sealing and many other purposes, and are made of various materials such as elastic materials such as rubber or plastics. This type of circular member has a conical surface that forms a sealing part, etc., and defects in this conical surface can cause a big problem, and even in the past, there has been a demand for a method to precisely inspect defects in this conical surface. It had been.

例えば、周知のように油圧あるいは水圧装置に
おいて各種のシール部材が用いられており、特に
シリンダ内で摺動するピストン等にはリング状あ
るいはカツプ状の円型シール部材が用いられ、こ
れらの円型シール部材は圧力伝達を行う最も重要
な機能部品を形成する。従つて、円型シール部材
の円錐シール面は高精度で加工されなければなら
ず、その表面欠陥は圧力漏洩、耐久力低下更にシ
ール部材の破損等を引起す原因となり、装置に組
込まれる前に充分にその品質が検査されなければ
ならない。
For example, as is well known, various seal members are used in hydraulic or hydraulic equipment, and in particular, ring-shaped or cup-shaped circular seal members are used for pistons that slide within cylinders. The sealing element forms the most important functional component for pressure transmission. Therefore, the conical sealing surface of the circular sealing member must be machined with high precision, and surface defects can cause pressure leaks, reduced durability, and damage to the sealing member, so it must be processed with high precision before being incorporated into equipment. Its quality must be thoroughly inspected.

前述した円型シール部材として自動車等のブレ
ーキシリンダにおけるゴム製のカツプが周知であ
り、運転者のブレーキ踏力を油圧力に変換して車
輪に制動力を与える重要な機能部品を形成し、カ
ツプの品質低下は自動車の制動機能に大きな影響
を与えるため、良好な品質及び高い耐久性が要求
される。従つて、自動車等のカツプはブレーキシ
リンダに組込む前にその全数が検査され微細な表
面欠陥であつても確実に検出し、このようなカツ
プを不良品として除去しなければならない。
As the aforementioned circular seal member, the rubber cup in the brake cylinder of automobiles is well known, and it forms an important functional part that converts the driver's brake pedal force into hydraulic pressure and applies braking force to the wheels. Good quality and high durability are required because deterioration in quality has a major impact on the braking function of automobiles. Therefore, all cups for automobiles, etc. must be inspected before they are assembled into brake cylinders to reliably detect even minute surface defects, and such cups must be removed as defective products.

従来の円型シール部材の欠陥検出は主として目
視により行われ、前述したカツプ等では全数に対
して目視検査が行われているため、多くの検査員
を必要とする欠点があつた。また、目視検査では
個人差あるいは疲労度により検査精度に大きなバ
ラツキが生じ、更に大量のシール部材を自動的か
つ効果的に検査することができないという欠点が
あつた。
Defects in conventional circular seal members are mainly detected by visual inspection, and in the case of the cups and the like described above, visual inspection is performed on all units, which has the disadvantage of requiring a large number of inspectors. Furthermore, visual inspection has the disadvantage that there are large variations in inspection accuracy due to individual differences or fatigue levels, and that it is not possible to automatically and effectively inspect a large number of seal members.

本発明は上記従来の課題に鑑みなされたもので
あり、その目的は、ゴム等の軟質材から成る円型
部材を機械的に変形させることなく、非接触で光
学的に自動検査を行い、微細な欠陥をも確実に検
査し不良品として除去することのできる改良され
た円錐面検査方法及び装置を提供することにあ
る。
The present invention was made in view of the above-mentioned conventional problems, and its purpose is to perform automatic non-contact optical inspection of a circular member made of a soft material such as rubber, without mechanically deforming it. It is an object of the present invention to provide an improved conical surface inspection method and apparatus that can reliably inspect even the smallest defects and eliminate them as defective products.

上記目的を達成するために、円型部材を載置回
転する回転台と、円型部材の円錐面に回転台の回
転軸とほぼ平行に回転台の回転速度より充分速い
走査速度で走査制御される検査光を照射する偏向
走査光源と、円錐面からの正反射光を受光して電
気信号に変換する光電検出器と、光電検出器の電
気信号を回転台の少くとも一回転中連続的に処理
し円錐面の欠陥から生じる乱反射により欠陥を検
出する欠陥検出回路と、を含み、前記欠陥検出回
路は、光電検出器の出力及び該出力に基づいて得
られた浮動閾値を差演算比較する比較器と、前記
光電検出器の出力に応じた浮動閾値を形成する浮
動閾値回路とを含み、前記浮動閾値回路は、光電
検出器の出力を所定時間遅延させると共に所定レ
ベル減衰する遅延減衰回路と、この遅延減衰され
た信号をサンプルホールドして前記比較器に浮動
閾値信号として出力するサンプルホールド回路
と、を含み、前記サンプルホールド回路の浮動閾
値は前記比較器が欠陥検出信号を出力している間
ホールドされ、円錐面を非接触で光学的に検査で
きることを特徴とする。
In order to achieve the above objective, a rotating table is used to place and rotate a circular member, and a scanning control is performed on the conical surface of the circular member at a scanning speed that is sufficiently faster than the rotational speed of the rotating table, approximately parallel to the rotation axis of the rotating table. a polarized scanning light source that emits inspection light, a photoelectric detector that receives specularly reflected light from a conical surface and converts it into an electrical signal, and a photoelectric detector that continuously transmits the electrical signal of the photoelectric detector during at least one revolution of the turntable. a defect detection circuit that detects a defect by diffused reflection generated from a defect on a processed conical surface, and the defect detection circuit includes a comparison circuit that performs a difference operation to compare an output of a photoelectric detector and a floating threshold value obtained based on the output. a delay attenuation circuit that delays the output of the photoelectric detector for a predetermined time and attenuates it to a predetermined level; a sample-and-hold circuit that samples and holds this delayed and attenuated signal and outputs it to the comparator as a floating threshold signal, and the floating threshold of the sample-and-hold circuit is set while the comparator outputs the defect detection signal. It is characterized by being able to optically inspect conical surfaces in a non-contact manner.

以下図面に基づいて本発明の好適な実施例を説
明する。
Preferred embodiments of the present invention will be described below based on the drawings.

第1図には本発明において表面欠陥の検査に供
される円型部材の好適な一例としての自動車用カ
ツプが示され、この円型シール部材10は軟質ゴ
ムから成り、軸100に対して軸対称の形状から
成り、自動車用ブレーキシリンダ内に挿入されて
その外周面が円錐シール面として働く。第1図の
シール部材10では4個所の主要なシール部を有
し、すなわちシリンダと接触する2個の円錐台面
から成る円錐シール面10a,10b、両シール
面10a,10bの稜を形成する外周部10cそ
してシール部材10の上面にあるリング状の加工
面10dを含み、以下の実施例においては、2個
の円錐台形の円錐シール面10a,10bの表面
欠陥を検査する方法及び装置について説明する。
FIG. 1 shows an automobile cup as a preferred example of a circular member used for inspecting surface defects in the present invention, and this circular seal member 10 is made of soft rubber and is axially It has a symmetrical shape and is inserted into an automobile brake cylinder so that its outer circumferential surface acts as a conical sealing surface. The sealing member 10 in FIG. 1 has four main sealing parts, namely, a conical sealing surface 10a, 10b consisting of two truncated conical surfaces that contact the cylinder, and an outer periphery forming the ridge of both sealing surfaces 10a, 10b. 10c and a ring-shaped machined surface 10d on the upper surface of the sealing member 10. In the following example, a method and apparatus for inspecting the two truncated conical sealing surfaces 10a and 10b for surface defects will be described. .

第2図には本発明に係るシール面検査装置の好
適な実施例が示され、前記円型シール部材10は
回転台12上に載置されており、シール部材10
の軸100と回転台12の回転台軸200とがほ
ぼ同一軸に位置決めされている。回転台12の回
転台軸14には傘歯車16が固定されており、モ
ータ18に固定された小傘歯車20と前記傘歯車
16とを噛合結合することにより、モータ18の
回転によつて回転台12すなわち円型シール部材
10が矢印A方向に回転駆動されることとなる。
回転台軸14の下端にはエンコーダ22が固定さ
れており、シール部材10の回転位置及び角度が
回転角信号として電気的に検出され、この信号が
欠陥検出回路24へ供給されている。
FIG. 2 shows a preferred embodiment of the seal surface inspection device according to the present invention, in which the circular seal member 10 is placed on a rotary table 12, and the seal member 10 is placed on a rotary table 12.
The shaft 100 of the rotary table 12 and the rotary table shaft 200 of the rotary table 12 are positioned substantially on the same axis. A bevel gear 16 is fixed to the rotary table shaft 14 of the rotary table 12, and by meshing and coupling the small bevel gear 20 fixed to the motor 18 and the bevel gear 16, the bevel gear 16 is rotated by the rotation of the motor 18. The stand 12, ie, the circular seal member 10, is rotated in the direction of arrow A.
An encoder 22 is fixed to the lower end of the rotary table shaft 14, and the rotational position and angle of the sealing member 10 are electrically detected as a rotational angle signal, and this signal is supplied to a defect detection circuit 24.

シール部材10の近傍には偏向走査光源26が
設けられており、該偏向走査光源26はレーザ2
8を含み、ヘリウムネオンレーザ等の気体レーザ
28からは単色性及び指向性の良好な細光線が放
射され、該細光線はプリズム系30を通つて光偏
向器32へ送り込まれる。光偏向器32はそれ自
体の振動周期によつて振動する鏡あるいは外部か
ら供給される光流信号に同期して光偏向作用を行
う鏡等を有し、実施例においては広角度に偏向可
能なガルバノミラーが用いられている。光偏向器
32の偏向面は前記回転台12の回転軸200に
沿つて設定されており、この結果、光偏向器32
から反射された偏向光は回転軸200に向つて進
み、更にこの偏向光は光偏向器32の矢印B、C
の振動に従つて走査制御されることとなる。もち
ろん、光偏向器32の前記ミラー振動による走査
速度は前記回転台12の回転速度より充分速く設
定されている。偏向走査光源26は更に投光レン
ズ34を含み、前記扇形に走査される偏向光は投
光レンズ34によつて走査面に沿つた平行光線に
変換され、この平行光線がシール部材10の円錐
シール面10a,10bに走査照射される。すな
わち、投光レンズ34にて平行に走査される光線
によつて、シール部材10の品種あるいは偏心等
に起因する検査感度の変動を除去することがで
き、また、この光線は集束されているので検出分
解能を著しく向上させることができる。
A polarized scanning light source 26 is provided near the sealing member 10, and the polarized scanning light source 26 is connected to the laser 2.
8, a gas laser 28 such as a helium neon laser emits a thin light beam with good monochromaticity and directivity, and the thin light beam is sent through a prism system 30 to an optical deflector 32. The optical deflector 32 has a mirror that vibrates according to its own vibration period or a mirror that deflects light in synchronization with a light flow signal supplied from the outside, and in the embodiment, can deflect light over a wide angle. A galvanometer mirror is used. The deflection plane of the optical deflector 32 is set along the rotation axis 200 of the rotary table 12, and as a result, the optical deflector 32
The polarized light reflected from the beam advances toward the rotation axis 200, and furthermore, this polarized light is reflected by the arrows B and C of the optical deflector 32.
Scanning control is performed according to the vibrations of the Of course, the scanning speed of the optical deflector 32 due to the mirror vibration is set to be sufficiently faster than the rotational speed of the rotary table 12. The polarized scanning light source 26 further includes a projection lens 34 , and the fan-shaped polarized light is converted by the projection lens 34 into parallel light rays along the scanning plane, and the parallel light rays are transmitted to the conical seal of the sealing member 10 . The surfaces 10a and 10b are scanned and irradiated. That is, the light beam scanned in parallel by the light projecting lens 34 can eliminate variations in inspection sensitivity caused by the type or eccentricity of the sealing member 10, and since the light beam is focused, Detection resolution can be significantly improved.

前記偏向走査光源26からの平行光線はシール
部材10の両円錐シール面10a,10bにより
反射され光電検出器36,38により受光され電
気信号に変換される。両光電検出器36,38は
両円錐シール面10a,10bの表面に欠陥がな
い状態で正反射光を受光する位置に設けられ、両
検出器36,38の検出電気信号は欠陥検出回路
24へ供給される。
The parallel light beam from the polarized scanning light source 26 is reflected by both conical seal surfaces 10a and 10b of the seal member 10, received by photodetectors 36 and 38, and converted into electrical signals. Both photoelectric detectors 36 and 38 are provided at positions to receive specularly reflected light when there are no defects on the surfaces of both conical seal surfaces 10a and 10b, and the detection electric signals of both detectors 36 and 38 are sent to the defect detection circuit 24. Supplied.

前述した回転台12、偏向走査光源26及び光
電検出器36,38からの検査情報は前記欠陥検
出回路24へ供給され、回転台12の少なくとも
1回転中連続的にこれらの情報が処理され、円錐
シール面10a,10bの欠陥から生じる乱反射
により欠陥を検出し、欠陥検出回路24の出力に
より選別機構40が駆動され、円錐シール面の良
否に応じて回転台12から取出されたシール部材
10が良品及び不良品として選別される。更に、
欠陥検出回路24の出力は供給機構42へ供給さ
れ、次の被検査円型シール部材10を回転台12
へ供給する制御作用が行われる。
Inspection information from the above-mentioned rotary table 12, polarized scanning light source 26, and photoelectric detectors 36, 38 is supplied to the defect detection circuit 24, and this information is continuously processed during at least one revolution of the rotary table 12, Defects are detected by diffused reflection caused by defects on the seal surfaces 10a and 10b, and a sorting mechanism 40 is driven by the output of the defect detection circuit 24, and seal members 10 taken out from the rotary table 12 are classified as non-defective products depending on whether the conical seal surfaces are good or bad. and are sorted out as defective products. Furthermore,
The output of the defect detection circuit 24 is supplied to the supply mechanism 42, and the next circular seal member 10 to be inspected is transferred to the rotating table 12.
A control action is taken to supply the

本発明の好適な実施例は以上の構成から成り、
以下にその作用を説明する。
A preferred embodiment of the present invention has the above configuration,
The effect will be explained below.

本実施例においては回転台12の1回転により
1個のシール部材10の検査が完了し、その後供
給機構42によつて次のシール部材10が回転台
12上に載置される。この時、シール部材10の
軸100は回転台12の回転軸200とほぼ一致
した位置に設定されるが、両軸100、200に
若干の狂いがあつても本発明においては、偏向走
査光源26からの照射平行線は充分に検査が必要
とされる円錐シール面10a,10bをカバーす
る照射領域を有し、また両円錐シール面10a,
10bからの正反射光はその位置が若干変動した
場合においてもこれらの正反射光に対して充分大
きな面積を有する光電検出器36,38により受
光されるので、前記軸100,200の狂いは検
査性能に大きな影響を与えることはない。
In this embodiment, the inspection of one seal member 10 is completed by one rotation of the rotary table 12, and then the next seal member 10 is placed on the rotary table 12 by the supply mechanism 42. At this time, the axis 100 of the seal member 10 is set at a position that almost coincides with the rotation axis 200 of the rotary table 12, but even if there is a slight deviation between the two axes 100, 200, in the present invention, the deflection scanning light source 26 The parallel line of irradiation from the irradiation area has an irradiation area that fully covers the conical sealing surfaces 10a, 10b that need to be inspected, and both conical sealing surfaces 10a,
Even if the specularly reflected light from 10b changes slightly in its position, it is received by the photoelectric detectors 36 and 38, which have a sufficiently large area for these specularly reflected lights, so that the deviation of the axes 100 and 200 can be inspected. It does not significantly affect performance.

シール部材10が回転台12に載置された後、
モータ18により回転台12は一定速度で回転駆
動され、同時に偏向走査光源26からは前記回転
台12の回転速度より大きな走査速度で細く絞ら
れた走査光が円錐シール面10a,10bに照射
される。
After the seal member 10 is placed on the rotary table 12,
The rotary table 12 is driven to rotate at a constant speed by the motor 18, and at the same time, the conical seal surfaces 10a and 10b are irradiated with finely focused scanning light from the polarized scanning light source 26 at a scanning speed greater than the rotational speed of the rotary table 12. .

第3図には投光レンズ34から照射された光に
よつてシール部材10の円錐シール面10a,1
0bがその全面にわたつて走査される状態が示さ
れ、シール部材10の矢印A方向への回転と照射
光の往復走査移動Dによつて300で示される光
点軌跡が得られ、回転台12の1回転中に全円錐
シール面10a,10bを走査可能である。な
お、第3図の光点軌跡300は説明を簡単にする
ために粗く示してあるが、実際には偏向走査光源
26の偏向速度を回転台12の回転速度に比して
大きく設定するので、光点軌跡300は極めて密
な軌跡を描くこととなる。
In FIG. 3, the conical sealing surfaces 10a, 1 of the sealing member 10 are
0b is shown being scanned over its entire surface, and by rotating the sealing member 10 in the direction of the arrow A and reciprocating scanning movement D of the irradiation light, a light spot trajectory indicated by 300 is obtained, and the rotary table 12 The entire conical sealing surface 10a, 10b can be scanned during one rotation of the conical sealing surface 10a, 10b. Although the light spot locus 300 in FIG. 3 is shown roughly to simplify the explanation, in reality, the deflection speed of the deflection scanning light source 26 is set to be larger than the rotation speed of the rotary table 12. The light spot trajectory 300 draws an extremely dense trajectory.

投光レンズ34からの照射光は、第1図に示さ
れるように、両円錐シール面10a,10bから
反射され、正反射光400a及び400bとして
光電検出器36,38に進む。第1図の正反射光
400a,400bは円錐シール面10a,10
bが欠陥のない正常な面から成る状態での反射光
を示し、両円錐シール面10a,10bに欠陥そ
の他が存在する場合には、反射光は乱反射し、こ
の結果、欠陥部走査時には光電検出器36,38
の検出信号値が著しく減少することが理解され
る。従つて、この出力信号の変動を欠陥検出回路
24で検出することによりシール部材10の良否
を検査することが可能となる。
As shown in FIG. 1, the irradiated light from the projection lens 34 is reflected from both conical seal surfaces 10a, 10b and advances to the photoelectric detectors 36, 38 as specularly reflected lights 400a and 400b. The specularly reflected lights 400a and 400b in FIG.
b indicates the reflected light from a normal surface with no defects, and if there are defects or other defects on both conical seal surfaces 10a and 10b, the reflected light will be diffusely reflected, and as a result, photoelectric detection will occur when scanning the defective part. Vessels 36, 38
It is understood that the detected signal value of is significantly reduced. Therefore, by detecting the fluctuation of this output signal with the defect detection circuit 24, it is possible to inspect the quality of the seal member 10.

第4図には照射光の1走査周期間における光電
検出器36の出力波形が示され、第4図Aから明
らかなように、偏向走査は円錐シール面10aの
上方から開始され時刻t1からt2までの範囲で円錐
シール面10aの走査を完了し、更に下方へ向う
走査によつて円錐シール面10bの走査を行い、
時刻T/2にて最下走査位置に達し、ここから反
転走査が行われ、再び円錐シール面10bを走査
した後時刻t3からt4にて下から上へ向う円錐シー
ル面10aの走査を行い、時刻Tにて1走査を完
了する。
FIG. 4 shows the output waveform of the photoelectric detector 36 during one scanning cycle of the irradiated light, and as is clear from FIG . Complete the scanning of the conical seal surface 10a in the range up to t 2 , and further scan the conical seal surface 10b by scanning downward,
The lowest scanning position is reached at time T/2, from which a reverse scan is performed, the conical seal surface 10b is scanned again, and then the conical seal surface 10a is scanned from bottom to top from time t3 to t4 . One scan is completed at time T.

第4図B、Cは光電検出器36の電気的出力信
号を示し、Bは円錐シール面10aが正常な平面
状態を有する場合、そしてCは円錐シール面10
aに欠陥がある場合を示す。第4図Bから明らか
なように、時刻t1〜t2、t3〜t4においては光電検
出器36から若干の変動は有するもののほぼ一定
の検出信号が得られ、正反射光が安定しているこ
とからこの走査領域内では欠陥がないと判断する
ことができ、一方、第4図Cでは、表面欠陥によ
る乱反射の結果電気的出力信号が著しく低下する
部分があり、このことから、円錐シール面10a
に疵の表面欠陥があると判断することができる。
FIGS. 4B and 4C show the electrical output signals of the photodetector 36, B when the conical sealing surface 10a has a normal planar state, and C when the conical sealing surface 10a has a normal planar state.
The case where a has a defect is shown. As is clear from FIG. 4B, at times t 1 to t 2 and t 3 to t 4 , an almost constant detection signal is obtained from the photoelectric detector 36, although there is some fluctuation, and the specularly reflected light is stabilized. Therefore, it can be determined that there are no defects within this scanning area.On the other hand, in Figure 4C, there is a part where the electrical output signal decreases significantly as a result of diffuse reflection due to surface defects, and from this, it can be determined that there is no defect in this scanning area. Seal surface 10a
It can be determined that there are surface defects such as scratches.

以上のようにして、光電検出器36あるいは3
8からの電気的検出信号を回転台12の1回転中
連続的に処理すれば円錐シール面10a,10b
全面にわたつて欠陥検出を行うことができるが、
円錐シール面10a,10bの場所による反射率
の不均一、シール部材10と回転台12との偏心
その他の原因によつて回転台12の1回転中に表
面欠陥がないにも拘らず大きな信号値変動が生じ
る場合がある。第5図Aには回転台12の1回転
中に前述した種々の原因により周期的な変動が生
じる場合を示し、このような大きな変動を含む信
号に対しては欠陥検出回路24として従来の一般
的な固定閾値による比較では正しい検査結果を得
ることはできない。すなわち、第5図Bには回転
板1回転中の全検出信号に対して固定閾値VH
適用した状態が示され、ノイズ混入を防ぐために
固定閾値VHをある程度大きくすると、第5図B
のように正常部でありながら完全に欠陥信号と判
断される場合が生じ、このような固定閾値比較型
の欠陥検出回路を本発明に用いることは困難であ
る。
In the above manner, the photoelectric detector 36 or 3
If the electrical detection signals from 8 are continuously processed during one rotation of the rotary table 12, the conical seal surfaces 10a and 10b
Defects can be detected over the entire surface, but
Due to uneven reflectance depending on the location of the conical seal surfaces 10a and 10b, eccentricity between the seal member 10 and the rotary table 12, and other causes, a large signal value may occur even though there are no surface defects during one rotation of the rotary table 12. Variations may occur. FIG. 5A shows a case in which periodic fluctuations occur during one revolution of the turntable 12 due to the various causes described above, and for signals containing such large fluctuations, a conventional general defect detection circuit 24 is used. Correct test results cannot be obtained by comparison using fixed threshold values. That is, FIG. 5B shows a state in which the fixed threshold value V H is applied to all detection signals during one revolution of the rotary plate, and if the fixed threshold value V H is increased to a certain extent to prevent noise mixing, FIG.
There are cases where a signal is determined to be a defective signal even though it is a normal portion, and it is difficult to use such a fixed threshold value comparison type defect detection circuit in the present invention.

このために、従来の他の欠陥検出方式として浮
動閾値方式の回路が提案されており、第6図Aで
示されるように、実線で示される検出信号値に対
してこれに対応した若干の遅れを有する破線で示
される浮動閾値を設定し、両者の比較により第6
図Bで示される弁別信号を出力する回路構成から
成る。この浮動閾値方式によれば、第5図で示し
た周期的検出信号値変動等の影響を除去すること
ができるが、浮動閾値の時間遅れにより、実際の
欠陥が縮小して検出され、あるいは円錐シール面
10aの走査開始点あるいは終了点における欠陥
を検出することができない等の欠点があつた。
For this reason, a floating threshold type circuit has been proposed as another conventional defect detection method, and as shown in FIG. 6A, there is a corresponding slight delay with respect to the detection signal value shown by the solid line. Set a floating threshold indicated by a broken line with
It consists of a circuit configuration that outputs the discrimination signal shown in Figure B. According to this floating threshold method, it is possible to eliminate the influence of periodic detection signal value fluctuations shown in FIG. There were drawbacks such as the inability to detect defects at the scanning start point or end point of the sealing surface 10a.

以上のことから、本発明の実施例では、第7図
に示される欠陥検出回路24が用いられ、従来の
浮動閾値方式を更に改良して本発明のような表面
欠陥を確実に検出できる回路を提供している。
From the above, in the embodiment of the present invention, the defect detection circuit 24 shown in FIG. 7 is used, and the conventional floating threshold method is further improved to provide a circuit that can reliably detect surface defects like the present invention. providing.

第7図には光電検出器36側の処理回路が示さ
れているが、光電検出器38側も同一の処理回路
から成る。光電検出器36は光ダイオード等を含
み円錐シール面10aからの正反射光400aを
その受光量に対応した電気量の電気信号に変換
し、その出力が一方で比較器44の正入力端に供
給され、また他方が浮動閾値に変換されて比較器
44の負入力端に供給される。すなわち、光電検
出器36の出力は遅延回路46にて所定量遅延さ
れ、減衰器48によりその出力が減衰される。こ
の結果、減衰器48の出力は正常表面からの正反
射光に対してはその変動を小さくし、一方欠陥表
面からの乱反射光に対しては充分検出可能な信号
変化特性を与えることができる。減衰器48の出
力には加算器50にてバイアス電圧発生器52の
バイアス電圧が加算され、このバイアス電圧は光
電検出器36の暗電圧より僅かに大きい電圧値に
設定されており、この結果、加算器50からは浮
動閾値が出力される。本実施例において特徴的な
ことは、加算器50の浮動閾値がサンプルホール
ド回路54を介して前記比較器44へ供給されて
いることであり、サンプルホールド回路54のホ
ールド入力には比較器44の出力が供給されてお
り、サンプルホールド回路54から出力される浮
動閾値は比較器44から欠陥検出信号が出力され
た時の閾値にホールドされることとなり、また比
較器44の検出信号が消滅した時に再びサンプル
ホールド回路54のホールド作用が解除され、加
算器50からの浮動閾値をそのまま比較器44へ
出力することができる。
Although FIG. 7 shows the processing circuit on the photoelectric detector 36 side, the photoelectric detector 38 side also consists of the same processing circuit. The photoelectric detector 36 includes a photodiode, etc., and converts the specularly reflected light 400a from the conical seal surface 10a into an electrical signal with an amount of electricity corresponding to the amount of received light, and the output thereof is supplied to the positive input terminal of the comparator 44. and the other is converted into a floating threshold and supplied to the negative input terminal of the comparator 44. That is, the output of the photoelectric detector 36 is delayed by a predetermined amount in the delay circuit 46, and the output is attenuated by the attenuator 48. As a result, the output of the attenuator 48 can reduce fluctuations in the specularly reflected light from the normal surface, while providing sufficiently detectable signal change characteristics for the diffusely reflected light from the defective surface. A bias voltage from a bias voltage generator 52 is added to the output of the attenuator 48 by an adder 50, and this bias voltage is set to a voltage value slightly larger than the dark voltage of the photoelectric detector 36. As a result, Adder 50 outputs a floating threshold. A characteristic feature of this embodiment is that the floating threshold value of the adder 50 is supplied to the comparator 44 via the sample and hold circuit 54, and the hold input of the sample and hold circuit 54 is supplied to the comparator 44. The floating threshold output from the sample and hold circuit 54 is held at the threshold when the defect detection signal is output from the comparator 44, and when the detection signal from the comparator 44 disappears. The hold action of the sample and hold circuit 54 is released again, and the floating threshold value from the adder 50 can be output to the comparator 44 as is.

以上のようにして光電検出器36側の欠陥検出
が行われ、比較器44の出力が更に電気的に処理
されてシール部材の良否を判定する信号に変換さ
れるが、前述した欠陥検出信号発生作用を以下に
第8図の波形図を参照しながら説明する。
Defect detection on the photoelectric detector 36 side is performed as described above, and the output of the comparator 44 is further electrically processed and converted into a signal for determining the quality of the seal member. The operation will be explained below with reference to the waveform diagram in FIG.

第8図Aは比較器44の両入力を示し、実線は
光電検出器36から直接供給される正入力そして
破線はサンプルホールド回路54から供給される
浮動閾値入力を示している。また第8図Bには比
較器44の出力が示され、円錐シール面10aの
表面が正常な状態には「1」信号がそして欠陥表
面の場合には「0」信号が出力される。
FIG. 8A shows both inputs of comparator 44, with the solid line showing the positive input provided directly from photodetector 36 and the dashed line showing the floating threshold input provided from sample and hold circuit 54. Further, FIG. 8B shows the output of the comparator 44, in which a "1" signal is output when the surface of the conical sealing surface 10a is normal, and a "0" signal is output when the surface is defective.

円錐シール面10aの表面状態が検出される時
刻t1までの初期状態では正反射光400aは光電
検出部36に供給されないので、比較器44の出
力は「0」となり、この時、サンプルホールド回
路54はホールドモードとなり、それ以前の浮動
閾値を保持している。時刻t1から円錐シール面1
0aの光走査が開始され、光電検出器36に正反
射光が受光されるとその出力は上昇しサンプルホ
ールド回路54にホールドされていた閾値より光
電検出器36の出力が高くなると比較器44は反
転し「1」信号を出力する。この結果、サンプル
ホールド回路54のホールドが解除され、その出
力である浮動閾値は光電検出器36の出力電圧を
遅延し更に減衰した電圧を出力することとなる。
そして、表面に欠陥がある場合に光走査が欠陥部
に到達すると光電検出器36の受光量は急激に低
下し、この結果、検出出力も急激に低下する。そ
して、時刻t5において比較器44の出力が「0」
となり欠陥検出信号が出力されるとともに、この
瞬間にサンプルホールド回路54を再びホールド
し、この時の浮動閾値電圧を保持することができ
る。そして、光走査が欠陥を通過し受光量が正常
に復帰すると、光電検出器36の出力は再びサン
プルホールド回路54の出力より高くなり、時刻
t6にて比較器44が反転し再びサンプルホールド
回路54は追従モードに復帰する。従つて、欠陥
部を走査しているt5〜t6期間中サンプルホールド
回路54はその出力値がホールドされることとな
り、従来のような欠陥信号の縮小あるいは走査領
域両端における未検出等を確実に防止することが
できる。円錐シール面10aを下から上へ走査す
る時刻t3〜t4においても同様のサンプルホールド
作用が行われ、時刻t7〜t8において前述したサン
プルホールド回路54のホールド作用が行われ
る。
In the initial state up to time t 1 when the surface condition of the conical seal surface 10a is detected, the specularly reflected light 400a is not supplied to the photoelectric detection section 36, so the output of the comparator 44 becomes "0", and at this time, the sample and hold circuit 54 is in a hold mode and holds the previous floating threshold. From time t 1 to conical seal surface 1
When the optical scanning of 0a is started and the specularly reflected light is received by the photoelectric detector 36, its output increases, and when the output of the photoelectric detector 36 becomes higher than the threshold value held in the sample hold circuit 54, the comparator 44 It is inverted and outputs a "1" signal. As a result, the hold of the sample and hold circuit 54 is released, and its output, the floating threshold, delays the output voltage of the photoelectric detector 36 and outputs a further attenuated voltage.
If there is a defect on the surface, when the optical scanning reaches the defective portion, the amount of light received by the photoelectric detector 36 decreases rapidly, and as a result, the detection output also decreases rapidly. Then, at time t5 , the output of the comparator 44 is "0"
Then, a defect detection signal is output, and at this moment, the sample and hold circuit 54 is held again, so that the floating threshold voltage at this time can be held. Then, when the optical scanning passes through the defect and the amount of received light returns to normal, the output of the photoelectric detector 36 becomes higher than the output of the sample and hold circuit 54 again, and the time
At t6 , the comparator 44 is inverted and the sample and hold circuit 54 returns to the tracking mode again. Therefore, the output value of the sample and hold circuit 54 is held during the period t 5 to t 6 during which the defective part is scanned, and it is possible to ensure that the defect signal is reduced or not detected at both ends of the scanning area as in the conventional case. can be prevented. A similar sample and hold action is performed at times t3 to t4 when the conical seal surface 10a is scanned from bottom to top, and the above-described hold action of the sample and hold circuit 54 is performed at times t7 to t8 .

以上のようにして、本実施例によれば、従来の
浮動閾値方式の欠点を解消し、反射光量の変化に
追述して最適な比較閾値の調整を行うことがで
き、従来の欠陥縮小あるいは境界部における弁別
不能等を解消することが可能となる。
As described above, according to this embodiment, it is possible to eliminate the drawbacks of the conventional floating threshold method, and to adjust the optimal comparison threshold by adding changes in the amount of reflected light. This makes it possible to solve the problem of indistinguishability in the parts.

第7図において、比較器44の欠陥検出信号は
デジタル処理されるためにゲート56の一方の入
力に供給され、ゲート56の他方の入力に供給さ
れているクロツク発振器58のクロツクパルスと
の論理積がとられ、偏向走査の半周期のゲート5
6を通過するフロツクパルスが第1カウンタ60
に計数される。第1カウンタ60の計数値は光偏
向器32の偏光制御回路62の出力により偏向走
査の半周期毎にリセツトされており、この結果、
第1カウンタ60の計数値は走査周期の半周期内
における欠陥検出時間の増大により減少すること
となり、これによつて欠陥の大きさをデジタル値
として検出することができる。
In FIG. 7, the defect detection signal of comparator 44 is supplied to one input of gate 56 for digital processing and is ANDed with the clock pulse of clock oscillator 58 supplied to the other input of gate 56. gate 5 of the half period of the deflection scan
The floating pulse passing through the first counter 60
is counted. The count value of the first counter 60 is reset every half period of the deflection scan by the output of the polarization control circuit 62 of the optical deflector 32, and as a result,
The count value of the first counter 60 decreases as the defect detection time increases within a half period of the scanning period, and thereby the size of the defect can be detected as a digital value.

同時に、比較器44の出力は直接第2カウンタ
64にて計数されている。第2カウンタ64も偏
向制御回路62の出力により偏向走査の半周期毎
にリセツトされている。前記両カウンタ60,6
4の出力は直接及びオアゲート66を介して演算
器68に供給され、回転台12の1回転中両カウ
ンタ60,64からの計数値を演算処理する。従
つて、演算器68では、各半周期毎に検出される
第1カウンタ60の計数値をそれ以前の計数値と
比較して両者の差から計数値の急変により表面の
欠陥を検出することができ、また偏向走査方向と
直角方向に長い欠陥に対しては第2カウンタ64
からの計数値にて欠陥判別を行うことができる。
すなわち、第1カウンタ60の計数値変動は偏向
走査方向に長い欠陥部を計数値の変動として検出
し、また偏向走査方向と直角方向に対しては第1
カウンタ60の計数値変動は少ないが、第2カウ
ンタ64からは各半周期毎に欠陥の有無を検出す
ることができ、これが所定期間連続している場合
に演算器68は欠陥信号を出力することができ
る。第2カウンタ64は各半周期毎に少なくとも
1個の欠陥がある時に2以上の計数値を出力し、
このために、オアゲート66は第2カウンタ64
の2ビツト以上のQ出力を論理和演算しており、
少なくとも1個の欠陥がある時に演算器68へオ
アゲート66から有欠陥信号を出力し、演算器6
8はこれを回転台12の回転方向にわたつて演算
し、欠陥を識別することができる。
At the same time, the output of the comparator 44 is directly counted by the second counter 64. The second counter 64 is also reset by the output of the deflection control circuit 62 every half period of the deflection scan. Both counters 60, 6
The output of No. 4 is supplied directly and via an OR gate 66 to an arithmetic unit 68, which processes the counts from both counters 60 and 64 during one revolution of the turntable 12. Therefore, the arithmetic unit 68 compares the counted value of the first counter 60 detected every half cycle with the previous counted value, and detects a surface defect by a sudden change in the counted value based on the difference between the two. For defects that are long in the direction perpendicular to the deflection scanning direction, the second counter 64
Defects can be determined based on the counted value from .
That is, the variation in the count value of the first counter 60 detects a long defective part in the deflection scanning direction as a variation in the count value.
Although the fluctuation of the counted value of the counter 60 is small, the presence or absence of a defect can be detected every half cycle from the second counter 64, and if this continues for a predetermined period, the arithmetic unit 68 outputs a defect signal. Can be done. The second counter 64 outputs a count value of 2 or more when there is at least one defect in each half cycle,
For this purpose, the OR gate 66 uses the second counter 64
The Q outputs of 2 bits or more are ORed,
When there is at least one defect, the OR gate 66 outputs a defective signal to the arithmetic unit 68, and the arithmetic unit 6
8 calculates this across the rotational direction of the turntable 12 to identify defects.

以上のようにして、欠陥検出回路24の良否判
定信号は直接表示ランプ等によりシール部材10
の良否判定を行い、また選別機構40によつて不
良シール部材を除去することができる。
As described above, the quality determination signal of the defect detection circuit 24 is transmitted directly to the sealing member 10 by means of a display lamp or the like.
The quality of the seal members can be determined, and defective seal members can be removed by the sorting mechanism 40.

尚、前述した実施例においては、円型部材を円
型シール部材として説明したが、外周に円錐面を
有するゴム栓あるいはゴムリング等の円型部材に
も本発明は適用可能である。
In the above embodiments, the circular member was described as a circular seal member, but the present invention is also applicable to circular members such as rubber plugs or rubber rings having a conical surface on the outer periphery.

以上説明したように、本発明によれば、円型部
材の円錐面を自動的に非接触で光学的に検査し、
従来の目視による検査のばらつきを除去し大量の
円型部材を全自動で均一に検査することができ、
検査能率を著しく向上することが可能となる。
As explained above, according to the present invention, the conical surface of a circular member is automatically inspected optically in a non-contact manner,
It eliminates the variations in conventional visual inspection and allows a large number of circular parts to be uniformly inspected fully automatically.
It becomes possible to significantly improve inspection efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によつて検査される円型部材の
好適な一例を示す断面図、第2図は本発明に係る
円錐面検査装置の好適な実施例を示す概略構成
図、第3図は第2図における円錐面の偏向走査状
態を示す説明図、第4図は第2図における光電変
換作用を示す波形図、第5図及び第6図は従来の
光電変換作用の問題点を示す波形図、第7図は第
2図の実施例に用いられる欠陥検出回路の具体的
な実施例を示す回路図、第8図は第7図の欠陥検
出作用を示す波形図である。 10……円型シール部材、10a,10b……
円錐シール面、12……回転台、24……欠陥検
出回路、26……偏向走査光源、36,38……
光電検出器、40……選別機構。
FIG. 1 is a sectional view showing a preferred example of a circular member to be inspected according to the present invention, FIG. 2 is a schematic configuration diagram showing a preferred embodiment of a conical surface inspection device according to the present invention, and FIG. is an explanatory diagram showing the deflection scanning state of the conical surface in Fig. 2, Fig. 4 is a waveform diagram showing the photoelectric conversion action in Fig. 2, and Figs. 5 and 6 show problems with the conventional photoelectric conversion action. FIG. 7 is a circuit diagram showing a specific example of the defect detection circuit used in the embodiment of FIG. 2, and FIG. 8 is a waveform diagram showing the defect detection operation of FIG. 7. 10... Circular seal member, 10a, 10b...
Conical seal surface, 12... Turntable, 24... Defect detection circuit, 26... Deflected scanning light source, 36, 38...
Photoelectric detector, 40... sorting mechanism.

Claims (1)

【特許請求の範囲】 1 円型部材を載置回転する回転台と、円型部材
の円錐面に回転台の回転軸とほぼ平行に回転台の
回転速度より充分速い走査速度で走査制御される
検査光を照射する偏向走査光源と、円錐面からの
正反射光を受光して電気信号に変換する光電検出
器と、光電検出器の電気信号を回転台の少くとも
一回転中連続的に処理し円錐面の欠陥から生じる
乱反射により欠陥を検出する欠陥検出回路と、を
含み、 前記欠陥検出回路は、光電検出器の出力及び該
出力に基づいて得られた浮動閾値を差演算比較す
る比較器と、前記光電検出器の出力に応じた浮動
閾値を形成する浮動閾値回路とを含み、 前記浮動閾値回路は、光電検出器の出力を所定
時間遅延させると共に所定レベル減衰する遅延減
衰回路と、この遅延減衰された信号をサンプルホ
ールドして前記比較器に浮動閾値信号として出力
するサンプルホールド回路と、を含み、 前記サンプルホールド回路の浮動閾値は前記比
較器が欠陥検出信号を出力している間ホールドさ
れ、 円錐面を非接触で光学的に検査できることを特
徴とする円型部材の円錐面検査装置。
[Scope of Claims] 1. A rotary table on which a circular member is placed and rotated, and a conical surface of the circular member is scan-controlled almost parallel to the rotation axis of the rotary table at a scanning speed sufficiently faster than the rotational speed of the rotary table. A polarized scanning light source that irradiates inspection light, a photoelectric detector that receives specularly reflected light from a conical surface and converts it into an electrical signal, and the electrical signal of the photoelectric detector is continuously processed during at least one rotation of the rotary table. a defect detection circuit that detects a defect by diffused reflection generated from a defect on a conical surface, and the defect detection circuit includes a comparator that performs a difference operation to compare an output of a photoelectric detector and a floating threshold value obtained based on the output. and a floating threshold circuit that forms a floating threshold according to the output of the photoelectric detector, the floating threshold circuit delaying the output of the photoelectric detector for a predetermined time and attenuating it to a predetermined level; a sample-and-hold circuit that samples and holds the delayed and attenuated signal and outputs it to the comparator as a floating threshold signal, and the floating threshold of the sample-and-hold circuit is held while the comparator outputs the defect detection signal. A conical surface inspection device for a circular member, characterized in that the conical surface can be optically inspected in a non-contact manner.
JP7983280A 1980-06-13 1980-06-13 Method and apparatus for cone plane inspection of circular member Granted JPS576304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7983280A JPS576304A (en) 1980-06-13 1980-06-13 Method and apparatus for cone plane inspection of circular member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7983280A JPS576304A (en) 1980-06-13 1980-06-13 Method and apparatus for cone plane inspection of circular member

Publications (2)

Publication Number Publication Date
JPS576304A JPS576304A (en) 1982-01-13
JPS637322B2 true JPS637322B2 (en) 1988-02-16

Family

ID=13701174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7983280A Granted JPS576304A (en) 1980-06-13 1980-06-13 Method and apparatus for cone plane inspection of circular member

Country Status (1)

Country Link
JP (1) JPS576304A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1163129B (en) * 1983-03-02 1987-04-08 Carboloy Spa METHOD AND EQUIPMENT FOR DIMENSIONAL CONTROL OF SOLID BODIES

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627167Y2 (en) * 1973-03-30 1981-06-29
JPS5641241Y2 (en) * 1974-07-30 1981-09-28

Also Published As

Publication number Publication date
JPS576304A (en) 1982-01-13

Similar Documents

Publication Publication Date Title
JPS637325B2 (en)
US5245403A (en) Apparatus for detecting extraneous substances on a glass plate
US4423331A (en) Method and apparatus for inspecting specimen surface
US7643139B2 (en) Method and apparatus for detecting defects
US4966457A (en) Inspecting apparatus for determining presence and location of foreign particles on reticles or pellicles
US5076692A (en) Particle detection on a patterned or bare wafer surface
US4674875A (en) Method and apparatus for inspecting surface defects on the magnetic disk file memories
JPH0115013B2 (en)
JPH0933446A (en) Apparatus for inspecting surface defect
JPH06294749A (en) Flaw inspection method for plat glass
JPH0833354B2 (en) Defect inspection equipment
JPS637322B2 (en)
JPS61288143A (en) Surface inspecting device
JP3280742B2 (en) Defect inspection equipment for glass substrates
US3799682A (en) Apparatus for feeding polished machine parts past optical scanning means to enable inspection of the polished parts
JPH0712747A (en) Method of inspecting outer surface of disc covered with thin film and device therefor
JPH0228815B2 (en)
JPH08304052A (en) Lens inspection method and device
JP2683039B2 (en) Optical disc inspection device
JP3277400B2 (en) Optical disk defect inspection device
JPS637324B2 (en)
JPH01214743A (en) Optical apparatus for checking
JPS637323B2 (en)
JPH0352649B2 (en)
JPH01240841A (en) Optical type surface inspector