JPH03154379A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03154379A
JPH03154379A JP29343289A JP29343289A JPH03154379A JP H03154379 A JPH03154379 A JP H03154379A JP 29343289 A JP29343289 A JP 29343289A JP 29343289 A JP29343289 A JP 29343289A JP H03154379 A JPH03154379 A JP H03154379A
Authority
JP
Japan
Prior art keywords
region
trench
concentration impurity
type
impurity region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29343289A
Other languages
Japanese (ja)
Inventor
Takehide Shirato
猛英 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP29343289A priority Critical patent/JPH03154379A/en
Publication of JPH03154379A publication Critical patent/JPH03154379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Abstract

PURPOSE:To enable high function advancement, high integration advancement, and high speed advancement by forming vertical MOS transistor structure wherein a high concentration impurity region formed at the bottom of a trench is made a source region and a conductive film provided at the sidewall of the trench is made a gate electrode. CONSTITUTION:A vertical N-channel transistor, consisting of an n<+>-type source region 4a, an n<+>-type drain region 4b, an n<->-type drain region 5, and a gate electrode 8, is made in a p-type well region 2. Element isolation is done by the insulating film 6 buried in a third trench 16, and the n<+>-type drain region 4 band the n<->-type drain region 5 form flat diffusion layers at the bottom. Moreover, a buried conductive layer 11 is made on the n<+>-type source region 4a, which optimizes the concentration of the n<->-type drain region 5 and each size. Hereby, a ultrahigh breakdown strength element is obtained, and high speed advancement is possible by reducing offset resistance to a fixed value, and further a minute vertical MOS field effect transistor can be made in self alignment, and high integration advancement becomes possible.

Description

【発明の詳細な説明】 [概 要] 絶縁膜を埋め込んだ第3のI〜レンチ及び第1のトレン
チにより規定され、一導電型半導体基板に形成された反
対導電型の第1の高濃度不純物領域及び高濃度不純物領
域の底部に直に接する低濃度不純物領域をドレイン領域
とし、第1のトレンチの底部に形成された反対導電型の
第2の高濃度不純物領域をソース領域とし、第1のトレ
ンチの側壁にゲート絶縁膜を介して設けられた導電膜を
ゲート電極とする構造に形成されているため、高濃度不
純物領域の底部を平坦に形成でき、且つ高濃度不純物領
域の底部を完全に低濃度不純物領域で囲んだトレイン領
、域を形成できることにより接合耐圧の極めて高いMO
5電界効果トランジスタを形成できることによる高機能
化、低濃度のオフセ・ソト領域をセルファラインに形成
できること及び表面上のゲート電極面積を必要としない
射1f型のMO8電界効果トランジスタを形成できるこ
とによる高集積化、オフセラ1へ抵抗を一定値に低減で
きることによる高速化を可能とした半導体装置9[産業
上の利用分野] 本発明はMIS型半導体装置に係り、特に高い接合耐圧
を有するMO3電界効果トランジスタに関する。
[Detailed Description of the Invention] [Summary] A first high-concentration impurity of an opposite conductivity type defined by a third I~ trench embedded with an insulating film and a first trench, and formed in a semiconductor substrate of one conductivity type. A low concentration impurity region directly in contact with the bottom of the trench and the high concentration impurity region is used as a drain region, a second high concentration impurity region of the opposite conductivity type formed at the bottom of the first trench is used as a source region, Since the gate electrode is a conductive film provided on the side wall of the trench via a gate insulating film, the bottom of the high concentration impurity region can be formed flat, and the bottom of the high concentration impurity region can be completely flattened. MO with extremely high junction breakdown voltage by forming a train region surrounded by a low concentration impurity region
High functionality due to the ability to form a 5 field effect transistor, high integration due to the ability to form a low concentration offset/somatic region in the self-line, and the ability to form a 1f type MO8 field effect transistor that does not require a gate electrode area on the surface. Semiconductor device 9 that enables high speed by reducing resistance to a constant value [Industrial field of application] The present invention relates to an MIS type semiconductor device, and particularly relates to an MO3 field effect transistor having a high junction breakdown voltage. .

bf来、高耐圧のMO3電界効果トランジスタに関して
は1通常構造のMO3電界効果?ヘランジスタのドレイ
ン領域のみを修正し、高濃度不純物領域とゲート電極直
下のチャネル領域間に高濃度不純物領域に接していわゆ
るオフセラI・領域となる低濃度不純物領域を設け、且
つ高濃度不純物領域とチャネルストッパー領域を離して
形成したものである。通常のM OS電界効果トランジ
スタの製造同様に、比較的簡単であるが、ドレイン領域
の高濃度不純物領域をセルファラインに形成できないた
め、オフセット抵抗が位置合せにより変動するので高速
化が難しいこと、高濃度不純物領域形成及びチャネルス
トッパー領域形成の位置あわせマージンが必要ななめ高
集積fヒが計れないこと、ドレイン領域の高濃度不純物
領域を平坦に形成できないため、拡散層のカーブの部分
に電界集中が起り接合の耐圧を十分増大できず高機能化
が達成できない等の問題が顕著になってきている。そこ
で、オフセット抵抗が一定で、十分な接合の耐圧が得ら
れる高集積な高耐圧素子を形成できる手段が要望されて
いる。
Since bf, regarding high-voltage MO3 field effect transistors, 1 is the MO3 field effect transistor with a normal structure? Only the drain region of the helangistor is modified, and a low concentration impurity region that is in contact with the high concentration impurity region and becomes a so-called off-cellar I region is provided between the high concentration impurity region and the channel region directly under the gate electrode, and the high concentration impurity region and the channel are The stopper areas are separated from each other. Like the manufacturing of ordinary MOS field effect transistors, it is relatively simple, but since the high concentration impurity region of the drain region cannot be formed in the self-alignment line, the offset resistance varies depending on alignment, making it difficult to increase the speed. Because of the need for positioning margins for the formation of the concentrated impurity region and the channel stopper region, it is impossible to measure the high integration density, and because the high concentration impurity region of the drain region cannot be formed flat, electric field concentration occurs in the curved portion of the diffusion layer. Problems such as the inability to sufficiently increase the breakdown voltage of the junction and the inability to achieve high functionality have become prominent. Therefore, there is a need for a means for forming a highly integrated high voltage element with a constant offset resistance and sufficient junction voltage resistance.

[従来の技術] 第5図は従来の半導体装置の模式側断面図で、51はp
−型シリコン(Si)基板、52はp型つェル頭載、5
3はp十型チャt、ルストッパー領域、54aはn十型
ソース領域、541)はn十型ドしイン領域、55はn
−型オフセッI−領域、5Gはフィールド酸化膜、57
はゲート酸化膜、58はゲート電極、59はブロック用
酸化膜、60は燐珪酸ガラス(psc)膜、61はAI
配線を示している。
[Prior Art] FIG. 5 is a schematic side sectional view of a conventional semiconductor device, and 51 is a p
- type silicon (Si) substrate, 52 is a p-type well head mounted, 5
3 is a p-type stopper region, 54a is an n-type source region, 541) is an n-type stopper region, and 55 is an n-type stopper region.
- type offset I- region, 5G is a field oxide film, 57
is a gate oxide film, 58 is a gate electrode, 59 is a block oxide film, 60 is a phosphosilicate glass (PSC) film, and 61 is an AI
Shows wiring.

同図においては、p−型シリコン(Si)基板51に選
択的にp型ウェル領域52が設けられ、前記p型ウェル
領域52にn++ソース領域54a 、n+型トドレイ
ン領域54b、n−型オフセ・ソト領域55、ゲート電
極58からなる高耐圧のNチャネルトランジスタが形成
されており、n−型オフセラ1〜領域の濃度及び各領域
のサイズを最適に選択して約00Vの耐圧が得られてい
る9p十型チヤネルスト・リバー領域53はn十型トレ
イン領域54bとは離れて形成されている。n十型ドレ
イン領域はセルファラインに形成できないため、位置合
せによりオフセット抵抗が変動すること、n十型ドレイ
ン領域及びp十型チャネルストッパー領域形成には位置
あわせマージンが必要なため高集積1ヒが計れないこと
、n−型オフセラ1〜領域の存在により空乏層が広がる
ため、ある程度の接合耐圧の上昇は得られるが、n十型
ドレイン領域のカーブの箇所に電界が集中し接合耐圧の
上限を決めるなめ、極めて高い接合耐圧が得られないこ
と等の欠点があった。
In the figure, a p-type well region 52 is selectively provided on a p-type silicon (Si) substrate 51, and the p-type well region 52 includes an n++ source region 54a, an n+-type drain region 54b, and an n-type offset region. A high-voltage N-channel transistor is formed of a solar cell region 55 and a gate electrode 58, and a breakdown voltage of about 00 V is obtained by optimally selecting the concentration of the n-type offset region 1 to the region and the size of each region. The 9p ten type channel strike/river region 53 is formed apart from the n ten type train region 54b. Since the n-type drain region cannot be formed on a self-aligned line, the offset resistance will vary depending on the alignment, and alignment margins are required to form the n-type drain region and the p-type channel stopper region, making it difficult for highly integrated chips. However, because the depletion layer expands due to the presence of the n-type offset region 1~, the junction breakdown voltage can be increased to some extent, but the electric field concentrates at the curve of the n-type drain region, which increases the upper limit of the junction breakdown voltage. However, there were drawbacks such as the inability to obtain extremely high junction breakdown voltage.

[発明が解決しようとする問題点] 本発明が解決しようとする問題点は、従来例に示される
ように、オフセ・ノド抵抗が変動しない低濃度領域の形
成ができなかったこと、位置あわせマージンの必要ない
高集積な高耐圧素子の形成ができなかったこと、及び局
所的な電界集中が起こらない極めて高い接合耐圧を持つ
高耐圧素子の形成かできなかったことである。
[Problems to be Solved by the Invention] The problems to be solved by the present invention are that, as shown in the conventional example, it was not possible to form a low concentration region in which the offset-node resistance does not fluctuate, and the alignment margin It was not possible to form a highly integrated high-voltage device that did not require a high breakdown voltage, and it was also impossible to form a high-voltage device with an extremely high junction breakdown voltage that did not cause local electric field concentration.

U問題点を解決するための手段] 上記問題点は、一導電型半導体基板に形成された反対導
電型の第1の高濃度不純物領域と、前記第1の高濃度不
純物領域の底部に直に接して形成された反対導電型の低
濃度不純物領域と、前記低濃度不純物領域下に形成され
た一導電型のチャネル領域と、前記第1の高濃度不純物
領域及び低濃度不純物領域の一部を規定する前記半導体
基板に形成された第1のトレンチと、前記第1のトレン
チの側壁及び底部に形成されたゲート絶縁膜と、前記第
1のトレンチの側壁に前記ゲート絶縁膜を介して形成さ
れたゲート電極と、前記第1のトレンチの底部に形成さ
れた反対導電型の第2の高濃度不純物領域と、前記第2
の高濃度不純物領域に固定電圧を印加させる導電領域と
を備えてなる本発明の半導体装置によって解決される。
Means for Solving Problem U] The above problem is caused by a first high concentration impurity region of an opposite conductivity type formed in a semiconductor substrate of one conductivity type, and a first high concentration impurity region formed directly on the bottom of the first high concentration impurity region. a low concentration impurity region of an opposite conductivity type formed in contact with each other, a channel region of one conductivity type formed under the low concentration impurity region, and a portion of the first high concentration impurity region and the low concentration impurity region. a first trench formed in the semiconductor substrate, a gate insulating film formed on the sidewalls and bottom of the first trench, and a gate insulating film formed on the sidewall of the first trench via the gate insulating film. a second high concentration impurity region of an opposite conductivity type formed at the bottom of the first trench;
This problem is solved by the semiconductor device of the present invention, which includes a conductive region to which a fixed voltage is applied to a high concentration impurity region.

1作 用] 即ち本発明の半導体装置においては、絶縁膜を埋め込ん
だ第3のトレンチ及び第1のトレンチにより規定され、
一導電型半導体基板に形成された反対導電型の第1の高
濃度不純物領域及び高濃度不純物領域の底部に直に接す
る低濃度不純物領域をドレイン領域とし、第1のトレン
チの底部に形成された反対導電型の第2の高濃度不純物
領域をソース領域とし、第1のトレンチの側壁にゲート
絶縁膜を介して設けられた導電膜をゲート電極とする構
造に形成されている。したがって、高濃度不純物領域の
底部を平坦に形成でき、且つ高濃度不純物領域の底部を
完全に低濃度不純物領域で囲んだドレイン領域を形成で
きるため、極めて大きな空乏層の広がりが得られ、且つ
局所的な電界集中が起こらない極めて高い接合耐圧を持
つ高耐圧素子の形成が可能である。又、空乏層を広げる
低濃度領域をセルファラインに形成できるため、いわゆ
るオフセラ1〜抵抗を一定値に低減できることにより高
速化が可能である。さらに表面上のゲート電極面積を必
要とせず、且つすべての領域をセルファラインに形成で
きるなめ、微細な縦型のMO8電界効果τ〜ランジスタ
を形成できることにより高集積fヒも可能である。即ち
、極めて高機能、高集積且つ高速な半導体集積回路の形
成を可能とした半導体装置を得ることができる。
1 Effect] That is, in the semiconductor device of the present invention, the third trench and the first trench in which the insulating film is embedded,
A first high concentration impurity region of the opposite conductivity type formed on a semiconductor substrate of one conductivity type and a low concentration impurity region directly in contact with the bottom of the high concentration impurity region are used as a drain region, and a drain region is formed at the bottom of the first trench. The structure is formed such that a second high concentration impurity region of the opposite conductivity type serves as a source region, and a conductive film provided on the side wall of the first trench with a gate insulating film interposed therebetween serves as a gate electrode. Therefore, the bottom of the high-concentration impurity region can be formed flat, and the drain region can be formed in which the bottom of the high-concentration impurity region is completely surrounded by the low-concentration impurity region. It is possible to form a high breakdown voltage element with an extremely high junction breakdown voltage in which electric field concentration does not occur. Furthermore, since a low concentration region that expands the depletion layer can be formed in the self-alignment line, the so-called off-cellar resistance can be reduced to a constant value, making it possible to increase the speed. Furthermore, since no gate electrode area on the surface is required and the entire region can be formed as a self-line, a fine vertical MO8 field effect transistor can be formed, making it possible to achieve high integration. In other words, it is possible to obtain a semiconductor device that enables the formation of extremely high-performance, highly integrated, and high-speed semiconductor integrated circuits.

[実施例] 以下本発明を、図示実施例により具体的に説明する。第
1図は本発明の半導体装置における第1の実施例の模式
側断面図、第2図は本発明の半導体装置における第2の
実施例の模式側断面図、第3図は本発明の半導体装置に
おける第3の実施例の模式側断面図、第4図(a)〜(
e)は本発明の半導体装置における製造方法の一実施例
の工程断面図である。
[Examples] The present invention will be specifically described below with reference to illustrated examples. FIG. 1 is a schematic side sectional view of a first embodiment of the semiconductor device of the present invention, FIG. 2 is a schematic side sectional view of the second embodiment of the semiconductor device of the present invention, and FIG. 3 is a schematic side sectional view of the semiconductor device of the present invention. A schematic side sectional view of the third embodiment of the device, FIGS. 4(a) to (
e) is a process sectional view of an embodiment of the manufacturing method for a semiconductor device of the present invention.

全図を通じ同一対象物は同一符号で示す。Identical objects are indicated by the same reference numerals throughout the figures.

第1図はp型シリコン基板を用いた際の本発明の半導体
装置における第1の実施例で、1は1014C1ll−
3程度のp−型シリコン基板、2は1015cm−3程
度のp型つェル須域、3は1017CI11−3程度の
p十型チャネルストッパー領域、4aは1020CII
l−3程度のn十型ソース領域、4bは10  cm 
 程度のn十型ドレイン領域、5は1o”cm”’程度
のn−型ドレイン領域〈オフセット領域)、6はトレン
チ素子分離用埋め込み絶縁膜、7は250nm程度のゲ
ート酸1ヒ膜、8は250nm程度のゲート電極、9は
幅500nm程度の側壁絶縁膜、10は250nm程度
のゲート電極7′ソース電極間絶縁膜、11は埋め込み
導電膜(選択気相成長タングステン膜)、12は50n
m程度のブロック用酸化膜、13は0.6.LLm程度
の燐珪酸ガラス(PSG )膜、14はIPm程度のA
1配線、15は深さ8/Am程度の第1のトレンチ、1
Gは深さ10/JJ11程度の第3のトレンチを示して
いる。
FIG. 1 shows a first embodiment of the semiconductor device of the present invention when a p-type silicon substrate is used, and 1 is 1014C1ll-
3 is a p-type silicon substrate of about 3, 2 is a p-type trench region of about 1015cm-3, 3 is a p-type channel stopper region of about 1017CI11-3, 4a is a 1020CII
n-type source region of about l-3, 4b is 10 cm
5 is an n-type drain region (offset region) of about 10 cm, 6 is a buried insulating film for trench element isolation, 7 is a gate acid 1 arsenic film of about 250 nm, and 8 is an n-type drain region (offset region) of about 1 cm. A gate electrode of about 250 nm, 9 a side wall insulating film with a width of about 500 nm, 10 an insulating film between the gate electrode 7' and source electrode of about 250 nm, 11 a buried conductive film (selective vapor growth tungsten film), 12 a 50 nm
The block oxide film of about m, 13 is 0.6. Phosphorsilicate glass (PSG) film of about LLm, 14 is A of about IPm
1 wiring, 15 is a first trench with a depth of about 8/Am, 1
G indicates a third trench having a depth of approximately 10/JJ11.

同図においては、p−型シリコン基板1に選択的に閾値
電圧を規定するp型ウェル領域2が形成されており、前
記p型ウェル領域2にn十型ソース領域Aa−n十型ト
レイン領域jib、n−型ドレイン領域(オフセット領
域)5、ゲート電極8からなる縦型のNチャネルトラン
ジスタが形成されている。素子分離は第3のトレンチ1
6に埋め込まhた絶縁膜6によりなされ、n十型ドレイ
ン領域4])及びn−型トレイン領域(オフセット領域
)5は底部の平坦な拡散層を形成している。又、n十型
ソース領域4a上にはA1配線14から固定電圧を印加
する埋め込み導電膜(3″A択気相成長タングステン膜
)11が形成されている。n−型ドレイン領域(オフセ
ット領域)5の濃度及び各サイズを最適fヒすることに
より、約200Vの耐圧を持つ超高耐圧素子が得られて
いる。本格造においては、n十型トレイン領域の底部を
平坦に形成でき、且つn+型トドレイン領域底部を完全
にn−型トレイン領域(オフセット領域)で囲んだドレ
イン領域を形成できるため、極めて大きな空乏層の広が
りが得られ、且つ局所的な電界集中が起こらない髄めて
高い接合耐圧を持つ高耐圧素子の形成が可能である。又
、空乏層を広げる低濃度領域をセルファラインに形成で
きるなめ、いわゆるオフセラIへ抵抗を一定値に低減で
きることにより高速fヒが可能である。さらに表面上の
ゲート電極面積を必要とせず、且つすべての領域をセル
ファラインに形成できるため、微細な縮型のMO3電界
効果トランジスタを形成できることにより高集積化を可
能にすることもできる。
In the figure, a p-type well region 2 for selectively defining a threshold voltage is formed in a p-type silicon substrate 1, and an n+ type source region Aa-n+ type train region is formed in the p-type well region 2. A vertical N-channel transistor is formed of a jib, an n-type drain region (offset region) 5, and a gate electrode 8. Element isolation is done by third trench 1
The n-type drain region 4) and the n-type train region (offset region) 5 form a flat bottom diffusion layer. Further, a buried conductive film (3″A selective vapor growth tungsten film) 11 is formed on the n-type source region 4a to which a fixed voltage is applied from the A1 wiring 14.N-type drain region (offset region) By optimizing the concentration of 5 and each size, an ultra-high voltage element with a withstand voltage of about 200 V has been obtained. Since it is possible to form a drain region in which the bottom of the type drain region is completely surrounded by an n-type train region (offset region), an extremely wide depletion layer can be obtained, and an extremely high junction without local electric field concentration can be achieved. It is possible to form a high breakdown voltage element with a breakdown voltage.Also, since a low concentration region that expands the depletion layer can be formed in the self-alignment line, the resistance of the so-called off-cell I can be reduced to a constant value, and high-speed f-hi is possible. Further, since no gate electrode area on the surface is required and the entire region can be formed as a self-line, a fine reduced-type MO3 field effect transistor can be formed, thereby making it possible to achieve high integration.

第2図は本発明の半導体装置における第2の実施例の模
式側断面図で、1〜1Gは第1図と同じ物を、11は第
1のトレンチ埋め込み絶縁膜を、18は第2の1へレン
チを示している。
FIG. 2 is a schematic side sectional view of a second embodiment of the semiconductor device of the present invention, in which 1 to 1G are the same as in FIG. 1 shows a wrench.

同図においては、n++ソース領域の一部にp型シリコ
ン基板に達する第2のトレンチ18を設け、第2のトレ
ンチ18を埋め込み導電膜(選択「ヒ字気相成長タング
ステン膜)11により埋め込み。
In the figure, a second trench 18 reaching the p-type silicon substrate is provided in a part of the n++ source region, and the second trench 18 is filled with a conductive film (selected "H-shaped vapor phase growth tungsten film") 11.

この埋め込み導電膜(選択化学気相成長タングステン膜
)11によりp−型シリコン基板からn十型ソース領域
に固定電圧を印加していること、及び埋め込み導電膜(
選択化学気相成長タングステン膜)11上の第1のトレ
ンチ15を埋め込み絶縁膜17により埋め込んでいる点
を除き、第1の実施例と同じ構造に形成されている。本
実施例においては、第1の実施例の効果に加え、n十型
ソース領域に固定電圧を印加するAI配線を形成してい
ないため配線の自由度を増すことができることによる高
集積化が可能となる。
This buried conductive film (selective chemical vapor deposition tungsten film) 11 applies a fixed voltage from the p-type silicon substrate to the n+ type source region, and the buried conductive film (
The structure is the same as that of the first embodiment except that the first trench 15 on the selective chemical vapor deposition tungsten film 11 is filled with a buried insulating film 17. In this embodiment, in addition to the effects of the first embodiment, since no AI wiring is formed to apply a fixed voltage to the n-type source region, the degree of freedom in wiring can be increased, and high integration is possible. becomes.

第3図は本発明の半導体装置における第3の実施例の模
式側断面図で、1.3〜1Gは第1図と同じ物を、19
はp十型チャネル領域を示している。
FIG. 3 is a schematic side sectional view of a third embodiment of the semiconductor device of the present invention, and 1.3 to 1G are the same as in FIG.
indicates a p-type channel region.

同図においては、n−型ドレイン領域(オフセット領域
)5をゲート電極8下端まで延在していること、n十型
ソース頭載4aを等間隔で囲むようにp十型チャネル領
域19を形成していること及びn型ウェル領域を形成し
ていない点を除き、第1の実施例と同じ構造に形成され
ている。本実施例においては、第1の実施例の効果に加
え、n−型ドレイン領域(オフセット領域)を長くとれ
るため、さらなる高耐圧化及びオン抵抗を低減できるた
め、いっそうの高速化が可能である。
In the figure, the n-type drain region (offset region) 5 extends to the lower end of the gate electrode 8, and the p-type channel region 19 is formed to surround the n-type source head 4a at equal intervals. The second embodiment has the same structure as the first embodiment except that the second embodiment has the same structure as that of the first embodiment and that no n-type well region is formed. In this embodiment, in addition to the effects of the first embodiment, since the n-type drain region (offset region) can be made longer, it is possible to further increase the withstand voltage and reduce the on-resistance, so that even higher speeds are possible. .

次いで本発明に係る半導体装置の製造方法の一実施例に
ついて第4図(a)〜(e)及び第1図を参照して説明
する9 第4図(a) p−型シリコン基板1に酸化膜20及び窒(ヒ膜21を
成長させる。次いで通常のフォトリソグラフィー技術を
利用し、レジスト(図示せず)をマスク層として、硼素
をイオン注入してn型ウェル領域2を、燐をイオン注入
してn型ウェル領域(図示せず)をそれぞれ選択的に順
次画定する9次いで高温ランニングし所望の深さを持つ
n型ウェル領域2及びn型ウェル領域(図示せず)を形
成する。次いで不要なレジストを除去する。次いで通常
のフォI・リソグラフィー技術を利用し、レジスト(図
示せず)をマスク層として、窒化膜21、酸fヒJl!
20、p−型シリコン基板1の一部(深さio7Am程
度)を選択的に順次エツチングし、第3のトレンチ1G
を形成する。次いでレジストを除去する。次いで通常の
フォトリソグラフィー技術を利用し、レジスト(図示せ
ず)及び窒化膜21をマスク層として、硼素をイオン注
入してp十型チャネルスI〜・ソバ−領域3を、燐をイ
オン注入してn十型チャネ、ルスI〜ツバー領域(図示
せず)をそれぞれ選択I姐、こ順次節3のトレンチ1G
底部に形成する。次いて゛不要なしジスI〜を除去する
。次いで化学気相成長酸fヒ膜6を成長さぜ、異方性ド
ライエツチングをおこない、第3のトレンチ1Gに埋め
込む9次いで通常のフォトリソグラフィー技術を利用し
、レジスIへ(図示せず)及びトレンチ素子分離用埋め
込みMfヒJ!!6をマスク層として、燐をイオン注入
してn−型ドレイン領域5を画定する。次いてレジスト
を除去する3次いで高温熱処理をおこない所望の深さを
持つn−型ドレイン領域5を形成する。
Next, an embodiment of the method for manufacturing a semiconductor device according to the present invention will be described with reference to FIGS. 4(a) to (e) and FIG. A film 20 and a nitride film 21 are grown. Next, using a normal photolithography technique and using a resist (not shown) as a mask layer, boron is ion-implanted to form the n-type well region 2, and phosphorus is ion-implanted. 9 to selectively and sequentially define n-type well regions (not shown), respectively.Next, high temperature running is performed to form n-type well regions 2 and n-type well regions (not shown) having desired depths. Unnecessary resist is removed.Next, the nitride film 21 is coated with the nitride film 21, using the resist (not shown) as a mask layer, using a conventional photolithography technique.
20. Part of the p-type silicon substrate 1 (depth approximately io7Am) is selectively and sequentially etched to form a third trench 1G.
form. Then the resist is removed. Next, using a conventional photolithography technique, using a resist (not shown) and the nitride film 21 as a mask layer, boron ions are implanted to form the p-type channels I and sober regions 3, and phosphorus is ion-implanted. Then, select the n-type channel, the loop region I to the tube region (not shown), respectively, and then trench 1G of node 3.
Form at the bottom. Next, ``unnecessary gas I'' is removed. Next, a chemical vapor deposition acid film 6 is grown, anisotropic dry etching is performed, and the third trench 1G is filled with the resist I (not shown). Buried Mf for trench element isolation! ! Using 6 as a mask layer, phosphorus is ion-implanted to define an n-type drain region 5. Next, the resist is removed and a high temperature heat treatment is performed to form an n-type drain region 5 having a desired depth.

第4113(b) 次いで通常のフォトリソグラフィー技術を利用し、レジ
スト(図示せず)をマスク層として、窒化膜21、酸化
膜20、p−型シリコン基板1の一部(深さ87m程度
)を選択的に順次エツチングし、第1のトレンチ15を
形成する。次いてレジストを除去する。次いで通常のフ
ォI−リソグラフィー技(Jfirを利用し、窒1ヒ膜
21及びトレンチ素子分離用埋め込み酸化膜6をマスク
層として、砒素をイオン注入してn十型ソース傾城4a
を第1のトレンチ15の底部に画定する。
No. 4113(b) Next, using a normal photolithography technique and using a resist (not shown) as a mask layer, the nitride film 21, oxide film 20, and a portion of the p-type silicon substrate 1 (approximately 87 m in depth) are formed. A first trench 15 is formed by selectively sequentially etching. Next, the resist is removed. Next, using a normal photolithography technique (Jfir) and using the nitride film 21 and the buried oxide film 6 for trench element isolation as mask layers, arsenic ions are implanted to form the n-type source inclined wall 4a.
is defined at the bottom of the first trench 15.

第4図(C) 次いでゲート酸化pA7を成長させる。次いで不純物を
含んだ多結晶シリコン膜を成長させ゛、異方性ドライエ
ツチングし、第1のトレンチ15に埋め込む9次いで0
妨s程度オーバーエツチングし、ゲート電極となる多結
晶シリコン膜8上に浅い第1のトレンチ15を残す。次
いで化学気相成長酸化膜を成長させ、異方性ドライエツ
チングをおこない、残された浅い第1のトレンチ15の
側壁に酸化膜9を残す。
FIG. 4(C) Next, gate oxide pA7 is grown. Next, a polycrystalline silicon film containing impurities is grown, anisotropically dry etched, and buried in the first trench 15.
Over-etching is performed to a certain extent to leave a shallow first trench 15 on the polycrystalline silicon film 8 that will become the gate electrode. Next, a chemical vapor deposition oxide film is grown and anisotropic dry etching is performed to leave the oxide film 9 on the sidewalls of the remaining shallow first trenches 15.

第4図((1) 次いで残された側壁酸化膜9をマスク層として異方性ド
ライエツチングし、ゲート電極となる多結晶シリコン膜
8の中央部の多結晶シリコン膜をエツチング除去する。
FIG. 4(1) Next, anisotropic dry etching is performed using the remaining sidewall oxide film 9 as a mask layer, and the polycrystalline silicon film at the center of the polycrystalline silicon film 8, which will become the gate electrode, is etched away.

次いで熱酸化し、ゲート電極8の側壁及びn十型ソース
領i4a上に酸化膜を形成する9次いて異方性トライエ
ツチングし、n十型ソース領域4a上の酸化膜をエツチ
ング除去し、ゲート電極8の側壁に酸化膜10を残す。
Next, thermal oxidation is performed to form an oxide film on the side walls of the gate electrode 8 and the n+ type source region i4a.Next, anisotropic tri-etching is performed to remove the oxide film on the n+ type source region 4a, and the gate electrode 8 is etched. An oxide film 10 is left on the side wall of the electrode 8.

第4図(e) 次いで露出したn十型ンース領域4a上に選択気相成長
タングステン膜11を成長させ、第1のトレンチ15を
完全に埋め込む。次いで不要の窒fヒ膜21及び#(ヒ
Jl!20をエツチング除去する9次いでイオン注入用
の薄い酸fヒ膜(図示せず)を成長する。
FIG. 4(e) Next, a selective vapor phase epitaxy tungsten film 11 is grown on the exposed n+ type source region 4a, completely filling the first trench 15. Next, the unnecessary nitride arsenal film 21 and #(heat Jl! 20) are etched away.Next, a thin acid arsenal film (not shown) for ion implantation is grown.

次いで通常のフfI−リソグラフィー技術を利用し、レ
ジスト(図示せず)及びトレンチ素子外RI用埋め込み
酸fヒ膜6をマスク層として、砒素をイオン注入してn
十型トレイン領域旧)を画定する。次いで不要のイオン
注入用の薄い酸1ヒ膜をエツチング除去する9 第1図 次いで通常の技法を適用することによりブロック用酸1
ヒ膜12及び燐珪酸ガラスCPSG)膜13の成長、高
温熱処理による各不純物領域の深さの制御、電極コンタ
クTへ窓の形成、AI配線14の形成等をおこなって半
導体装置を完成する。
Next, using a normal film lithography technique and using a resist (not shown) and a buried acid film 6 for RI outside the trench element as a mask layer, arsenic is ion-implanted.
Define the 10-shaped train area (old). Next, the unnecessary thin acid 1 arsenic film for ion implantation is etched away.
The semiconductor device is completed by growing the arsenic film 12 and the phosphosilicate glass CPSG film 13, controlling the depth of each impurity region by high-temperature heat treatment, forming a window in the electrode contact T, forming the AI wiring 14, etc.

上記実施例においては、素子分離領域はすべてトレンチ
及びトレンチ埋め込み絶縁膜により形成されているが、
製造プロセスを簡単にするために通常の選択酸化による
LOCO8法により形成してもよい。ただし、LOCO
3法による場合はフィールド酸fヒ膜側で高濃度のドレ
イン領域が電界集中箇所を持つため、得られる耐圧がや
や落ちる欠点はある9 又、上記実施例は高耐圧素子ばかりでなく、低濃度領域
の濃度及び各領域のサイズを最適化すれば縦型LDD構
造を持つショートチャネルトランジスタにも利用できる
。この場合は低濃度領域をセルファラインでドレイン領
域のみに形成できるため、通常のL D D il造を
持つショートチャネルトランジスタに比較し、いっそう
の高速化が達成できる9 以上実施例に示したように、本発明の半導体装置によれ
ば、n十型ドレイン領域の底部を平坦に形成でき、且つ
n十型トレイン領域の底部を完全にn−型トレイン領域
(オフセット領域)で囲んだトレイン領域を形成できる
ため、極めて大きな空乏層の広がりが得られ、且つ局所
的な電界集中が起こらない極めて高い接り耐圧を持つ高
耐圧素子の形成が可能である。又、空乏層を広げる低濃
度領域をセルファラインに形成できるため、いわゆるオ
フセット抵抗を一定値に低減できることにより高速化が
可能である。さらに表面上のゲート電極面積を必要とせ
ず、且つすべての領域をセルファラインに形成できるた
め、微細な縦型のMO8電界効果トランジスタを形成で
きることにより高集積fヒを可能にすることもできる。
In the above embodiment, all the element isolation regions are formed of trenches and trench-embedded insulating films.
In order to simplify the manufacturing process, it may be formed by the usual LOCO8 method using selective oxidation. However, LOCO
In the case of method 3, the high concentration drain region has an electric field concentration area on the field acid film side, so there is a drawback that the resulting withstand voltage is slightly lower. By optimizing the concentration of the regions and the size of each region, it can also be used for short channel transistors having a vertical LDD structure. In this case, since the low concentration region can be formed only in the drain region by self-line, the speed can be further increased compared to a short channel transistor having a normal LDD structure.9 As shown in the above embodiments, According to the semiconductor device of the present invention, the bottom of the n-type drain region can be formed flat, and a train region can be formed in which the bottom of the n-type drain region is completely surrounded by the n-type train region (offset region). As a result, it is possible to form a high breakdown voltage element with an extremely large depletion layer spread and an extremely high breakdown voltage without causing local electric field concentration. Furthermore, since a low concentration region that expands the depletion layer can be formed in the self-alignment line, the so-called offset resistance can be reduced to a constant value, making it possible to increase the speed. Further, since no gate electrode area on the surface is required and the entire region can be formed as a self-line, a fine vertical MO8 field effect transistor can be formed, thereby making it possible to achieve high integration.

[発明の効果] 以上説明のように本発明によれば、MIS型半導体装置
において、トレンチ及びトレンチ埋め込み絶縁膜で周囲
を規定された半導体基板表面に形成され、底部を低濃度
不純物領域で囲まれた高濃度不純物領域をドレイン領域
とし、トレンチの底部に形成された高濃度不純物領域を
ソース領域とし、I〜トレンチ側壁にゲーh絶縁膜を介
して設けられた導電膜をゲート電極とするJfif型の
MOSトランジスタ構造に形成されているため、高濃度
不純物領域の底部を平坦に形成でき、且つ高濃度不純物
領域の底部を完全に低濃度不純物領域で囲んだドレイン
領域を形成できることにより接合耐圧の栖めて高いMO
5電界効果トランジスタを形成できることによる高機能
化、いわゆる低濃度のオフセット領域をセルファライン
に形成できること及び表面上のゲート電極面積を必要と
しない縮型のMO3電界効果トランジスタを形成できる
ことによる高集積化、オフセット抵抗を一定値に低減で
きることによる高速1ヒを可能にすることができる。即
ち、極めて高機能、高集積且つ高速な半導体集積回路の
形成を可能とした半導体装置を得ることができる。
[Effects of the Invention] As described above, according to the present invention, in an MIS type semiconductor device, a trench is formed on the surface of a semiconductor substrate with a periphery defined by a trench and a trench-embedded insulating film, and the bottom is surrounded by a low concentration impurity region. Jfif type, in which the high concentration impurity region formed at the bottom of the trench is used as the drain region, the high concentration impurity region formed at the bottom of the trench is used as the source region, and the conductive film provided on the sidewalls of the trench from I to I through a gate insulating film is used as the gate electrode. Since the MOS transistor structure is formed, the bottom of the high concentration impurity region can be formed flat, and the drain region can be formed in which the bottom of the high concentration impurity region is completely surrounded by the low concentration impurity region, thereby improving the junction breakdown voltage. Very high MO
5 High functionality due to the ability to form a field effect transistor, high integration due to the ability to form a so-called low concentration offset region in the self-alignment line, and the ability to form a reduced type MO3 field effect transistor that does not require the area of the gate electrode on the surface. By reducing the offset resistance to a constant value, it is possible to perform high-speed 1-hi. In other words, it is possible to obtain a semiconductor device that enables the formation of extremely high-performance, highly integrated, and high-speed semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置における第1の実施例の模
式側断面図、 第2図は本発明の半導体装置における第2の実施例の模
式側断面図、 第3図は本発明の半導体装置における第3の実施例の模
式側断面図。 第4図(a)〜(e)は本発明の半導体装置における製
造方法の一実施例の工程断面図、 第5図は従来の半導体装置の模式側断面図である。 図において、 1はp−型シリコン基板、 2はp型ウェル領域。 3はp十型チャネルストッパー領域、 4aはn十型ソース領域、 4bはn十型ドレイン領域、 5はn−型ドレイン領域(オフセット領域)、6はトレ
ンチ素子分離用埋め込み絶縁膜、7はゲート酸fヒ膜、 8はゲート電極、 9は側壁絶縁膜、 10はゲート電極/ソース電極間絶縁膜、11は埋め込
み導電M(選択気相成長タングステン膜)。 2はブロック用酸化膜、 3は燐珪酸ガラス(PSG)膜、 4はA1配線、 5は第1のトレンチ、 6は第3のトレンチ、 7は第1のトレンチ埋め込み絶縁膜、 8は第2のトレンチ、 19はp十型チャネル領域 を示す。
FIG. 1 is a schematic side sectional view of a first embodiment of a semiconductor device of the present invention, FIG. 2 is a schematic side sectional view of a second embodiment of a semiconductor device of the present invention, and FIG. 3 is a semiconductor device of the present invention. FIG. 7 is a schematic side sectional view of a third embodiment of the device. 4(a) to 4(e) are process cross-sectional views of an embodiment of the manufacturing method for a semiconductor device of the present invention, and FIG. 5 is a schematic side cross-sectional view of a conventional semiconductor device. In the figure, 1 is a p-type silicon substrate, and 2 is a p-type well region. 3 is a p-type channel stopper region, 4a is an n-type source region, 4b is an n-type drain region, 5 is an n-type drain region (offset region), 6 is a buried insulating film for trench isolation, and 7 is a gate 8 is a gate electrode, 9 is a sidewall insulating film, 10 is an insulating film between the gate electrode/source electrode, and 11 is a buried conductive film (selective vapor phase growth tungsten film). 2 is a block oxide film, 3 is a phosphosilicate glass (PSG) film, 4 is an A1 wiring, 5 is a first trench, 6 is a third trench, 7 is a first trench-embedding insulating film, 8 is a second trench 19 indicates a p-type channel region.

Claims (5)

【特許請求の範囲】[Claims] (1)一導電型半導体基板に形成された反対導電型の第
1の高濃度不純物領域と、前記第1の高濃度不純物領域
の底部に直に接して形成された反対導電型の低濃度不純
物領域と、前記低濃度不純物領域下に形成された一導電
型のチャネル領域と、前記第1の高濃度不純物領域及び
低濃度不純物領域の一部を規定する前記半導体基板に形
成された第1のトレンチと、前記第1のトレンチの側壁
及び底部に形成されたゲート絶縁膜と、前記第1のトレ
ンチの側壁に前記ゲート絶縁膜を介して形成されたゲー
ト電極と、前記第1のトレンチの底部に形成された反対
導電型の第2の高濃度不純物領域と、前記第2の高濃度
不純物領域に固定電圧を印加させる導電領域とを備えて
なることを特徴とする半導体装置。
(1) A first high concentration impurity region of an opposite conductivity type formed on a semiconductor substrate of one conductivity type, and a low concentration impurity region of an opposite conductivity type formed in direct contact with the bottom of the first high concentration impurity region. a channel region of one conductivity type formed under the low concentration impurity region, and a first region formed in the semiconductor substrate defining a part of the first high concentration impurity region and the low concentration impurity region. a trench, a gate insulating film formed on the side walls and bottom of the first trench, a gate electrode formed on the side walls of the first trench via the gate insulating film, and a bottom of the first trench. 1. A semiconductor device comprising: a second heavily doped impurity region of an opposite conductivity type; and a conductive region to which a fixed voltage is applied to the second heavily doped region.
(2)前記導電領域が前記ゲート電極の中央部に絶縁膜
を介して形成された導電膜及び前記導電膜に接続した配
線体からなることを特徴とする特許請求の範囲第1項記
載の半導体装置。
(2) The semiconductor according to claim 1, wherein the conductive region comprises a conductive film formed at the center of the gate electrode via an insulating film and a wiring body connected to the conductive film. Device.
(3)前記導電領域が前記第2の高濃度不純物領域の一
部に形成され、且つ前記半導体基板に達する第2のトレ
ンチを埋め込んだ導電膜からなることを特徴とする特許
請求の範囲第1項記載の半導体装置。
(3) The conductive region is formed in a part of the second high concentration impurity region and is made of a conductive film in which a second trench reaching the semiconductor substrate is buried. 1. Semiconductor device described in Section 1.
(4)前記第1の高濃度不純物領域及び低濃度不純物領
域が前記第1のトレンチ及び絶縁膜を埋め込んだ第3の
トレンチにより規定されていることを特徴とする特許請
求の範囲第1項記載の半導体装置。
(4) The first high concentration impurity region and the low concentration impurity region are defined by the first trench and a third trench filled with an insulating film. semiconductor devices.
(5)前記低濃度不純物領域は前記ゲート電極下端まで
延在し、且つ前記第2の高濃度不純物領域は前記チャネ
ル領域により概略等間隔に囲まれていることを特徴とす
る特許請求の範囲第1項記載の半導体装置。
(5) The low concentration impurity region extends to the lower end of the gate electrode, and the second high concentration impurity region is surrounded by the channel region at approximately equal intervals. The semiconductor device according to item 1.
JP29343289A 1989-11-11 1989-11-11 Semiconductor device Pending JPH03154379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29343289A JPH03154379A (en) 1989-11-11 1989-11-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29343289A JPH03154379A (en) 1989-11-11 1989-11-11 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03154379A true JPH03154379A (en) 1991-07-02

Family

ID=17794683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29343289A Pending JPH03154379A (en) 1989-11-11 1989-11-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03154379A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184980A (en) * 2000-10-05 2002-06-28 Fuji Electric Co Ltd Trench lateral mosfet and manufacturing method thereof
JP2002280549A (en) * 2001-03-21 2002-09-27 Fuji Electric Co Ltd Semiconductor device and its manufacturing method
KR100357303B1 (en) * 1999-12-28 2002-10-19 주식회사 하이닉스반도체 Manufacturing method of semiconductor device
WO2009096002A1 (en) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Manufacturing method of semiconductor storage device
JP2012109588A (en) * 2002-07-15 2012-06-07 Infineon Technologies Ag Field effect transistor, use thereof and manufacturing method thereof
US8476132B2 (en) 2008-01-29 2013-07-02 Unisantis Electronics Singapore Pte Ltd. Production method for semiconductor device
JP5258120B2 (en) * 2008-01-29 2013-08-07 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Manufacturing method of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100357303B1 (en) * 1999-12-28 2002-10-19 주식회사 하이닉스반도체 Manufacturing method of semiconductor device
JP2002184980A (en) * 2000-10-05 2002-06-28 Fuji Electric Co Ltd Trench lateral mosfet and manufacturing method thereof
JP2002280549A (en) * 2001-03-21 2002-09-27 Fuji Electric Co Ltd Semiconductor device and its manufacturing method
JP2012109588A (en) * 2002-07-15 2012-06-07 Infineon Technologies Ag Field effect transistor, use thereof and manufacturing method thereof
WO2009096002A1 (en) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Manufacturing method of semiconductor storage device
WO2009096470A1 (en) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Fabrication process of semiconductor device
KR101222338B1 (en) * 2008-01-29 2013-01-14 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Fabrication process of semiconductor device
US8476132B2 (en) 2008-01-29 2013-07-02 Unisantis Electronics Singapore Pte Ltd. Production method for semiconductor device
JP5258120B2 (en) * 2008-01-29 2013-08-07 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US5270257A (en) Method of making metal oxide semiconductor field effect transistors with a lightly doped drain structure having a recess type gate
US6297104B1 (en) Methods to produce asymmetric MOSFET devices
US6700175B1 (en) Vertical semiconductor device having alternating conductivity semiconductor regions
US6255154B1 (en) Semiconductor device and method of manufacturing the same
US4729964A (en) Method of forming twin doped regions of the same depth by high energy implant
JP3510924B2 (en) Method for manufacturing MOS transistor
US6777745B2 (en) Symmetric trench MOSFET device and method of making same
JP4077529B2 (en) Manufacturing method of trench diffusion MOS transistor
US20030151097A1 (en) Structure of semiconductor device and method for manufacturing the same
US5552329A (en) Method of making metal oxide semiconductor transistors
US5712503A (en) Metal oxide semiconductor and method of making the same
JPH03154379A (en) Semiconductor device
JPH05299648A (en) Mis field effect transistor
JP2973129B2 (en) MIS field-effect transistor
JPH036863A (en) Semiconductor device
JPH0456360A (en) Metal-insulator semiconductor field-effect transistor
JPH0491481A (en) Mis field effect transistor
KR100247694B1 (en) Method for fabricating semiconductor device
JP2608470B2 (en) Semiconductor device and manufacturing method thereof
JP2838223B2 (en) Semiconductor device
JPH03132077A (en) Manufacture of semiconductor device
JP2511010B2 (en) Method for manufacturing vertical MOS transistor
JPH04155838A (en) Manufacture of semiconductor device
JPH03187258A (en) Semiconductor device
JPH04330782A (en) Fine semiconductor device and manufacture thereof