JPH03153119A - Power supply start detection circuit - Google Patents

Power supply start detection circuit

Info

Publication number
JPH03153119A
JPH03153119A JP29204989A JP29204989A JPH03153119A JP H03153119 A JPH03153119 A JP H03153119A JP 29204989 A JP29204989 A JP 29204989A JP 29204989 A JP29204989 A JP 29204989A JP H03153119 A JPH03153119 A JP H03153119A
Authority
JP
Japan
Prior art keywords
level
terminal
inverter
mos
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29204989A
Other languages
Japanese (ja)
Inventor
Masuhide Ikeda
益英 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP29204989A priority Critical patent/JPH03153119A/en
Publication of JPH03153119A publication Critical patent/JPH03153119A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To start a load circuit stably by increasing a threshold voltage through the adjustment of the quantity of the impurity of a channel region of a 2nd conductive element or making the gate polarity different, and extending a power application delay time. CONSTITUTION:The level V2 of the input terminal of an inverter 5 is equal to the level VDD of a power voltage terminal. As lapse of time, a charge is stored in a capacitor 2 and the level V1 of the drain of a p-MOS 1 is gradually increased. When the gate-source voltage VGS of an n-MOS 4 is larger than the threshold voltage of the n-MOS 4, the n-MOS 4 is turned on and a charge is stored in a capacitor 3 and the level V2 of the input terminal of the inverter 5 is decreased. Moreover, when the level V2 is decreased up to a logic level of the inverter 5, the level V3 at the output terminal of the inverter 5 is inverted from a low level to a high level and an initialized signal is obtained. Thus, the load circuit is stably started while reducing the area occupied in the circuit.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種電子機器等に用いられる電源起動検出回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power supply start detection circuit used in various electronic devices and the like.

[従来の技術] 従来の電源起動検出回路は、電源を入れてから’thi
s起動検出回路の出力に初期化信号が現われるまでの時
間(以下t4源投入遅延時間という)を長くするために
は、抵抗手段の抵抗値と容量の値を大きくすることによ
って、実現していた。すなわちこれは、第3図に示すよ
うに、抵抗手段であるpチャンネルMO5型トランジス
タ(以下p−MO8という)10の抵抗値と容量11の
値を大きくすることによって時定数を大きくし、電源投
入遅延時間を長くしていた。
[Prior art] A conventional power supply start-up detection circuit detects 'thi' after turning on the power.
In order to lengthen the time until the initialization signal appears at the output of the s start detection circuit (hereinafter referred to as the t4 power-on delay time), this was achieved by increasing the resistance value and capacitance value of the resistor means. . In other words, as shown in FIG. 3, by increasing the resistance value of the p-channel MO5 type transistor (hereinafter referred to as p-MO8) 10 and the value of the capacitor 11, which is the resistance means, the time constant is increased and the power is turned on. The delay time was getting longer.

[発明が解決しようとする課題] しかし前述の従来技術のようにp−MOS 1 。[Problem to be solved by the invention] However, as in the prior art described above, the p-MOS 1 is used.

の抵抗値と容量11の値を大きくすると、それにともな
ってパターン面積が大きくなる。また時定数が大きくな
ることによって立ち上がり時間が長くなり、次段のゲー
ト回路で異常発振しやすくなるため、シュミット・トリ
ガ回路等を入れて波形を整える必要があり、やはりパタ
ーン面積が大きくなる。従って従来技術では、パターン
面積が大きくなるという問題点と、さらに確率的に存在
する欠陥を拾う可能性が大きくなるという問題点がある
When the resistance value and the value of the capacitance 11 are increased, the pattern area becomes larger accordingly. Furthermore, as the time constant becomes larger, the rise time becomes longer and abnormal oscillation is more likely to occur in the next stage gate circuit, so it is necessary to insert a Schmitt trigger circuit or the like to adjust the waveform, which also increases the pattern area. Therefore, the conventional technique has the problem that the pattern area becomes large, and the possibility of picking up defects that exist stochastically increases.

そこで本発明はこのにうな問題点を解決するもので、そ
の目的とするところは、パターン面積の増加が少イAく
、電源投入時刻時間の長い安定に負荷回路を起動させる
ことができる電源起動検出回路を提供するところにある
SUMMARY OF THE INVENTION The present invention is intended to solve these problems.The purpose of the present invention is to start a power supply that can stably start a load circuit with a long power-on time while minimizing the increase in pattern area. A detection circuit is provided.

[課題を解決するための手段] 本発明の電源起動回路は、第1端子が電R電圧gqi二
接続し、第2端子が接地されている第1導電素子、1)
1j記第1導電素子の第3端子及び接地の間に接続して
いる第1−電荷蓄積手段、第1端子が接地されており、
第2端子が前記第1導電素子の第3端了に接続し、しき
い値電圧を他の導電素子より大きくした第2導電素子、
Mih記第2導電素子の第3端子及び電源電圧源の間に
接続している第2電荷蓄積手段、入力端子が前記第2導
電素子の第3端子に接続している反転回路よりからなる
ことを特徴とする。
[Means for Solving the Problems] The power supply starting circuit of the present invention includes a first conductive element whose first terminal is connected to the electric R voltage gqi and whose second terminal is grounded; 1)
1j, the first charge storage means connected between the third terminal of the first conductive element and the ground, the first terminal being grounded;
a second conductive element having a second terminal connected to a third terminal of the first conductive element and having a threshold voltage larger than that of other conductive elements;
a second charge storage means connected between a third terminal of the second conductive element and a power supply voltage source; and an inverting circuit whose input terminal is connected to the third terminal of the second conductive element. It is characterized by

[作用] 本発明の上記の構成によれば、第2導電素子のチャンネ
ル領域の不純物の量を調節するかヌは、ゲー1への極t
トを異極I、″、する等の方法によって、しきい値電圧
を1−げ、もって電源投入遅延時間を長くする。′−と
ができる。ま/X:、信号の立ちLがり、立ら下がり時
間も短くでき、ゲーl−の異常発振を起こしにりくシて
いる。
[Operation] According to the above configuration of the present invention, whether to adjust the amount of impurities in the channel region of the second conductive element is determined by
The threshold voltage can be increased by increasing the threshold voltage by changing the polarity of the signals to different polarities, and thereby increasing the power-on delay time. The falling time can also be shortened, making it difficult to cause abnormal oscillation of the gate.

[実施例] 以下に本発明の実施例を図面に幇づいて説明する。第1
図は、本発明の実施例における回路図である。1−は、
第1導電素子であるp−M OSである。第1端子、第
2端子、第3端子はそれぞれ、ソース、ゲート、ドレイ
ンを表す。p  MO3Iはゲートが接地されているの
で5、常にオン8態になっており、よって抵抗の働ぎを
している。2は第1電荷蓄積手段である容量である。3
は第2電荷蓄積手段である容量である。4はスイッチン
グ動作を行い、第2導電素子であるrl  MQSであ
る。第1端子、第2端子、第3端子はそれぞれ、ソース
、ゲート、ドレインを表ず。5は反転回路であるインバ
ータである。
[Examples] Examples of the present invention will be described below with reference to the drawings. 1st
The figure is a circuit diagram in an embodiment of the present invention. 1- is
The first conductive element is a p-MOS. The first terminal, the second terminal, and the third terminal represent a source, a gate, and a drain, respectively. Since the gate of pMO3I is grounded, it is always in the on state, and thus acts as a resistor. 2 is a capacitor which is the first charge storage means. 3
is a capacitor which is the second charge storage means. 4 is an rl MQS which performs a switching operation and is a second conductive element. The first terminal, second terminal, and third terminal represent a source, a gate, and a drain, respectively. 5 is an inverter which is an inversion circuit.

iri源が投入された時点では、容が2には電荷が蓄積
されていないので、容量2の端イ間に現I″1イ〕電圧
はOボルト、すなわちp −M OS 1のドl/イン
の電位■1は、接地端子の電位VSS(”0)に等しい
。よってn−yO34はオフ状態である。
At the time when the iri source is turned on, there is no charge stored in the capacitor 2, so the current voltage between the ends of the capacitor 2 is O volts, that is, the voltage of p - M OS 1 is The potential ■1 of the input terminal is equal to the potential VSS (“0)” of the ground terminal. Therefore, n-yO34 is in an off state.

また容量3にも電荷がN績されていないの′C1容量3
の端子間に現れる電圧はOボルト、すなわちインバータ
50入力端子の電位■2は、電源電圧E 7A子の電位
V9.に等しい。よってインバータ5の出力端子の電位
は、ローレベルである。
Also, the charge is not added to capacitor 3.'C1 capacitor 3
The voltage appearing between the terminals is O volts, that is, the potential ■2 at the input terminal of the inverter 50 is equal to the power supply voltage E7A, and the potential V9. be equivalent to. Therefore, the potential at the output terminal of inverter 5 is at a low level.

時間の経過と共に、容量2には電荷が蓄積され、p −
M OS ]のド1/インの電位■1は徐々に上がる。
As time passes, charge is accumulated in capacitor 2, and p −
The potential ■1 of Do1/In of M OS ] gradually rises.

つまりn−MQS4のゲート・ソース間の電圧V GS
 (= V T  V 55= V ) )が上がる。
In other words, the voltage between the gate and source of n-MQS4 V GS
(=VTV55=V)) increases.

電圧V、sが、n −M OS 4のしきい値電圧より
大ぎくなった時点で、n−MQS4はオン状態となり、
容量3に電荷が蓄積され、インバータ5の入力端子の電
位■2は下がる。さらに電位■2がインバータ5のロジ
ックレベルまで下がるとインバータ5の出力端子の電位
■3は、ローレベルからハイレベルに反転し、初期化信
号が得られる。
When the voltage V,s becomes larger than the threshold voltage of n-MOS 4, n-MQS4 turns on,
Charge is accumulated in the capacitor 3, and the potential 2 at the input terminal of the inverter 5 decreases. When the potential (2) further drops to the logic level of the inverter 5, the potential (3) at the output terminal of the inverter 5 is inverted from low level to high level, and an initialization signal is obtained.

従って、電源投入遅延時間を長くする/′りめには、n
 −M O’、″、4のしJくい値電圧を上げればJ:
い。しきい値電圧を上げど)には、チャンネル領域の不
純物の量を調節−4,−7,、ゲ−1・の極性を異極に
する等の方法がある。
Therefore, in order to lengthen the power-on delay time, n
-M O','', if you increase the J threshold voltage of 4, then J:
stomach. To increase the threshold voltage, there are methods such as adjusting the amount of impurities in the channel region and making the polarities of -4, -7, and -1 different.

第2図は、第1図中の名湯所の電位の変化を現わず図で
ある。■、1イはn−MQS4のしきい値電圧、Vlは
インバータ5のロジックレベルを表わす。t、は、電源
投入時刻、t、は初期化信号、すなわちインバータ5の
出力端子の電位がロー17ベルからハイレベルに変化し
たときの時刻を表わし、電源投入遅延時間はt、−1−
0で求められる。
FIG. 2 is a diagram that does not show the changes in potential at the famous hot springs in FIG. 1. (2), 1A represent the threshold voltage of n-MQS4, and Vl represents the logic level of inverter 5. t, represents the power-on time, t, represents the initialization signal, that is, the time when the potential of the output terminal of the inverter 5 changes from low level 17 to high level, and the power-on delay time is t, -1-
It can be found as 0.

我々の試算では、本発明の回路と従来の回路の電源投入
遅延時間は、それぞれ31us、2311Sであった。
According to our calculations, the power-on delay times of the circuit of the present invention and the conventional circuit were 31 us and 2311 s, respectively.

但し、電源電圧は:1.58V、容量2、容量3、容量
1】はそれぞれ10 p I”、10pF、20pF、
p=MO31、n−MQS4、p−MO8IOのしきい
値電圧はそれぞれ一〇。
However, the power supply voltage is: 1.58V, capacitance 2, capacitance 3, capacitance 1] are 10 pI", 10 pF, 20 pF, respectively.
The threshold voltages of p=MO31, n-MQS4, and p-MO8IO are each 10.

5v、1.2v、−0,5Vで算出した。Calculated at 5v, 1.2v, -0.5V.

なお、トランジスタの占めるパターン面積は容量のそれ
に比べると小さいので、上記の値の両回路の占めるパタ
ーン面積は、はぼ等しいと考えられる。従って、同じ電
源投入遅延時間を得るために必要な回路の占めるパター
ン面積は、本発明の回路の方が小さいと言える。
Note that since the pattern area occupied by the transistor is smaller than that of the capacitor, the pattern areas occupied by both circuits having the above values are considered to be approximately equal. Therefore, it can be said that the pattern area occupied by the circuit required to obtain the same power-on delay time is smaller in the circuit of the present invention.

また、本発明の回路において、p−MOS、nMO8を
入れ替えても、同じ働きをする回路を構成することがで
きる。
Further, in the circuit of the present invention, even if the p-MOS and nMO8 are replaced, a circuit having the same function can be constructed.

[発明の効果コ 本発明は、従来技術に比べると、回路を構成している素
子の数は増えているが、同じ電源投入遅延時間を得るた
めに必要なパターン面積は、第1図のn−MOS4のし
きい値電圧を上げる効果によって、小さくすることがで
きる。また、本発明の回路は、波形の立ち上がり時間、
立ち下がり時間を長くしなくて電源投入遅延時間を長く
しているので、シュミット・トリガ回路等を入れる必要
がない。
[Effects of the Invention] Although the number of elements constituting the circuit of the present invention is increased compared to the prior art, the pattern area required to obtain the same power-on delay time is smaller than n in Fig. 1. - It can be reduced by increasing the threshold voltage of MOS4. In addition, the circuit of the present invention has a waveform rise time,
Since the power-on delay time is increased without increasing the fall time, there is no need to include a Schmitt trigger circuit.

従って本発明は、回路の占める面積を小さくしながらも
負荷回路を安定に起動できるという効果を有する。
Therefore, the present invention has the effect of stably starting the load circuit while reducing the area occupied by the circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電源起動回路図。 第2図は第1図中の各場所の電位の変化を表す図。 第3図は従来の電源起動回路図。 第4図は第3図中の各場所の電位の変化を表す図。 1.10・・・pチャンネルMO3型トランジスタ 2.3.11・・・容量 41.・nチャンネルMO3型トランジスタ5.12・
・・インバータ 以上
FIG. 1 is a power supply startup circuit diagram of the present invention. FIG. 2 is a diagram showing changes in potential at each location in FIG. 1. Figure 3 is a conventional power supply startup circuit diagram. FIG. 4 is a diagram showing changes in potential at each location in FIG. 3. 1.10... p-channel MO3 type transistor 2.3.11... capacitance 41.・N-channel MO3 type transistor 5.12・
・More than inverter

Claims (1)

【特許請求の範囲】[Claims] 第1端子が電源電圧源に接続し、第2端子が接地されて
いる第1導電素子、前記第1導電素子の第3端子及び接
地の間に接続している第1電荷蓄積手段、第1端子が接
地されており、第2端子が前記第1導電素子の第3端子
に接続し、しきい値電圧を他の導電素子より大きくした
第2導電素子前記第2導電素子の第3端子及び電源電圧
源の間に接続している第2電荷蓄積手段、入力端子が前
記第2導電素子の第3端子に接続している反転回路より
なる事を特徴とする電源起動検出回路。
a first conductive element having a first terminal connected to a power supply voltage source and a second terminal connected to ground; a first charge storage means connected between a third terminal of the first conductive element and ground; a second conductive element whose terminal is grounded, whose second terminal is connected to the third terminal of the first conductive element, and whose threshold voltage is greater than that of the other conductive elements; A power start detection circuit comprising: a second charge storage means connected between a power supply voltage source; and an inverting circuit whose input terminal is connected to a third terminal of the second conductive element.
JP29204989A 1989-11-09 1989-11-09 Power supply start detection circuit Pending JPH03153119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29204989A JPH03153119A (en) 1989-11-09 1989-11-09 Power supply start detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29204989A JPH03153119A (en) 1989-11-09 1989-11-09 Power supply start detection circuit

Publications (1)

Publication Number Publication Date
JPH03153119A true JPH03153119A (en) 1991-07-01

Family

ID=17776878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29204989A Pending JPH03153119A (en) 1989-11-09 1989-11-09 Power supply start detection circuit

Country Status (1)

Country Link
JP (1) JPH03153119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443606C1 (en) * 1994-12-07 1996-08-01 Siemens Ag Resetting signal circuit for vehicle anti-theft device
US5828259A (en) * 1996-11-18 1998-10-27 International Business Machines Corporation Method and apparatus for reducing disturbances on an integrated circuit
JP2014027644A (en) * 2012-07-26 2014-02-06 Samsung Electro-Mechanics Co Ltd Power-on-reset device and power-on-reset method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443606C1 (en) * 1994-12-07 1996-08-01 Siemens Ag Resetting signal circuit for vehicle anti-theft device
US5828259A (en) * 1996-11-18 1998-10-27 International Business Machines Corporation Method and apparatus for reducing disturbances on an integrated circuit
JP2014027644A (en) * 2012-07-26 2014-02-06 Samsung Electro-Mechanics Co Ltd Power-on-reset device and power-on-reset method

Similar Documents

Publication Publication Date Title
KR0162931B1 (en) Power on generator
KR890005227B1 (en) Ping oscillator with delay element and potential pulling circuit
JP3756961B2 (en) Chip initialization signal generation circuit for semiconductor memory device
JP2001345690A (en) Power-on reset circuit
US20080204109A1 (en) High-performance level shifter
JPH04139914A (en) Power-on reset circuit
US5300822A (en) Power-on-reset circuit
US20010020861A1 (en) Delay circuit
JP5090884B2 (en) Semiconductor integrated circuit
EP0052504A1 (en) Semiconductor buffer circuit
JP3479060B2 (en) Startup circuit
JPH03153119A (en) Power supply start detection circuit
JPS61222318A (en) Power-on reset circuit
JP2658551B2 (en) Power-on reset circuit
JPH0983344A (en) Inverter circuit
KR100630977B1 (en) Power on reset circuit
JP2995396B2 (en) CR oscillation circuit
US20020131298A1 (en) Evaluation of conduction at precharged node
JPH0229118A (en) Cmos power-on reset circuit
JP2000114946A (en) Automatic reset circuit
JP3083654B2 (en) Output circuit
JPH0613866A (en) Power-on reset circuit
JPH04237214A (en) Clocked inverter
JPH0656879B2 (en) Semiconductor integrated circuit
JP2003032088A (en) Power-on reset circuit and electronic circuit with the power-on reset circuit