JPH0315436A - Allowable minimum pupil diameter contracting optical system for eyeball function measuring machine - Google Patents

Allowable minimum pupil diameter contracting optical system for eyeball function measuring machine

Info

Publication number
JPH0315436A
JPH0315436A JP1149830A JP14983089A JPH0315436A JP H0315436 A JPH0315436 A JP H0315436A JP 1149830 A JP1149830 A JP 1149830A JP 14983089 A JP14983089 A JP 14983089A JP H0315436 A JPH0315436 A JP H0315436A
Authority
JP
Japan
Prior art keywords
point
eye
image
pupil diameter
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1149830A
Other languages
Japanese (ja)
Other versions
JPH0356046B2 (en
Inventor
Tsunehiro Takeda
常広 武田
Yukio Fukui
幸男 福井
Takeo Iida
健夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1149830A priority Critical patent/JPH0315436A/en
Publication of JPH0315436A publication Critical patent/JPH0315436A/en
Publication of JPH0356046B2 publication Critical patent/JPH0356046B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To sufficiently reduce minimum pupil diameter by adding an optical system for making the enlarged image of an eye with preserving optical properties between a projecting system in an eyeball function measuring machine and the eye. CONSTITUTION:When a lends L3 (f3=f) and a lens L4 (f4=f/2) are disposed, a light emitted from a point B is collected to a point D, and the parallel light in the point B remains parallel also in the point D, so that an optical relay system nearly preserving optical properties can be constituted. In this optical relay system, the width of the parallel light in the point B is halved, and the magnification vertical to the optical axis of the image in the point B is halved. Contrary to this, when an eye is put on a point D, an image with the doubled size of the eye is formed on the point B by the optical relay system. When the eye is focused to a target T placed in a position moved from the focus position A of a lens L2 by (x), the target T is seen from the point B as situated in the position of f<2>/x. Then, when the lens L3 acts on this image, the target T is seen from the point D as situated in the position of (f/2)<2>/x. Only by quadrupling a measurement value obtained by adding such an optical relay system, the minimum pupil diameter is halved, and the values of refraction and regulation can be easily measured.

Description

【発明の詳細な説明】 [κ業上の利用分野」 本発明は、若21・者及び中高年者の眼球の機能測定に
用いるのに適した眼球機能測定機のための許容最小瞳孔
径縮小尤セl′糸に関するもの゛Cある。
[Detailed Description of the Invention] [Field of Application in Industry] The present invention relates to the measurement of the minimum allowable pupil diameter reduction for an ocular function measuring device suitable for use in measuring the ocular function of young people and middle-aged and elderly people. There is something about cell yarn.

[従来の技術コ ;圧年、才一 トリフラク1〜メータとか三次元オフト
メータとかによって、眼のノd{折、調節か容易に41
11定可能となってきたか,測定に用いる亦外LEDの
パワーと大きさの制約上、測定てきる舷小瞳孔径は.3
mm程度になっている。
[Conventional technology: Older age, older age, triflux meter, three-dimensional offtometer, etc., make it easy to adjust and adjust the eye's nostrils.
However, due to the power and size limitations of the LED used for measurement, the small pupil diameter that can be measured is now . 3
It is about mm.

健常な青少年か遠点(見ること0てきる最も遠い点)を
見ている場合には、ほとんど全員か3+nm以上の瞳孔
径になっているのて、上記最小瞳孔径か問題になること
はないか、若年者、中高年者ては、一般に、遠点を見て
いる場合ても3mm以ドの瞳孔径のものか多い。さらに
、眼か調節をして近くを見ると1il!瞳か起こり、青
少年の場合ても3mm以下になる場合か多い。従って、
許容最小瞳孔径を現状の半分程度の1.5mm程度にす
ることか強く望まれている。
If you are a healthy young person or are looking at the far point (the furthest point you can see), almost all of them have a pupil diameter of 3+nm or more, so the above minimum pupil diameter is not a problem. In general, young people, middle-aged people, and elderly people often have pupil diameters of 3 mm or more even when looking at a far point. Furthermore, when you adjust your eyes and look close, it's 1il! The diameter of the pupils is often less than 3mm, even in adolescents. Therefore,
It is strongly desired that the minimum allowable pupil diameter be reduced to about 1.5 mm, which is about half of the current value.

これを第4図ないし第6図によりさらに具体的に説明す
る。
This will be explained in more detail with reference to FIGS. 4 to 6.

第4図は既存のオーl〜リフラクトメータの光学系を示
し、第5図はその投光系の原J!ljを示している。こ
れらの図に示す光学系においては、レンスLl,タイヤ
フラム (小孔)D、レンズL2、ビームスプリッタB
Sを通して,被験謂の眼eの角膜上に第6図に示すよう
な二つの光IP.LEDの像を作っ′(おり、このLE
Dの窓を通して測定光を網膜上に照射してA1η足して
いる。従って瞳孔か小さくなると、測定光量が減少し、
測定誤差か生しることから、その像の大きさによって上
記最小瞳孔径か決定されることになる。
Figure 4 shows the optical system of the existing O-1 refractometer, and Figure 5 shows the original J! refractometer. lj is shown. The optical system shown in these figures includes a lens Ll, a tire flam (small hole) D, a lens L2, and a beam splitter B.
As shown in FIG. 6, two lights IP. I made a statue of an LED.
The measurement light is irradiated onto the retina through the window D and A1η is added. Therefore, as the pupil becomes smaller, the amount of light measured decreases.
Since measurement errors occur, the minimum pupil diameter is determined by the size of the image.

この才一トリフラク1−メータの受光側測定装置は、眼
底からの反射光を受光して必要な測定を行うもので、そ
の反射光か、前記ビームスプリッタ″BSからレンスL
5〜L7,L9 .タイヤフラムDと共に制御されるレ
ンズ1.8等を備えた光学系を介して、フ才トセルPC
上に投射される。なお、図中の各レンスには、括弧書き
によって黒点距離を刊記している。
The light-receiving measuring device of this Saiichi Trifrac 1-meter receives the reflected light from the fundus of the eye and performs the necessary measurements.
5-L7, L9. Through an optical system equipped with a lens 1.8 etc. controlled together with the tire flamm D,
projected onto the top. The sunspot distance is written in parentheses for each lens in the figure.

ト記才−1へりフラクトメータによる測定の概要につい
て説明すると、先ず、二つの光$tl.l:Dの像か角
膜−ヒにてき、その窓を通してタイヤフラムDの像か網
膜上にてきる。眼eかタイヤフシムDのレンズ1.2に
よる像の位置に正確に1.tζ点を合わせている時には
、タイヤフラムDの二つの光源1.F.Dによる像は網
膜上に1点としててきる。
To give an overview of the measurement using the helifractometer, first, two lights, $tl. l: The image of D comes to the cornea, and through that window, the image of tire flam D comes to the retina. 1. Accurately position the image by the lens 1.2 of the eye e or tire frame D. When aligning the tζ point, the two light sources of the tire flam D1. F. The image obtained by D is formed as a single point on the retina.

レンス1,2から焦点距ft?fたり離れた侭Aにある
シダイヤフラムDか、その位置からレンズ1,2寄りに
一xノたけ移動し、かつ眼かタイヤフラムDのレンズ秒
..?cよる像に正確に焦点を合わせていると、網1模
!“一 の像は、レンズL7からその焦点距#fたけ離れた1点
Eから、ざらにXたけレンズ1,7方向に離れた位置に
てきる。
Focal length ft from lenses 1 and 2? The tire diaphragm D located at the side A, which is a distance of 100 m, is moved 1 x distance from that position toward the lenses 1 and 2, and the lens diaphragm D of the tire diaphragm D is moved from that position by 1 x distance. .. ? If you focus accurately on the image according to c, you will see a mesh of 1! “The first image comes from a point E, which is a focal length #f away from the lens L7, at a position roughly X distance away in the direction of the lenses 1 and 7.

従って、タイヤソラムDの移動に応してレンズL8をX
たけレンス],7側へ移動させると,網膜の共役像かフ
才l〜セルPC上にてきる。そこで、フ才1〜セルPC
上でタイヤソラl\Dの網膜像か−・点になるように、
タイヤフラムDとレンス1,8を連動して動かずと、移
動&? Xより調節量を測ですることかできる。
Therefore, according to the movement of the tire solum D, the lens L8 is
If you move it to the 7 side, the conjugate image of the retina will appear on the cell PC. Therefore, Fusai 1 ~ Cell PC
Above is the retinal image of Tire Solar l\D, so that it becomes a point.
Tire flam D and lenses 1 and 8 must be linked to move and move? The amount of adjustment can be measured from X.

上述したように、オートリフラクトメー夕の光学系にお
いては、被験奢の眼eの角膜上に作る二つの光源L.E
Dの像の大きさによって最小瞳孔径か決定されるか、現
存のものでは、二つの光源LEDの中心間隔か約4mm
程度になり、 l f2=  f+> f 2 として、光源ぽDの半分の大きさの像を角膜上に・作る
ことにより、最小瞳孔径を3+no+程度にしてい1S
.: ゛志。
As mentioned above, in the optical system of an autorefractometer, two light sources L. E
The minimum pupil diameter is determined by the size of the image of D. In the current model, the center distance between the two light source LEDs is approximately 4 mm.
By setting l f2 = f + > f 2 and creating an image on the cornea that is half the size of the light source PoD, the minimum pupil diameter is set to about 3 + no + and 1S
.. : ゛shi.

;,,″jこの最小瞳孔径は、r2の焦点距離をさらに
倍にノ)、 して、↑2=4fと3−ることにより、容易に半分にす
ることか可能であるか、その場合には、利用可能な光量
か距離の逆数の2乗に比例するのて、実質的に1/4以
十−になり、測定か困難になる。
;,,''j Is it possible to easily halve this minimum pupil diameter by further doubling the focal length of r2? In this case, the amount of available light is proportional to the square of the reciprocal of the distance, so it becomes substantially 1/4 or more, making measurement difficult.

[発明か解決しようとする課題] 木発明の払術的課題は、眼球機能測定機において、L記
焦点距離の増/Jnによる光量低下をなくし、最小瞳孔
径を十分小さくてきるようにした許容最小瞳孔径縮小光
学系を得ることにある。
[Invention or problem to be solved] The technical problem of the invention is to eliminate the decrease in light intensity due to increase in L focal length/Jn in an ocular function measuring device, and to make the minimum pupil diameter sufficiently small. The objective is to obtain an optical system with a minimum pupil diameter reduction.

[課題を解決するための手段] 七記課題を解決するための本発明の許容最小II竜孔径
縮小光学系は、眼の屈折・調節を測定する眼球機能測定
機におりる投光系と眼の間に付加的に設けるための光学
系であって、光学的性質を保存したまま眼の拡大像を作
る光字系によって構成既存の眼の屈折・調節を測定1゛
る眼球機能測定機に、光学的性質を保存したまま眼の拡
大像を作る光学系を付加すると、焦点距離の増加による
光敏低下をなくし、最小瞳孔径を十分に小さくすること
か可能になる。
[Means for Solving the Problems] The minimum permissible dragon hole diameter reduction optical system of the present invention for solving the seventh problem is a light projecting system that goes into an ocular function measuring device that measures refraction and accommodation of the eye, and an optical system for reducing the diameter of the eye. This is an optical system to be additionally provided between the existing ocular function measurement equipment that measures the refraction and accommodation of the eye, and consists of an optical system that creates an enlarged image of the eye while preserving its optical properties. By adding an optical system that creates an enlarged image of the eye while preserving its optical properties, it becomes possible to eliminate the decrease in photosensitivity due to an increase in focal length and to make the minimum pupil diameter sufficiently small.

[実施例コ 以ト゛に、第1図ないし第3図を参照して、本発明に係
る許′A′最小1虜孔径縮小X,学系の実胤例について
説明する。
[Embodiment] Next, with reference to FIGS. 1 to 3, an actual example of a system in which the diameter of the hole A' is reduced by a minimum of 1 according to the present invention will be described.

第1因は、既知のオー1へりフラクトメータや、三次元
オプトメータなとのような、眼の屈折、調節を測定する
ための、複数の光′5:素子を組み合わせた眼球機能測
定機において用いる光学系の要部るものてあり,光学的
性質を保存したまま眼の拡大像を作る光学系、即ち、平
行光を平行光に度換する性質を保存し,軸に垂直方向の
倍率を一定にずる光学系によって構成ざれる。
The first reason is that in ocular function measuring instruments that combine multiple light elements to measure refraction and accommodation of the eye, such as the known O-1 helifractometer and three-dimensional optometer. The main part of the optical system used is an optical system that creates a magnified image of the eye while preserving its optical properties.In other words, it preserves the property of converting parallel light into parallel light and increases the magnification in the direction perpendicular to the axis. It consists of an optical system with a constant shift.

第1図によってそれを具体的に説明すると、レのように
配置した場合、B点から出る光はD点に集光し、B点て
平行な光はD点でも十行光となある。従って、この光学
系においては、第5図と対応ずる光学素イにそれと同一
の符号を付している。
To explain this in detail with reference to FIG. 1, when the arrangement is as shown in FIG. 1, the light emitted from point B is focused on point D, and the light parallel to point B becomes ten-line light at point D. Therefore, in this optical system, optical elements corresponding to those in FIG. 5 are given the same reference numerals.

本発明の許容最小鐘孔径縮小光学系は、才一トリフラク
トメー夕なとの眼球機能測定機における投光系と眼の間
に付加的に設置することによって、,許容最小瞳孔径を
小ざくずることを可能にすを置いたとすると、光学リレ
ー系によってB点に眼の大きさか2倍になった像か作ら
れる。
The minimum permissible pupil diameter reduction optical system of the present invention reduces the minimum permissible pupil diameter by additionally installing it between the light projection system and the eye in an ocular function measuring device such as a trifractometer. If you place a glass that allows it to move, an image that is twice the size of your eye will be created at point B by the optical relay system.

さて、第1図において、レンズL2の焦点位置AからX
たけ移動した位置に置かれた指標Tに眼か焦点を合わせ
ていたとすると、ガウスの公式に基づき、レンズL2に
よって、映像距lllIb2は、になるので、B点から
は、f”/xの位置に指標Tかあるように見える。次に
、その像に対してレンズ1,3か作用すると、映像I#
m b.は、となる。
Now, in FIG. 1, from focal position A of lens L2 to X
Assuming that the eye is focused on the index T placed at a position that has been moved by a certain distance, based on Gauss's formula, the image distance lllIb2 is given by the lens L2, so from point B, the position is f''/x. There appears to be an index T.Next, when lenses 1 and 3 act on that image, the image I#
m b. becomes.

さらに、レンス1,4によって、映像距#b4は、径を
172にすることを想定して説明したか、一般にI/n
にした場合、得られたシオブタを02倍すれば良いこと
は言うまでもない。
Furthermore, depending on lenses 1 and 4, the image distance #b4 has been explained assuming that the diameter is 172, or generally I/n
Needless to say, if you do this, you just need to multiply the obtained Shibuta by 02.

マタ、本発明1’tラハ、特開昭62−87:10号(
4l+−願昭60−146227号)において、眼を自
由に動かした時にもfA節を計測J能にした眼球ノa1
折力組[定袈置を提案している。
Mata, present invention 1't Raha, JP-A-62-87:10 (
4l+-Gan Sho 60-146227), the eyeball no a1 made the fA node measurable even when the eyes were moved freely.
Orikigumi [proposes a fixed kesa].

1,Tかあるように見える。1. It looks like there is a T.

オー1〜リフラクトメータなどの測定では比離(m)の
逆数なシオブタ(D)と定義して測定をするのか通例で
あるから、このような光学リレー系を付加して得られた
測定値を4倍するたけで、最小瞳孔径を半分にして、屈
折・調節の値か容易に測定できる。なお 干記実施例゛
(は,最小瞳孔?ラーの反射面上に結像させる相対向す
る.一対の凹面鏡と、上記実像を眼球の位置と光学的に
等価な光源と対向する位置に第2の実像として結像させ
る光学系と、上記2軸揺動ミラーを」二記方向測定部の
出力に基づいて傾動させることにより眼球の向きの変化
に拘らず[記第2の実像を静什.したものとする九めの
■ラー揺動駆動機構と、眼底からの反射光を受光して位
置のずれから眼球の屈折9 10 力を測定する屈折力測定部とを備えたものて、この装置
における光学リレー系は、眼の像を等倍にリレーするこ
とを葱定し、第2図に示したリレー系を基本と考えてい
る。
When measuring with a refractometer, it is customary to define thiobuta (D), which is the reciprocal of the specific separation (m), so the measured value obtained by adding such an optical relay system is By simply multiplying by 4, the minimum pupil diameter can be halved, and the refraction and accommodation values can be easily measured. In addition, in the above embodiment, a pair of concave mirrors and a second mirror are placed opposite each other to form an image on the reflective surface of the minimum pupil. By tilting the two-axis swinging mirror based on the output of the direction measuring section, the second real image is formed as a real image, regardless of changes in the direction of the eyeball. This device is equipped with a 9th 9 10 ra swing drive mechanism, and a refractive power measurement unit that receives reflected light from the fundus of the eye and measures the refractive power of the eyeball based on positional deviation. The optical relay system shown in Figure 2 is based on the idea of relaying the image of the eye at the same magnification.

しかるに、本発明の原理を適用して、第3図に示すよう
なレンズ系を用いると、上述したように、光学的性質を
損うことなく、眼の像を2倍にして作ることかてき、最
小瞳孔径を1./2にした三次元オプトメータを構或す
ることかできる。この場合も倍率をnとすることは、上
記と同様に簡単である。
However, by applying the principles of the present invention and using a lens system as shown in Figure 3, it is possible to double the image of the eye without impairing the optical properties, as described above. , the minimum pupil diameter is 1. /2 can be constructed. In this case as well, setting the magnification to n is easy as in the above case.

[発明の効果] 以Lに詳述したところから明らかなように、本発明によ
れば、既存の眼の屈折・調節を測定する眼球機能測定機
に、光学的性質を保存したまま眼の拡大像を作る光学系
を付加するという簡易な手段によって、焦点距離の倍増
等を行う場合のように光量低下を来すことなく、最小瞳
孔径を十分に小さくし、一般的に瞳孔径か31IIIn
以ドの若年渚及び中高年者の眼球の機能i!III定に
も廟効に利用することか可能になる。
[Effects of the Invention] As is clear from the detailed description in L below, according to the present invention, the existing ocular function measurement device for measuring refraction and accommodation of the eye can be used to expand the eye while preserving the optical properties. By simply adding an optical system to create an image, the minimum pupil diameter can be made sufficiently small without causing a decrease in light intensity as would be the case when doubling the focal length.
The functions of the eyes of young people and middle-aged people i! It will also be possible to use it for mausoleum purposes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は既知の眼球機能測定機において用いる付加的に
用いる本発明の光学系の要部を示す構成例、第2図は本
発明名が先に提案した眼球屈折力測定装置における光学
リレー系の説明図、t53図はそれに対して本発明の原
理を適用した光学リレー系の説明図、第4図は既存のオ
ートリフラクトメー夕の光学系についての構威図、第5
四その投光系についての原理的構成図、第6図は角膜士
のLEDの像についての説明図てある。 11 l 2
Fig. 1 is a configuration example showing the essential parts of the optical system of the present invention which is additionally used in a known ocular function measuring device, and Fig. 2 is an optical relay system in an ocular refractive power measuring device previously proposed by the present invention. Figure t53 is an explanatory diagram of an optical relay system to which the principle of the present invention is applied. Figure 4 is a configuration diagram of the optical system of an existing autorefractometer.
FIG. 6 is a diagram illustrating the basic configuration of the light projection system, and FIG. 6 is an explanatory diagram of an LED image of a corneal specialist. 11 l 2

Claims (1)

【特許請求の範囲】[Claims] 1、眼の屈折・調節を測定する眼球機能測定機における
投光系と眼の間に付加的に設けるための光学系であって
、光学的性質を保存したまま眼の拡大像を作る光学系に
よって構成し、許容最小瞳孔径を縮小可能にしたことを
特徴とする眼球機能測定機のための許容最小瞳孔径縮小
光学系。
1. An optical system that is additionally installed between the light projection system and the eye in an ocular function measuring device that measures refraction and accommodation of the eye, and that creates an enlarged image of the eye while preserving its optical properties. What is claimed is: 1. An optical system for reducing the minimum allowable pupil diameter for an ocular function measuring instrument, characterized in that the minimum allowable pupil diameter can be reduced.
JP1149830A 1989-06-12 1989-06-12 Allowable minimum pupil diameter contracting optical system for eyeball function measuring machine Granted JPH0315436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1149830A JPH0315436A (en) 1989-06-12 1989-06-12 Allowable minimum pupil diameter contracting optical system for eyeball function measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1149830A JPH0315436A (en) 1989-06-12 1989-06-12 Allowable minimum pupil diameter contracting optical system for eyeball function measuring machine

Publications (2)

Publication Number Publication Date
JPH0315436A true JPH0315436A (en) 1991-01-23
JPH0356046B2 JPH0356046B2 (en) 1991-08-27

Family

ID=15483602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1149830A Granted JPH0315436A (en) 1989-06-12 1989-06-12 Allowable minimum pupil diameter contracting optical system for eyeball function measuring machine

Country Status (1)

Country Link
JP (1) JPH0315436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072850A (en) * 2001-09-03 2003-03-12 Ricoh Elemex Corp Cushioning device for packaging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125844A (en) * 1979-03-20 1980-09-29 Canon Kk Optic refractometer
JPS56161032A (en) * 1980-05-16 1981-12-11 Canon Kk Automatic eye refraction meter
JPS6036031A (en) * 1983-08-10 1985-02-25 キヤノン株式会社 Eye refractive force measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125844A (en) * 1979-03-20 1980-09-29 Canon Kk Optic refractometer
JPS56161032A (en) * 1980-05-16 1981-12-11 Canon Kk Automatic eye refraction meter
JPS6036031A (en) * 1983-08-10 1985-02-25 キヤノン株式会社 Eye refractive force measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072850A (en) * 2001-09-03 2003-03-12 Ricoh Elemex Corp Cushioning device for packaging
JP4666843B2 (en) * 2001-09-03 2011-04-06 リコーエレメックス株式会社 Shock absorber for packaging

Also Published As

Publication number Publication date
JPH0356046B2 (en) 1991-08-27

Similar Documents

Publication Publication Date Title
JP4517211B2 (en) Eye characteristic measuring device
ES2946253T3 (en) ophthalmic apparatus
WO2002011612A8 (en) Method and device for synchronous mapping
ES2681569T3 (en) Instrument for the simulation of multifocal ophthalmic corrections
US7255442B2 (en) Device for measuring aberrations in an eye-type system
KR20150084915A (en) Apparatus and method for operating a real time large diopter range sequential wavefront sensor
WO2012145882A1 (en) Ophthalmic optical coherence tomography (oct) system and ophthalmic oct imaging method
Mandell et al. Stability of the corneal contour
US20230116541A1 (en) Reflectometry instrument and method for measuring macular pigment
RU2138837C1 (en) Raster diffraction-aperture mask to correct defective eye sight
WO2023005252A1 (en) Ophthalmic instrument for measuring optical quality of eyes
US3454331A (en) Optical apparatus for use in fitting spectacles on patient
KR100413885B1 (en) An instrument and a method for measuring the aberration of human eyes
CN113440099B (en) Comprehensive human eye vision inspection device and method
JPH0359689B2 (en)
Smith Corneal topography
CN100450428C (en) Vision simulation system for human eyes high order optical aberration correction
US2081969A (en) Instrument for examining the eyes
CN106031629A (en) A myopic eye scanning module used for an optical coherence tomography instrument
CN209172278U (en) A kind of full optics of the eye coherence tomography device based on slit-lamp platform
JPS58166305U (en) eye refraction measuring device
JPH0315436A (en) Allowable minimum pupil diameter contracting optical system for eyeball function measuring machine
El Hage Suggested new methods for photokeratoscopy a comparison for their validities. PART I
von Helmholtz Description of an ophthalmoscope for examining the retina in the living eye
CN106063700A (en) Quickly catching and formation method of less than the 10 microns capillary vessel in optical fundus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term