JPS6036031A - Eye refractive force measuring apparatus - Google Patents

Eye refractive force measuring apparatus

Info

Publication number
JPS6036031A
JPS6036031A JP58145070A JP14507083A JPS6036031A JP S6036031 A JPS6036031 A JP S6036031A JP 58145070 A JP58145070 A JP 58145070A JP 14507083 A JP14507083 A JP 14507083A JP S6036031 A JPS6036031 A JP S6036031A
Authority
JP
Japan
Prior art keywords
eye
fundus
refractive power
detection element
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58145070A
Other languages
Japanese (ja)
Other versions
JPH0336529B2 (en
Inventor
増田 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58145070A priority Critical patent/JPS6036031A/en
Publication of JPS6036031A publication Critical patent/JPS6036031A/en
Publication of JPH0336529B2 publication Critical patent/JPH0336529B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、眼の屈折力を他覚的に測定するための眼屈折
力測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an eye refractive power measurement device for objectively measuring the refractive power of an eye.

眼の屈折力を他覚的に測定する装置は、レフラフ)・メ
ータと称して古くから使用されているが、近年はこれを
自動化したオートレフラクトメークが普及しつつある。
A device for objectively measuring the refractive power of the eye has been used for a long time, called a refractive meter, but in recent years, automatic refractive make, which has automated this, has become popular.

これらの器械の大部分は器械内部でレンズ系を移動、回
転させて被検眼の眼底に共役な位置を電気的に検出する
ものが一般的である。しかし最近では、特開昭56−1
131031号公報に見られるように、レンズ系やその
他の内部光学系を移動することなく、眼底から出射する
光線の瞳孔からの出射角度を位置検出素子で測定する方
式のものも提案されている。この方式のものはレンズ系
や内部光学系を移動させる必要がないという優れた長所
を持っているが、位置検出素子へ同時に入射する2光束
が成る程度離れていなければならないということで測定
範囲が限定されることと、信号のS/N比が比較的良く
ないということが考えられる。
Most of these instruments generally move and rotate a lens system within the instrument to electrically detect a position conjugate to the fundus of the eye to be examined. However, recently, JP-A-56-1
As seen in Japanese Patent No. 131031, a method has also been proposed in which the exit angle of a ray of light exiting from the fundus of the eye from the pupil is measured using a position detection element without moving the lens system or other internal optical systems. This method has the excellent advantage of not requiring the lens system or internal optical system to be moved, but the measurement range is limited because the distance between the two beams must be such that two beams of light are simultaneously incident on the position detection element. It is considered that the signal is limited and the S/N ratio of the signal is relatively poor.

本発明の目的は、比較的分解能の小さい位置検出素子で
広い範囲の屈折力を測定することができ、かつ信号のS
/N比を大幅に改善できる高精度の眼屈折力測定装置を
提供することにあり、その要旨は、眼底投影用チャーI
・を被検眼眼底へ投影する手段と、投影した光束の被検
眼瞳孔への入射部位の周囲から眼底での反射像を複数個
取出す手段と、眼底反射像の瞳孔からの射出角度を受光
面の位置で検出する位置検出素子と、眼底反射光を前記
位置検出素子に投影するレンズ系の配置を変更すること
により、前記位置検出素子の共役位置を被検眼の屈折力
に応じて補正する補正手段とを具備したことを特徴とす
るものである。
An object of the present invention is to be able to measure refractive power over a wide range with a position detection element with relatively low resolution, and to
The objective is to provide a highly accurate eye refractive power measurement device that can significantly improve the /N ratio.
・Means for projecting the image onto the fundus of the eye to be examined; means for extracting a plurality of reflected images on the fundus from around the incident site of the projected light flux to the pupil of the eye to be examined; A correction means that corrects the conjugate position of the position detection element according to the refractive power of the eye to be examined by changing the arrangement of a position detection element that detects the position and a lens system that projects the fundus reflected light onto the position detection element. It is characterized by having the following.

以下に本発明を図示の実施例に基づいて詳細に説明する
The present invention will be explained in detail below based on illustrated embodiments.

第1図において、光源である発光タイオード等の発光素
子1から射出された光束は左行して、光軸に沿って順次
に配列されたコンデンサレンズ2、眼底投影チャート3
、リレーレンズ4、絞り5、穴開きミラー6、対物レン
ズ7を通過して被検眼Eの眼底Efに到達する。また、
眼底Efで反射された光束は光軸に沿って右行し、対物
レンズ7を通過して穴開きミラー6で反射され、順次に
開口絞り板8、プリズム9、リレーレンズ10、反射ミ
ラー11、シリンドリカルレンズ12を介して一次元位
置検出素子13に入射するようになっている。
In FIG. 1, a light beam emitted from a light emitting element 1 such as a light emitting diode, which is a light source, goes to the left, and a condenser lens 2 and a fundus projection chart 3 are sequentially arranged along the optical axis.
, the relay lens 4, the aperture 5, the perforated mirror 6, and the objective lens 7 to reach the fundus Ef of the eye E to be examined. Also,
The light beam reflected by the fundus Ef travels to the right along the optical axis, passes through the objective lens 7, is reflected by the perforated mirror 6, and is sequentially passed through the aperture plate 8, prism 9, relay lens 10, reflection mirror 11, The light enters the one-dimensional position detection element 13 via the cylindrical lens 12.

発光素子1からの光束はコンデンサレンズ2を通り、眼
底投影用チャート3を照明し、この眼底投影用チャート
3はリレーレンズ4により一次結像面Fに結像される。
The light beam from the light emitting element 1 passes through a condenser lens 2 and illuminates a fundus projection chart 3, and the fundus projection chart 3 is imaged on a primary imaging plane F by a relay lens 4.

また、光源像は絞り5に一旦結像し、穴開きミラー6の
開口から対物レンズ7によって被検眼Eの瞳孔EPに結
像し眼底Efを照明する。そして、チャート像は対物レ
ンズ7により無限遠から投影され眼底Efに結像する。
Further, the light source image is once formed on the aperture 5, and then formed on the pupil EP of the eye E to be examined through the aperture of the perforated mirror 6 by the objective lens 7, thereby illuminating the fundus Ef. Then, the chart image is projected from infinity by the objective lens 7 and is focused on the fundus Ef.

眼底Efで反射されたチャー1・像は瞳孔Epの周辺部
から再び対物レンズ7により一次結像面Fで一旦結像さ
れてから、穴開きミラー6の周辺部で反射され、開口絞
り板8を通ってプリズム9、リレーレンズ10により分
離偏向され、反射ミラー11で反射されシリトリカルレ
ンズ12を経由して、−次元位置検出素子13上に結像
される。
The char 1 image reflected from the fundus Ef is once again imaged on the primary imaging plane F by the objective lens 7 from the periphery of the pupil Ep, and then reflected from the periphery of the perforated mirror 6, and then transferred to the aperture diaphragm plate 8. The light passes through the prism 9, is separated and deflected by the relay lens 10, is reflected by the reflection mirror 11, passes through the silitorical lens 12, and is imaged on the -dimensional position detection element 13.

開口絞り板8は例えば第2図に示すような円環形状の開
口8a〜8c及び8a’〜8c’を有し、瞳孔Epに略
共役の位置に配置されている。一方、プリズム9は第3
図に示すように、6個のくさび型プリズムエレメント9
a〜9c、9a’〜9c’で構成され、像を2個ずつ同
方向に屈折するようになっている。
The aperture diaphragm plate 8 has, for example, annular apertures 8a to 8c and 8a' to 8c' as shown in FIG. 2, and is arranged at a position substantially conjugate to the pupil Ep. On the other hand, prism 9 is the third
As shown in the figure, six wedge-shaped prism elements 9
It is composed of a to 9c and 9a' to 9c', and is configured to refract two images in the same direction.

眼底投影用チャート3は第4図に示すように、3経線方
向を向く互いに120度の角度をなす3木のスリッ)3
a〜3Cを有し、この眼底反射像Ra、 Rh、 Rc
はプリズム9 テRa、 Ra’ 、Rh、Rh、Re
、Re’ に分離され、−次元偉力′検出素子131に
第5図に示すように結像される。この−次元位置検出素
子13は3木の検出素子13a〜13cから成り、゛こ
れらはほぼ放射状に配列され、それぞれにシリンドリカ
ルレンズ12a〜12cが配備され、スリット3a〜3
Cの長手方向の光を検出素子13 a −13cの短手
方向に集光するようにされている。
As shown in Fig. 4, the fundus projection chart 3 consists of three wooden slits facing the three meridian directions and forming an angle of 120 degrees to each other.
a to 3C, and the fundus reflection images Ra, Rh, Rc
is prism 9 Te Ra, Ra', Rh, Rh, Re
, Re', and is imaged on the -dimensional force' detection element 131 as shown in FIG. This -dimensional position detecting element 13 consists of three detecting elements 13a to 13c, which are arranged almost radially, each having cylindrical lenses 12a to 12c, and slits 3a to 3.
The light in the longitudinal direction of C is focused in the lateral direction of the detection elements 13a to 13c.

開口絞り板8の6個の開口はそれぞれ1個ずつの像を作
るので、プリズム9で偏向分離され第5図に示すように
、−次元位置検出素子13の各検出素子13a〜13c
に2個ずつ像を形成する。
Since each of the six apertures of the aperture diaphragm plate 8 forms one image, the prism 9 deflects and separates the images, and as shown in FIG.
Form two images each.

その結果、1個の検出素子13の出力信号は第6図に示
すように2つのピークを有することになる。被検眼Eの
屈折力が変化するときには、瞳孔Epの周辺から出た光
束の角度が変化するので、第6図に示す2つのピークが
離れたり、近付いたりする。従って、この2つのピーク
の距MDを測定すれば、被検眼Eの検出素子方向の屈折
力を測定することができる。第5図に示すように、3木
の検出素子13a〜13cで3経線方向の屈折力を測定
すれば、角度によって屈折力が5in2θで変化するこ
とから、球面度数、乱視度数及び乱視角度をそれぞれめ
ることができる。
As a result, the output signal of one detection element 13 has two peaks as shown in FIG. When the refractive power of the eye E to be examined changes, the angle of the light beam emitted from the periphery of the pupil Ep changes, so that the two peaks shown in FIG. 6 move away from each other or approach each other. Therefore, by measuring the distance MD between these two peaks, the refractive power of the eye E in the direction of the detection element can be measured. As shown in FIG. 5, if the refractive power in the three meridian directions is measured using three detection elements 13a to 13c, the refractive power changes by 5 in2θ depending on the angle, so the spherical power, astigmatic power, and astigmatic angle can be determined respectively. You can

もし、被検眼Eが高度遠視又は高度近視である場合には
、像がぼけてしまい、かつ2つのピーク信号の距離りも
変化するので、信号波形はそれぞれ第7図又は第8図に
示すようになり測定不能となる。そこで、眼底反射光を
位置検出素子13に投影するレンズ系の一部、即ち第1
図のリレーレンズ10の位置を10a、10bで示すよ
うに前後に移動して位置検出素子13の共役位置を正視
眼の共役面から前後にずらせは、距11111Dとぼけ
の量を補正することができる。
If the eye E to be examined is highly hyperopic or highly myopic, the image will be blurred and the distance between the two peak signals will also change, so the signal waveforms will be as shown in Figures 7 and 8, respectively. becomes impossible to measure. Therefore, a part of the lens system that projects the fundus reflected light onto the position detection element 13, that is, the first
By moving the position of the relay lens 10 in the figure back and forth as shown by 10a and 10b to shift the conjugate position of the position detection element 13 back and forth from the conjugate plane of the emmetropic eye, the distance 11111D and the amount of blur can be corrected. .

つまり、距1i11Dが所定の値より大きくなったとき
は、リレーレンズ10をlo’a側に移動し、逆に所定
の値より小さくなったときはリレーレンズ10を10b
側に移動すれば、被検眼Eが高度遠視又は高度近視であ
っても、2つの信号波形は正視眼の場合と同様に明瞭と
なるので、再度測定することにより信号間の距#Dが正
確に得られる。
That is, when the distance 1i11D becomes larger than a predetermined value, the relay lens 10 is moved to the lo'a side, and conversely, when the distance 1i11D becomes smaller than the predetermined value, the relay lens 10 is moved to 10b.
If the eye E is moved to the side, even if the eye E is highly hyperopic or myopic, the two signal waveforms will be as clear as in the case of an emmetropic eye, so by measuring again, the distance #D between the signals will be accurate. can be obtained.

上述の実−施例では、被検眼Eの屈折力に応じて位置検
出素子13の共役位置を補正する手段として、レンズ系
の一部を光軸方向に移動する場合を述べたが、レンズ系
の一部を交換することによっても同様な作用を行わせる
ことができることば勿論である。第9図はその場合の実
施例を示すものであり、リレーレンズとして20a、2
0b、20cの3種のレンズを交換可能に配置し、被検
眼Eの屈折力に応じてその中の一つを選択切換えて測定
を行うようにされている。
In the above embodiment, a case was described in which a part of the lens system was moved in the optical axis direction as means for correcting the conjugate position of the position detection element 13 according to the refractive power of the eye E to be examined. Of course, the same effect can be achieved by replacing a part of the . FIG. 9 shows an embodiment in that case, in which relay lenses 20a and 2 are used.
Three types of lenses, 0b and 20c, are arranged interchangeably, and one of them is selected and switched according to the refractive power of the eye E to be measured.

このように本発明に係る眼屈折力測定装置は、眼底像を
検出する光学系の一部を移動可能又は切換可能にするこ
とにより、被検眼が高度遠視又は高度近視の場合でも正
視の場合と同様に測定することができ、比較的分解能の
小さい位置検出素子で広範囲の屈折力が測定可能となり
、またぼけ量を小さくでき、信号のS/N比も向」ニし
精度の高い屈折力測定が可能となる。
In this way, the eye refractive power measuring device according to the present invention allows a part of the optical system for detecting the fundus image to be moved or switched, so that even if the eye to be examined is highly hyperopic or highly myopic, it can be used to measure emmetropia. The refractive power can be measured in the same way, and a wide range of refractive powers can be measured using a position detection element with relatively low resolution.The amount of blur can also be reduced, and the S/N ratio of the signal can also be improved, resulting in highly accurate refractive power measurement. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る眼屈折力測定装置の実施例を示し、
第1図はその構成図、第2図は開口絞り板の平板図、第
3図はプリズムの正面図、第4図は眼底投影用チャー1
・の平面図、第5図は検出素子と眼底反射像との関係の
説明図、第6図〜第8図は検出素子の信号波形図、第9
図は他の実施例の構成図である。 符号1は発光素子、2はコンデンサレンズ、3は眼底投
影用チャート、4はリレーレンズ、5は絞り、6は穴開
きミラー、7は対物レンズ、8は開口絞り板、9はプリ
ズム、10.20a、20b、20cはリレーレンズ、
12はシリンドリカルレンズ、13は一次元位置検出素
子である。 特許出願人 キャノン株式会社
The drawings show an embodiment of the eye refractive power measuring device according to the present invention,
Figure 1 is its configuration, Figure 2 is a plan view of the aperture plate, Figure 3 is a front view of the prism, and Figure 4 is the fundus projection chart 1.
・A plan view of ・ FIG. 5 is an explanatory diagram of the relationship between the detection element and the fundus reflection image. FIGS. 6 to 8 are signal waveform diagrams of the detection element.
The figure is a configuration diagram of another embodiment. 1 is a light emitting element, 2 is a condenser lens, 3 is a fundus projection chart, 4 is a relay lens, 5 is a diaphragm, 6 is a perforated mirror, 7 is an objective lens, 8 is an aperture diaphragm plate, 9 is a prism, 10. 20a, 20b, 20c are relay lenses,
12 is a cylindrical lens, and 13 is a one-dimensional position detection element. Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 1、眼底投影用チャートを被検眼眼底へ投影する手段と
、投影した光束の被検眼瞳孔への入射部位の周囲から眼
底での反射像を複数個取出す手段と、眼底反射像の瞳孔
からの射出角度を受光面の位置で検出する位置検出素子
と、眼底反射光を前記位置検出素子に投影するレンズ系
の配置を変更することにより、前記位置検出素子の共役
位置を被検眼の屈折力に応じて補正する補正手段とを具
備したことを特徴とする眼屈折力測定装置。 2、前記補正手段は、レンズ系の一部を光軸方向に移動
するようにした特許請求の範囲第1項に記載の眼屈折力
測定装置。 3、前記補正手段は、前記レンズ系の一部を交換するよ
うにした特許請求の範囲第1項に記゛載の眼屈折力測定
装置。
[Scope of Claims] 1. Means for projecting a fundus projection chart onto the fundus of the eye to be examined; means for extracting a plurality of reflected images on the fundus from around the area where the projected light flux enters the pupil of the eye to be examined; By changing the arrangement of a position detection element that detects the exit angle of the image from the pupil at the position of the light receiving surface and a lens system that projects the fundus reflected light onto the position detection element, the conjugate position of the position detection element can be changed. An eye refractive power measuring device characterized by comprising a correction means for correcting according to the refractive power of an eye test. 2. The eye refractive power measuring device according to claim 1, wherein the correction means moves a part of the lens system in the optical axis direction. 3. The eye refractive power measuring device according to claim 1, wherein the correction means replaces a part of the lens system.
JP58145070A 1983-08-10 1983-08-10 Eye refractive force measuring apparatus Granted JPS6036031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58145070A JPS6036031A (en) 1983-08-10 1983-08-10 Eye refractive force measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145070A JPS6036031A (en) 1983-08-10 1983-08-10 Eye refractive force measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6036031A true JPS6036031A (en) 1985-02-25
JPH0336529B2 JPH0336529B2 (en) 1991-05-31

Family

ID=15376680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145070A Granted JPS6036031A (en) 1983-08-10 1983-08-10 Eye refractive force measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6036031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315436A (en) * 1989-06-12 1991-01-23 Agency Of Ind Science & Technol Allowable minimum pupil diameter contracting optical system for eyeball function measuring machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978391A (en) * 1972-12-01 1974-07-29
JPS5536327A (en) * 1978-08-31 1980-03-13 Shinmasuzawa Kogyo Kk Cocoon treating device
JPS56161031A (en) * 1980-05-15 1981-12-11 Canon Kk Eye refraction meter
JPS57200128A (en) * 1981-06-03 1982-12-08 Tokyo Optical Objective automatic eye refractive force measuring apparatus
JPS57211335A (en) * 1981-06-22 1982-12-25 Nippon Kogaku Kk Apparatus for detecting focus condition in ophthalmic device
JPS581432A (en) * 1981-06-25 1983-01-06 東京光学機械株式会社 Apparatus for detecting eye inspecting position of ophthalmic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978391A (en) * 1972-12-01 1974-07-29
JPS5536327A (en) * 1978-08-31 1980-03-13 Shinmasuzawa Kogyo Kk Cocoon treating device
JPS56161031A (en) * 1980-05-15 1981-12-11 Canon Kk Eye refraction meter
JPS57200128A (en) * 1981-06-03 1982-12-08 Tokyo Optical Objective automatic eye refractive force measuring apparatus
JPS57211335A (en) * 1981-06-22 1982-12-25 Nippon Kogaku Kk Apparatus for detecting focus condition in ophthalmic device
JPS581432A (en) * 1981-06-25 1983-01-06 東京光学機械株式会社 Apparatus for detecting eye inspecting position of ophthalmic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315436A (en) * 1989-06-12 1991-01-23 Agency Of Ind Science & Technol Allowable minimum pupil diameter contracting optical system for eyeball function measuring machine
JPH0356046B2 (en) * 1989-06-12 1991-08-27

Also Published As

Publication number Publication date
JPH0336529B2 (en) 1991-05-31

Similar Documents

Publication Publication Date Title
US5129400A (en) Ophthalmological measurement method and apparatus
US4353625A (en) Eye-refractometer device
US4710003A (en) Cornea shape measuring apparatus
US5058596A (en) Ophthalmological measurement method and apparatus
JPS6141212B2 (en)
JPH0352572B2 (en)
JPH05317256A (en) Intraocular size measuring instrument
JPH0417048B2 (en)
JPS6036031A (en) Eye refractive force measuring apparatus
JP2759413B2 (en) Eye position detection device
JPH044891B2 (en)
JP4412998B2 (en) Eye refractive power measuring device
JPS6225368B2 (en)
JP2925165B2 (en) Autofocus fundus camera
JPS6122563Y2 (en)
JPS5975035A (en) Apparatus for measuring cornea shape
JPS6150450B2 (en)
JPH02252437A (en) Eye refractivity measuring apparatus
JPS6018152A (en) Cornea measuring device
JPS60210236A (en) Eye refraction force measuring apparatus
JPS6254493B2 (en)
JPS5922922B2 (en) Optical system focal position detection device
JPS6018153A (en) Eye refraction measuring instrument
JPS6331633A (en) Eye refractometer
JPS624969B2 (en)