JPH0315709A - Contactless minute surface shape measuring instrument - Google Patents

Contactless minute surface shape measuring instrument

Info

Publication number
JPH0315709A
JPH0315709A JP7906289A JP7906289A JPH0315709A JP H0315709 A JPH0315709 A JP H0315709A JP 7906289 A JP7906289 A JP 7906289A JP 7906289 A JP7906289 A JP 7906289A JP H0315709 A JPH0315709 A JP H0315709A
Authority
JP
Japan
Prior art keywords
laser
optical fiber
beam splitter
wave plate
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7906289A
Other languages
Japanese (ja)
Inventor
Katsuaki Sakatani
勝明 坂谷
Shigeki Sugiyama
茂樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefecture
Ishikawa Prefectural Government
SIGMAKOKI Co Ltd
Original Assignee
Ishikawa Prefecture
Ishikawa Prefectural Government
SIGMAKOKI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefecture, Ishikawa Prefectural Government, SIGMAKOKI Co Ltd filed Critical Ishikawa Prefecture
Priority to JP7906289A priority Critical patent/JPH0315709A/en
Publication of JPH0315709A publication Critical patent/JPH0315709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To quickly measure a minute surface shape with high precision and contactlessly by transmitting the laser light between laser transmitter and receiver and a polarizing beam splitter. CONSTITUTION:The two-frequency laser light radiated from a two-frequency laser transmitter 1 passes a beam expander 10, a rod lens 11, a polarization plane holing optical fiber 12, and a rod lens 13 and is made incident on a polarizing beam splitter (BS) 3, and is divided into two frequency components. One laser light is returned to the BS 3 through a quarter-wave plate 4, a reflection mirror 6, and a wave plate 4. The other passes a quarter-wave plate 5 and an objective lens 7 and is reflected by an object 9 to be measured and is returned to the BS 3 through a wave plate 5. Signal light synthesized on the BS 3 passes a collimator lens 14, a multimode optical fiber 15, and a collimator lens 16 and is made incident on a laser receiver 2. When the object 9 to be measured is moved at right angles to the laser optical axis at such a time, the minute surface shape is measured by the heterodyne laser interference method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は精密加工された部品等の表面微細形状を高速
、高精度に非接触で測定するための装置に関するもので
ある. 〔従来の技術〕 精密加工された部品の表面には表面粗さや表面うねりな
どの微小な凹凸が存在する.これらの凹凸の形状は、部
品の性能や機能を左右する重要な因子であり、その測定
結果は次の加工や測定の際の参考データとして役立てた
り、商取引上の必要データとして利用される場合が多い
.したがって、表面微細形状を高速、高精度に非接触で
測定することは、部品の加工能率の向上や製品の品質向
上の要求からますます重要な課題となっている.非接触
で変位を測定する方法の1つに、ヘテロダインレーザ干
渉方式の変位測定法があり、基本的に感度の校正をする
必要がなく、極めて信頼性の高い測定ができることから
、接触式測定器では傷を付けるおそれのある製品の開発
・研究への利用が期待されている. 以下に、図6に即して、ヘテロダインレーザ干渉方式の
変位測定法について簡単に説明する.第6図において、
符号1は2周波レーザ発信器、符号2はレーザ受信器、
符号3は偏光ビームスプリッタ、符号4.5は174波
長板、符号6は反射鏡、符号7は対物レンズ、符号9は
被測定物を示す. レーザ発信器lから放射された2つの周波数fl.f2
をもつしーザ光は、互いに直交する偏光成分となってい
るため、『干渉計」と呼ばれる偏光ビームスブリッタ3
上で2つの周波数成分に分割される, f2のレーザ光
は偏光ビームスブリッタ3に固定された反射鏡6に送ら
れ、flのしーザ光は対物しンズ7によって絞られて被
測定物9の表面に投光される.両方の反射光は、再び偏
光ビームスブリッタ3上で合成されて信号光となり、レ
ーザ受信器2により光電変換される.このとき、被測定
物9をレーザ光軸方向に移動させると、被測定物9の変
位量に応じて反射光にドップラーシフトが生じ、Hはf
1±Δflの周波数に変わる.このため、レーザ受信器
2で検出された信号にはfl±Δfl−f2のビート周
波数が計数され、別にレーザ発信器1側で検出されるf
L−f2のビート周波数の計数と比較されて、Δflに
相当する変位量が表示される.〔発明が解決しようとす
る問題点〕 機械加工技術の高精度化が迎む現在、加工機械上で加工
物を取外さずに測定するオンマシン測定や、加工中に測
定するインプロセス測定、さらには、その測定結果を加
工にフィードバックして、加工が終了した時点で測定や
検査がすべて完了している、というような能率的生産過
程が要求されるようになってきた.このためには、小型
で高速、高精度な測定器が必要になる. しかし、従来のヘテロダインレーザ干渉方式の非接触変
位測定装置においては、レーザ発信器および受信器と干
渉計を一直線上にならべて配置するか、反射鏡やプリズ
ム等を用いることによりレーザ光の伝送を行っているた
め、調整が複雑で、レーザ発信器および受信器と干渉計
との間の距離を大きく取ることが困難であること、干渉
計を一度取付でしまうと簡単に取外しや移動ができない
こと等の問題点があった. 本発明は、装置の小型化を図るとともに、干渉計を自由
に移動できるようにすることにより、非接触で、高速、
高精度に加工機械上でのオンマシン測定ないしはインプ
ロセス測定を行うことが可プリツタとの間のレーザ光の
伝送を先ファイバを介して行うようにしたところに特徴
がある.〔作用〕 上記のように構成された非接触表面微細形状測定装置に
おいては、レーザ光は先ファイバによって伝送されるた
め、干渉計の部分だけを容易に他の測定機や加工機械上
に取付けることができ、表面微細形状を高速、高精度に
非接触で測定することが可能になる.また、レーザ受信
器を直接偏光ビームスプリッタに取付ける方法は、レー
ザ光の伝送効率の向上とノイズの低下に有効である.〔
実施例〕 実施例について図面を参照して説明する.第1図におい
て、2周波レーザ発信器lがら放射された2周波のレー
ザ光は、ビームエクスパンダl0上記目的を達成するた
めに、本発明の非接触表  する.出射端側がら出たレ
ーザ光は、ロッドレン面微細形状測定装置においては、
レーザ発信器お  ズ13を介して偏光ビームスブリッ
タ3に入射し、よび受信器と「干渉計』と呼ばれる偏光
ビームス  そこで2つの周波数成分に分割される.一
方のレーザ光は、1/4波長板4を通過して反射鏡6で
反射し、再び174波長板4を通過して偏光ビームスプ
リッタ上にもどる.他方のレーザ光は、1/4波長板5
を通過して、対物レンズ7により絞られ、被測定物9の
表面で反射して、L/4波長板5を通過して偏光ビーム
スプリッタ上にもどる.偏光ビームスプリッタ3上で合
成された信号先は、コリメータレンズ14を介してマル
チモード型先ファイバ15に入射し、その出射端から出
たレーザ光はコリメータレンズ16を介して、レーザ受
侶器2に入射する.このとき、移動台8上に固定した被
測定物9をレーザ光軸に直角方向に移動させると、ヘテ
ロダインレーザ干渉法により被測定物9の表面微細形状
を測定することができる.せた時の、精密測長機の権示
値と本測定装置による測定値を比較した結果を第3図に
示す.第3図より、0〜lWII+の範囲で測定値が直
線的に変化していることがわかる.
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a device for measuring the fine surface shape of precision-machined parts at high speed, with high precision, and in a non-contact manner. [Conventional technology] The surfaces of precision-machined parts have minute irregularities such as surface roughness and surface waviness. The shape of these irregularities is an important factor that affects the performance and function of parts, and the measurement results may be useful as reference data for the next processing or measurement, or as necessary data for commercial transactions. many. Therefore, high-speed, high-precision, non-contact measurement of surface microstructures is becoming an increasingly important issue due to demands for improving part processing efficiency and product quality. One method of measuring displacement without contact is the heterodyne laser interferometry displacement measurement method, which basically does not require sensitivity calibration and can perform extremely reliable measurements, so it is suitable for contact-type measuring instruments. It is expected to be used in the development and research of products that may cause scratches. Below, the displacement measurement method using the heterodyne laser interference method will be briefly explained with reference to FIG. In Figure 6,
Code 1 is a two-frequency laser transmitter, code 2 is a laser receiver,
3 is a polarizing beam splitter, 4.5 is a 174 wavelength plate, 6 is a reflecting mirror, 7 is an objective lens, and 9 is an object to be measured. Two frequencies fl. emitted from a laser oscillator l. f2
Since the Caesar light has polarization components that are orthogonal to each other, a polarization beam splitter 3 called an "interferometer" is used.
The laser beam of f2, which is split into two frequency components above, is sent to a reflecting mirror 6 fixed to the polarizing beam splitter 3, and the laser beam of fl is focused by an objective lens 7 and directed to the object to be measured 9. The light is projected onto the surface of the Both reflected lights are combined again on the polarizing beam splitter 3 to become signal light, which is photoelectrically converted by the laser receiver 2. At this time, when the object to be measured 9 is moved in the direction of the laser optical axis, a Doppler shift occurs in the reflected light depending on the amount of displacement of the object to be measured 9, and H becomes f.
The frequency changes to 1±Δfl. Therefore, the beat frequency of fl±Δfl−f2 is counted in the signal detected by the laser receiver 2, and the beat frequency f
It is compared with the beat frequency count of L-f2, and the amount of displacement corresponding to Δfl is displayed. [Problems to be solved by the invention] Nowadays, as machining technology becomes more precise, on-machine measurement that measures the workpiece without removing it from the processing machine, in-process measurement that measures the workpiece during processing, and even more There is now a need for an efficient production process in which the measurement results are fed back to the machining process, and all measurements and inspections are completed when the machining process is complete. This requires small, high-speed, and highly accurate measuring instruments. However, in conventional non-contact displacement measuring devices using heterodyne laser interference, the transmission of laser light is prevented by arranging the laser transmitter, receiver, and interferometer in a straight line, or by using reflectors, prisms, etc. Because of this, the adjustment is complicated, it is difficult to maintain a large distance between the laser transmitter and receiver, and the interferometer, and once the interferometer is installed, it cannot be easily removed or moved. There were problems such as. The present invention aims to miniaturize the device and allows the interferometer to move freely, thereby achieving a non-contact, high-speed,
It is possible to perform on-machine or in-process measurements on processing machines with high precision.The unique feature is that the laser light is transmitted between the printer and the printer via the end fiber. [Function] In the non-contact surface micro-shape measuring device configured as above, the laser beam is transmitted through the tip fiber, so only the interferometer part can be easily installed on other measuring machines or processing machines. This makes it possible to measure surface microstructures at high speed and with high precision in a non-contact manner. Additionally, attaching the laser receiver directly to the polarization beam splitter is effective in improving the transmission efficiency of laser light and reducing noise. [
Example] An example will be explained with reference to the drawings. In FIG. 1, two-frequency laser beams emitted from a two-frequency laser oscillator l are transmitted to a beam expander l0 to achieve the above object. The laser beam emitted from the output end side is
The laser beam enters the polarized beam splitter 3 via the laser transmitter 13, and is split into two frequency components by the receiver and the polarized beam splitter called an "interferometer". 4, is reflected by the reflecting mirror 6, passes through the 174 wavelength plate 4 again, and returns onto the polarizing beam splitter.The other laser beam passes through the 1/4 wavelength plate 5.
, is focused by the objective lens 7, is reflected on the surface of the object to be measured 9, passes through the L/4 wavelength plate 5, and returns onto the polarizing beam splitter. The signal destination synthesized on the polarizing beam splitter 3 enters the multimode destination fiber 15 via the collimator lens 14, and the laser beam emitted from the output end passes through the collimator lens 16 and enters the laser receiver 2. is incident on . At this time, if the object to be measured 9 fixed on the moving table 8 is moved in a direction perpendicular to the laser optical axis, the fine surface shape of the object to be measured 9 can be measured by heterodyne laser interferometry. Figure 3 shows the results of a comparison between the measured value of the precision length measuring machine and the measured value of this measuring device when From FIG. 3, it can be seen that the measured values change linearly in the range of 0 to lWII+.

Claims (1)

【特許請求の範囲】 1)2周波レーザ発信器とレーザ受信器と偏光ビームス
プリッタと一方の光ファイバおよび他方の光ファイバと
を備え、前記偏光ビームスプリッタに一方の1/4波長
板と他方の1/4波長板と反射鏡および対物レンズとを
固着し、前記2周波レーザ発信器から出た光束を前記一
方の光ファイバを介して前記偏光ビームスプリッタに入
射させて2つの周波数成分に分割し、前記分割された一
方の光束を前記一方の1/4波長板を通して前記反射鏡
で反射させ、前記分割された他方の光束を前記他方の1
/4波長板および前記対物レンズを通して被測定面上で
反射させ、前記一方の反射光束と前記他方の反射光束を
前記偏光ビームスプリッタ上で合成し、前記合成光束を
前記他方の光ファイバを介して前記レーザ受信器に入射
させるように構成したことを特徴とするヘテロダインレ
ーザ干渉方式の非接触表面微細形状測定装置 2)前記合成光束を直接、前記レーザ受信器に入射させ
るように構成した請求項1記載の非接触表面微細形状測
定装置
[Claims] 1) A dual-frequency laser transmitter, a laser receiver, a polarizing beam splitter, one optical fiber, and the other optical fiber, and the polarizing beam splitter includes one quarter-wave plate and the other optical fiber. A quarter-wave plate, a reflecting mirror, and an objective lens are fixed, and the light beam emitted from the two-frequency laser oscillator is made incident on the polarizing beam splitter via the one optical fiber to be split into two frequency components. , one of the divided luminous fluxes is reflected by the reflecting mirror through one of the quarter wavelength plates, and the other of the divided luminous fluxes is reflected by the other one of the divided luminous fluxes.
reflected on the surface to be measured through the /4 wavelength plate and the objective lens, the one reflected light beam and the other reflected light beam are combined on the polarizing beam splitter, and the combined light beam is transmitted through the other optical fiber. 2) A non-contact surface micro-shape measuring device using a heterodyne laser interference method, characterized in that the combined light beam is made to enter the laser receiver directly. Described non-contact surface micro-shape measuring device
JP7906289A 1989-03-30 1989-03-30 Contactless minute surface shape measuring instrument Pending JPH0315709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7906289A JPH0315709A (en) 1989-03-30 1989-03-30 Contactless minute surface shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7906289A JPH0315709A (en) 1989-03-30 1989-03-30 Contactless minute surface shape measuring instrument

Publications (1)

Publication Number Publication Date
JPH0315709A true JPH0315709A (en) 1991-01-24

Family

ID=13679404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7906289A Pending JPH0315709A (en) 1989-03-30 1989-03-30 Contactless minute surface shape measuring instrument

Country Status (1)

Country Link
JP (1) JPH0315709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552540A (en) * 1991-02-08 1993-03-02 Hughes Aircraft Co Interferometer laser surface roughness meter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219803A (en) * 1985-03-27 1986-09-30 Nippon Kogaku Kk <Nikon> Apparatus for measuring physical quantity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219803A (en) * 1985-03-27 1986-09-30 Nippon Kogaku Kk <Nikon> Apparatus for measuring physical quantity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552540A (en) * 1991-02-08 1993-03-02 Hughes Aircraft Co Interferometer laser surface roughness meter

Similar Documents

Publication Publication Date Title
US4859066A (en) Linear and angular displacement measuring interferometer
US4883357A (en) Dual high stability interferometer
WO2016123812A1 (en) Laser heterodyne interference linearity measuring apparatus and method having six-degrees-of-freedom detection
WO2022105532A1 (en) Heterodyne fiber interferometer displacement measuring system and method
EP0244275A2 (en) Angle measuring interferometer
US4334778A (en) Dual surface interferometer
US6965435B2 (en) Interferometer system for measuring surface shape
JPH0455243B2 (en)
EP1225420A2 (en) Laser-based interferometric measuring apparatus and method
US4807997A (en) Angular displacement measuring interferometer
US5028137A (en) Angular displacement measuring interferometer
CN1034530C (en) Laser heterodyne common-circuit interference method and its optic system
JPS5979104A (en) Optical device
JPH0315709A (en) Contactless minute surface shape measuring instrument
JPH04351905A (en) Xy stage possessing laser length measuring device
JP2004347425A (en) Measuring method of distance change between two faces and device
EP0050144B1 (en) Process for measuring motion- and surface characterizing physical parameters of a moving body
JPH0233962B2 (en)
JP2592254B2 (en) Measuring device for displacement and displacement speed
JP3495918B2 (en) Optical component eccentricity measuring method and eccentricity measuring device
JPS60104206A (en) Optical measuring device
GB2333834A (en) Interferometer with deadpath error compensation
JP3045567B2 (en) Moving object position measurement device
JP3618455B2 (en) Biaxial laser length measuring machine
JPH11344303A (en) Laser interference length measuring apparatus