JPH03148176A - Complete contact type life-size sensor - Google Patents

Complete contact type life-size sensor

Info

Publication number
JPH03148176A
JPH03148176A JP1286732A JP28673289A JPH03148176A JP H03148176 A JPH03148176 A JP H03148176A JP 1286732 A JP1286732 A JP 1286732A JP 28673289 A JP28673289 A JP 28673289A JP H03148176 A JPH03148176 A JP H03148176A
Authority
JP
Japan
Prior art keywords
light
shielding layer
tft
layer
light shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1286732A
Other languages
Japanese (ja)
Inventor
Yoichiro Miyaguchi
耀一郎 宮口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1286732A priority Critical patent/JPH03148176A/en
Publication of JPH03148176A publication Critical patent/JPH03148176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To prevent the generation of unfavorable phenomena, such as increased transparency subject to oxidization or diffusion by forming a light shielding layer with either graphite, carbide, precious metals, or nitride. CONSTITUTION:After the formation of a light shielding layer 2 having a light- transmitting window 9 on a transparent insulation substrate 1, a thin film transistor section 4, a light receiving section (a photoelectric transfer element 5 and its electrodes 6) are formed. The final process is to form a bonding agent layer 7 and a protection layer 8 thereon wherein the light shielding layer 2 is formed with either graphite, carbide, precious meals, boride or nitride. This construction makes it possible to prevent further oxidation even when it has gone through a high temperature process during the formation of a thin film transistor 4 and moreover inhibit the oxidation to a negligible extent even when oxidation has made a signal progress.

Description

【発明の詳細な説明】 C技術分野〕 本発明は、ファクシミリ等で使用する完全密着型等倍セ
ンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field C] The present invention relates to a fully contact type 1-magnification sensor used in facsimiles and the like.

〔従来技術〕[Prior art]

従来、遮光膜としてはCrやAQ等の金属膜が使用され
ている。しかしながら、光電変換素子とその騨動回路に
用いるTFTを同一の基板上にもつ光センサにおいては
、IMHz程度の高速駆動型TFTが必要であるため、
プロセス温度が少くとも600℃以上の高温とならざる
を得ない(ゲート酸化膜を加熱酸化形成するためである
。)。
Conventionally, metal films such as Cr and AQ have been used as light shielding films. However, in an optical sensor that has a photoelectric conversion element and a TFT used for its driving circuit on the same substrate, a high-speed driving TFT on the order of IMHz is required.
The process temperature must be at least 600° C. or higher (this is because the gate oxide film is formed by thermal oxidation).

そのため、CrやAQのような金属の遮光膜は、どうし
ても酸化を受け、透明化が進んだりあるいは拡散現象を
おこすなどの問題点があった。
Therefore, metal light-shielding films such as Cr and AQ inevitably undergo oxidation, resulting in problems such as increased transparency or diffusion phenomena.

このような問題点を回避するためには、第2図に示すよ
うにTFT部22を作成した後に、デバイスのベース部
23を遮光層として利用するしかなかった。しかしこれ
では、TFT部それ自体には遮光膜が無いため、従来型
の光センサは、ベース部23に設けられた下部入射光用
スリット24から光を入射させ、原稿11に反射してき
た光を光電変換素子を含む受光部21で受光するシステ
ムになっており、前記スリットから入射した光が迷光と
なってTFT部22の作動を狂わせることがないように
光電変換素子を含む受光部21とTFT部22はできる
かぎり離して設計されていた。
In order to avoid such problems, there is no choice but to use the base portion 23 of the device as a light shielding layer after forming the TFT portion 22 as shown in FIG. However, in this case, since the TFT section itself does not have a light shielding film, the conventional optical sensor allows light to enter from the lower incident light slit 24 provided in the base section 23 and intercepts the light reflected from the original 11. The system is such that the light receiving section 21 including the photoelectric conversion element receives light, and the light receiving section 21 including the photoelectric conversion element and the TFT are arranged so that the light incident through the slit does not become stray light and disturb the operation of the TFT section 22. The sections 22 were designed to be as far apart as possible.

それでも、TFTの下層に遮光膜がないとa−8iやP
o1y−8iよりなるTFTの活性層へ迷光がはいりこ
み、TFTのOFF電流を増大させるため、センサのS
iN (白原稿信号/黒M稿信号)が20〜25dBと
小さいものであった・ しかも、前述のように光電変換素子を含む受光部とTF
T部をできるだけ離して作るということは、デバイスの
小型化という課題と対立するものであった。また、スリ
ットの機械加工上の限界巾は0.5〜0.8++un、
量産可能巾は0.8〜1mmが限度であるから、スリッ
トを設けたベース部を遮光層とする手段は、この点でも
限界に立ち至っていた。
However, if there is no light-shielding film below the TFT, the a-8i and P
Stray light enters the active layer of the TFT made of o1y-8i and increases the TFT's OFF current, causing the sensor's S
The iN (white original signal/black M original signal) was as small as 20 to 25 dB. Moreover, as mentioned above, the light receiving section including the photoelectric conversion element and the TF
Making the T portions as far apart as possible was in conflict with the issue of miniaturizing the device. In addition, the machining limit width of the slit is 0.5 to 0.8++un,
Since the width that can be mass-produced is limited to 0.8 to 1 mm, the method of using the base portion provided with slits as a light-shielding layer has also reached its limit in this respect.

〔目  的〕〔the purpose〕

そこで、本発明の目的は、TFTの作成時の高温プロセ
ス過程を経ても酸化が進まず、かりに酸化が微かに進ん
だとしても無視できる程度の段階でとどまることのでき
る材料であり、かつそのときの熱膨張係数が絶縁膜にで
きるだけ近い熱膨張係数のものを遮光膜として選択使用
した完全密着型イメードセンサを提供する点にある。
Therefore, an object of the present invention is to provide a material that does not undergo oxidation even during high-temperature processes during the fabrication of TFTs, and can remain at a negligible stage even if oxidation does occur slightly. An object of the present invention is to provide a completely contact type image sensor in which a light-shielding film having a thermal expansion coefficient as close as possible to that of an insulating film is selectively used.

C構  或〕 本発明は、透明基板と、この基板上に形成された不透明
な遮光層と、この遮光層に設けられた採光窓と、この採
光窓の近傍で該遮光層上に形成された受光部と、その駆
動回路用の薄膜トランジスタ(以下、TFTと略称する
)とからなる完全密着型等倍センサにおいて、前記遮光
層が、 (j)  グラファイト 3− (it)  炭化物 (川)貴金属類 (iv)  ほう化物 (v)  窒化物 のいずれかにより形成されていることを特徴とする完全
密着型等倍センサに関する。
Structure C: The present invention provides a transparent substrate, an opaque light-shielding layer formed on the substrate, a lighting window provided on the light-shielding layer, and a light-shielding layer formed on the light-shielding layer near the lighting window. In a fully contact type equal-magnification sensor consisting of a light receiving part and a thin film transistor (hereinafter abbreviated as TFT) for its driving circuit, the light shielding layer is made of (j) graphite (it) carbide (river) noble metal ( iv) The present invention relates to a fully contact type 1-magnification sensor characterized in that it is formed of either a boride (v) or a nitride.

本発明のセンサは、第1図に示すとおり、石英等の透明
絶縁基板1上に、採光窓9を有する遮光層2を形成後、
眉間絶縁膜3を形成し、ひきつづいて、TFT部4、受
光部(光電変換素子5およびその電極6)を形成する。
As shown in FIG. 1, in the sensor of the present invention, after forming a light-shielding layer 2 having a lighting window 9 on a transparent insulating substrate 1 made of quartz or the like,
A glabellar insulating film 3 is formed, and then a TFT section 4 and a light receiving section (photoelectric conversion element 5 and its electrode 6) are formed.

最終に接着剤層7、保護層8を積層する。前記遮光層の
OD(オプティカル密度)は4.5以上であることが好
ましい。
Finally, an adhesive layer 7 and a protective layer 8 are laminated. It is preferable that the OD (optical density) of the light shielding layer is 4.5 or more.

(i)  遮光層にグラファイトを用いる場合、該グラ
ファイトの成膜は石英基板等にiカーボン(類似ダイヤ
モンド薄膜)を形成するのと同様にP−CVD法で30
00〜5000Å厚に堆積する。眉間絶縁膜としては、
アモルファスのSin、またはS i ONを5000
Å4− 〜1μm堆積する。
(i) When graphite is used for the light-shielding layer, the graphite film is formed using the P-CVD method, which is similar to forming i-carbon (diamond-like thin film) on a quartz substrate.
Deposit to a thickness of 00 to 5000 Å. As an insulating film between the eyebrows,
5000 amorphous Sin or Si ON
Deposit Å4- to 1 μm.

以下、常法により、TFT部、受光部を形成する。Thereafter, a TFT section and a light receiving section are formed by a conventional method.

(if)  炭化物としては、TiC,ZrC,VC。(if) Carbides include TiC, ZrC, and VC.

V2O3,NbC,TaC,Cr3C2゜Cr7C,、
SiC,MoC,Mo、Crwc、w、c等が好ましく
、これらを1種のみであるいは組み合せて使用すること
ができる。炭化物の溶融温度は、TiC3250℃、Z
 rC3805℃、TaC3g00℃、M o 025
00℃、WC2900℃、W2C3000℃、Cr3C
21890℃といったように大へん高い。したがって、
TFT作成のための1000℃程度のプロセス温度に充
分耐えることができ、また、この程度の温度では拡散現
象をおこすこともない。
V2O3, NbC, TaC, Cr3C2゜Cr7C,,
SiC, MoC, Mo, Crwc, w, c, etc. are preferred, and these can be used alone or in combination. The melting temperature of carbide is TiC3250℃, Z
rC3805℃, TaC3g00℃, Mo 025
00℃, WC2900℃, W2C3000℃, Cr3C
It is very high, like 21,890 degrees Celsius. therefore,
It can sufficiently withstand the process temperature of about 1000° C. for producing TFTs, and does not cause any diffusion phenomenon at this temperature.

(宙)貴金属類としては、Au、Pt、Pd。(Air) Examples of precious metals include Au, Pt, and Pd.

I r、Rh、Ru、NiCr、CoW。Ir, Rh, Ru, NiCr, CoW.

Nip、TiMo等を挙げることができ、これらを単独
または併用することができる。
Nip, TiMo, etc. can be mentioned, and these can be used alone or in combination.

貴金属またはその合金よりなるグループは、TFTの作
成工程が600〜800℃の高温プロセスの場合では遮
光膜として使用できる。これ以上の温度になると、A 
u A’ N 1−Crは若干軟化がはじまり、元素拡
散も生じるので好ましくない。
A group consisting of noble metals or alloys thereof can be used as a light shielding film when the TFT manufacturing process is a high temperature process of 600 to 800°C. If the temperature is higher than this, A
u A' N 1-Cr is not preferred because it begins to soften slightly and elemental diffusion occurs.

成膜法としては、スパッタやイオンビーム法等が使用で
きる。
As a film forming method, sputtering, ion beam method, etc. can be used.

(iv)  ほう化物としては、ZrB、HfB。(iv) Examples of borides include ZrB and HfB.

WB等を挙げることができ、単独または併用して使用で
きる。
Examples include WB, which can be used alone or in combination.

ほう化物の溶融温度は、Z r B 3265℃、Hf
B5335℃、WB 3195℃であり、かつ熱膨張係
数が低いので、基板として熱膨張係数の低いもの(石英
、GaAs等)を使用する場合には好適な遮光層となる
The melting temperature of the boride is Z r B 3265°C, Hf
B is 5335° C., WB is 3195° C., and the coefficient of thermal expansion is low, so it becomes a suitable light shielding layer when a substrate with a low coefficient of thermal expansion (quartz, GaAs, etc.) is used.

成膜法としては、P−CVD、スパッタ、イオンビーム
法などを使用することができる。
As a film forming method, P-CVD, sputtering, ion beam method, etc. can be used.

(v)  窒化物としてはTiN、ZrN、HfN。(v) TiN, ZrN, and HfN as nitrides.

7− TaN等を単独または併用して使用することができる。7- TaN etc. can be used alone or in combination.

窒化物の溶融温度はT i N 3220℃、ZrN3
255℃、T a N 3360℃等と高く、また、熱
膨張係数が低いので、ほう化物と同じような使い方がで
きる。
The melting temperature of nitride is T i N 3220℃, ZrN3
Since it has a high temperature of 255°C, T a N of 3360°C, etc., and a low coefficient of thermal expansion, it can be used in the same way as borides.

窒化物は、金色に着色して光反射があるので、取扱いに
注意を要する。成膜法としては、P−CVD法、スパッ
タ法、イオンビーム法が使用できる。
Nitride is colored gold and reflects light, so care must be taken when handling it. As a film forming method, a P-CVD method, a sputtering method, or an ion beam method can be used.

前記(i)〜(v)のうち、(j)〜(iii)は導電
性を有するので、これらを遮光層とする場合には、遮光
層を除電層(シールド層)としても兼用させることがで
きる。
Among the above (i) to (v), (j) to (iii) have conductivity, so when these are used as a light shielding layer, the light shielding layer can also be used as a static elimination layer (shield layer). can.

■ 高融点、遮光膜材料を用いることで、TFT下層に
これを形成することが可能となり、TFTプロセス温度
および雰囲気では機能低下や元素拡散によりデバイスダ
メージは無視できるようになった。
(2) By using a high-melting-point, light-shielding film material, it has become possible to form it under the TFT, and device damage due to functional deterioration and elemental diffusion can now be ignored at the TFT process temperature and atmosphere.

これはTFTの活性層のa−8iまたはPo1y−8i
の感光性に対して下部入射光時の遮光を完全に行なえる
ことから、TFTのIoff(TFTスイッチングof
f時の暗電流)減少が認められ、S / N = 30
dB以上が確保された。
This is the a-8i or Poly-8i of the TFT active layer.
Since it is possible to completely block light when the light is incident on the bottom of the photosensitivity of the TFT, Ioff (TFT switching of
dark current at f) was observed to decrease, S/N = 30
dB or more was secured.

また小面積、高密度TFTIIi動光センサでも下部入
射光のスリット巾の如何に関わらず、高利得が得られる
Further, even with a small area and high density TFTIIi dynamic optical sensor, a high gain can be obtained regardless of the slit width of the lower incident light.

TFTプロセス温度の低温化が600℃程度になると高
融点ガラスが基板として使用可能になるが、通常これら
のガラスにはNa、K。
When the TFT process temperature is lowered to about 600°C, high melting point glasses can be used as substrates, but these glasses usually contain Na and K.

Ba、Caが0.5〜5%含有している。It contains 0.5 to 5% of Ba and Ca.

しかし本発明の遮光膜を使用することで、これらの陽イ
オンの拡散防止膜としても作用するので、安価な基板材
料を使用できる。
However, by using the light-shielding film of the present invention, it also acts as a film to prevent diffusion of these cations, so that inexpensive substrate materials can be used.

■ 遮光膜材料として前記(i)、 (ii)、(ii
i)の材料は導電性膜であることから上部の層間絶縁膜
にコンタクトホールを形成し、シールドパッドをAQ等
(TFT電極)で造ることで除電層として利用できる。
■ The above (i), (ii), and (ii) are used as light-shielding film materials.
Since the material i) is a conductive film, it can be used as a static elimination layer by forming a contact hole in the upper interlayer insulating film and making a shield pad with AQ or the like (TFT electrode).

これはT F T IIT動による高速化(I M H
z以上)および光センサの高抵抗化(光セン4すの高密
度化による面積減少で信号量の滞、少がある)時に光セ
ンサおよびTFTまわりに絶縁層および保護膜等が通紙
中に帯電し、画像信号歪みが発生し、帯電が高くな′高
電圧が発生するとTFTや光センサの破壊が起こる。
This is speeding up by T F T IIT movement (I M H
z or more) and when the resistance of the optical sensor becomes high (the signal amount stagnates or decreases due to the area reduction due to the high density of the optical sensor), the insulating layer and protective film etc. around the optical sensor and TFT may be removed during paper passing. When charged, image signal distortion occurs, and when high voltage is generated due to high charging, TFTs and optical sensors may be destroyed.

また外来ノイズが誘導されることがある。Also, external noise may be induced.

これ等を防止するためシールド電極(除電層)が必要で
あるが、高密度化の場合、特別に設けるのはデイバイス
構成上困難な場合がある。本発明の材料ではこのシール
ド層を兼用することが可能である。
In order to prevent this, a shield electrode (static elimination layer) is necessary, but in the case of high density, it may be difficult to provide a special shield electrode due to the device configuration. The material of the present invention can also serve as this shield layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の完全密着型等倍センサの1例を示す
断面図、第2図は、従来型の断面図である。 1・・・透明絶縁基板 2・・・遮光層3・・・層間絶
縁膜  4・・・TFT5・・・光電変換素子 6・・
・」二下電極7・・・接着剤層 9・・・採光窓 11・・・原稿 21・・・受光部 23・・・ベース部 8・・・保護層(薄板ガラス) 10・・・光源 12・・・ローラ 22・・・TFT部 24・・・スリット 11− 第2図 第 を 図
FIG. 1 is a cross-sectional view showing an example of a fully contact type equal-magnification sensor of the present invention, and FIG. 2 is a cross-sectional view of a conventional type sensor. 1... Transparent insulating substrate 2... Light shielding layer 3... Interlayer insulating film 4... TFT 5... Photoelectric conversion element 6...
・Second lower electrode 7...Adhesive layer 9...Lighting window 11...Document 21...Light receiving section 23...Base section 8...Protective layer (thin glass) 10...Light source 12...Roller 22...TFT section 24...Slit 11-

Claims (1)

【特許請求の範囲】 1、透明基板と、この基板上に形成された不透明な遮光
層と、この遮光層に設けられた採光窓と、この採光窓の
近傍で該遮光層上に形成された受光部と、その駆動回路
用の薄膜トランジスタ(以下、TFTと略称する)とか
らなる完全密着型等倍センサにおいて、前記遮光層が、 (i)グラファイト (ii)炭化物 (iii)貴金属類 (iv)ほう化物 (v)窒化物 のいずれかにより形成されていることを特徴とする完全
密着型等倍センサ。
[Claims] 1. A transparent substrate, an opaque light-shielding layer formed on this substrate, a lighting window provided on this light-shielding layer, and a transparent substrate formed on the light-shielding layer near the lighting window. In a fully contact type 1x sensor consisting of a light receiving part and a thin film transistor (hereinafter abbreviated as TFT) for its driving circuit, the light shielding layer is made of (i) graphite (ii) carbide (iii) noble metals (iv) 1. A full-contact type 1-size sensor made of either boride (v) or nitride.
JP1286732A 1989-11-02 1989-11-02 Complete contact type life-size sensor Pending JPH03148176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1286732A JPH03148176A (en) 1989-11-02 1989-11-02 Complete contact type life-size sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286732A JPH03148176A (en) 1989-11-02 1989-11-02 Complete contact type life-size sensor

Publications (1)

Publication Number Publication Date
JPH03148176A true JPH03148176A (en) 1991-06-24

Family

ID=17708305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286732A Pending JPH03148176A (en) 1989-11-02 1989-11-02 Complete contact type life-size sensor

Country Status (1)

Country Link
JP (1) JPH03148176A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100231905B1 (en) * 1996-10-14 1999-12-01 윤종용 A directive non-contact type solid state image sensor
JP2007088250A (en) * 2005-09-22 2007-04-05 Sony Corp Solid-state imaging element, manufacturing method therefor, and camera using same solid-state imaging element
US7935988B2 (en) 2005-09-05 2011-05-03 Sony Corporation Method of manufacturing solid state imaging device, solid state imaging device, and camera using solid state imaging device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100231905B1 (en) * 1996-10-14 1999-12-01 윤종용 A directive non-contact type solid state image sensor
US7935988B2 (en) 2005-09-05 2011-05-03 Sony Corporation Method of manufacturing solid state imaging device, solid state imaging device, and camera using solid state imaging device
US7999291B2 (en) 2005-09-05 2011-08-16 Sony Corporation Method of manufacturing solid state imaging device, solid state imaging device, and camera using solid state imaging device
US8455291B2 (en) 2005-09-05 2013-06-04 Sony Corporation Method of manufacturing solid state imaging device, solid state imaging device, and camera using solid state imaging device
JP2007088250A (en) * 2005-09-22 2007-04-05 Sony Corp Solid-state imaging element, manufacturing method therefor, and camera using same solid-state imaging element

Similar Documents

Publication Publication Date Title
US4307372A (en) Photosensor
JPH03148176A (en) Complete contact type life-size sensor
JP2798774B2 (en) Optical sensor and manufacturing method thereof
JPH05347391A (en) Ferroelectric storage device
US4671853A (en) Image sensor manufacturing method
JPS5840856A (en) Array for photosensor
JPS6184860A (en) Photoelectric conversion device
JPS6184862A (en) Photoelectric conversion device
JPS59151456A (en) Photoelectric conversion element for hybrid integrated photosensor and manufacture thereof
JPS6327871B2 (en)
JP2755707B2 (en) Method for manufacturing photovoltaic device
JPS5928066B2 (en) Photoelectric conversion element
US4445131A (en) Photoconductive image pick-up tube target
JPS62198155A (en) Thin film image sensor
JPS61124168A (en) Contact type image sensor
JPS63159063A (en) Thermal printing head
JPS6214708Y2 (en)
JPS61181158A (en) Contact type image sensor
JP2573342B2 (en) Light receiving element
JPS6062278A (en) Image sensor
KR940006932B1 (en) Image sensor for fax
JPS58201357A (en) Thin film type photoelectric conversion element
JP2968971B2 (en) Image sensor and manufacturing method thereof
JP3404025B2 (en) Image sensor
JPH03101165A (en) Image sensor