JPH03147334A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03147334A
JPH03147334A JP28564289A JP28564289A JPH03147334A JP H03147334 A JPH03147334 A JP H03147334A JP 28564289 A JP28564289 A JP 28564289A JP 28564289 A JP28564289 A JP 28564289A JP H03147334 A JPH03147334 A JP H03147334A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
region
gate
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28564289A
Other languages
Japanese (ja)
Inventor
Toshihiko Kondo
俊彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP28564289A priority Critical patent/JPH03147334A/en
Publication of JPH03147334A publication Critical patent/JPH03147334A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent current drive capacity from being reduced due to injection of a hot carrier by providing a second electrode layer so that it covers a gate electrode and then by forming it so that it may be positioned on a low- concentration impurity region in LDD structure. CONSTITUTION:A second gate electrode 110 is formed after the pattern of a first gate electrode 104 is formed and then an insulating film is formed by the CVD. Then, by etching back the insulating film by the RIE, a side wall insulating film 105 is formed. Then, by etching the second gate electrode layer 110 with this side wall insulating film 105 as a mask, the second gate electrode 110 is formed on the first gate electrode 104 so that it may be in contact with it. Further, the second gate electrode 110 is extended onto a low-concentration region 107, thus preventing concentration of charge due to a hot electron which is generated at the channel side of an L drain region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置特にLDD (L i gh t 
1y  doped  drain)構造を有する半導
体装置の構造の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to semiconductor devices, particularly LDDs (Light
The present invention relates to an improvement in the structure of a semiconductor device having a 1y doped drain structure.

〔従来の技術〕[Conventional technology]

1り導体装置の微細化特にMO3型トランジスタの微細
化が進むにつれて、短チャンネル効果によるバンチスル
ー現像とホットキャリア注入現象が顕rr化して来た。
As miniaturization of single-conductor devices, especially MO3 type transistors, progresses, bunch-through development and hot carrier injection phenomena due to short channel effects have become more apparent.

特にホットキャリア注入現象についてはドレイン端のチ
ャンネル側の電界の集中によりゲート電極端の基板と絶
縁膜の界面又は絶縁膜中に集中して捕獲され、これによ
りトランジスタ特性が麦化し、Nチャンネルではオン抵
抗が大きくなりPチャンネルではパンチスルーが発生す
る。この問題の解決のためL D D ?M造が用いら
れて来た。
In particular, regarding the hot carrier injection phenomenon, due to the concentration of the electric field on the channel side of the drain end, they are concentrated and captured in the interface between the substrate and the insulating film at the end of the gate electrode or in the insulating film, which deteriorates the transistor characteristics and turns on the N-channel. The resistance increases and punch-through occurs in the P channel. LDD to solve this problem? M construction has been used.

第2図はLDDl造を有する従来のMOS)ランシスタ
ーの構造を示す図であり、図中に於いて201は゛1″
−導体基板、202は素子分離絶縁膜、203はゲート
絶縁膜、204はゲート電極、205はサイドウオール
絶縁膜、206は高濃度不純物領域、207は低濃度不
純物領域、208は層間絶縁膜、209は電線電極であ
る。かかる構造に於いて、ゲート電極の外側の不純物濃
度を下げることにより、バンチスルーを防ぐばかりでな
くこれによりドレイン端の電界集中を緩和し、ホットキ
ャリア注入現象による劣化を抑制できるようになってい
る。
FIG. 2 is a diagram showing the structure of a conventional MOS (MOS) run sister having an LDD structure. In the figure, 201 is "1".
- Conductor substrate, 202 is an element isolation insulating film, 203 is a gate insulating film, 204 is a gate electrode, 205 is a sidewall insulating film, 206 is a high concentration impurity region, 207 is a low concentration impurity region, 208 is an interlayer insulation film, 209 is a wire electrode. In such a structure, by lowering the impurity concentration outside the gate electrode, it is possible to not only prevent bunch-through but also to alleviate electric field concentration at the drain end and suppress deterioration due to hot carrier injection phenomenon. .

最近の例としては、L D D IN造をさらに改良し
たものとして、逆T字型のゲート電極を採用し、ゲート
電極が低濃度不純物領域までのチャンネルi!n域を覆
うようにした構造とし、さらに微細化されたデバイスで
も上記の不具合が生じないようにした研究発表があり、
下記の論文に開示されている。(lシlシ、+tシI)
M2O,[31,7]、(19116)、(米)I”7
42〜745:TIano−Yuan  Iluang
  at  al、    “^ novel  Su
bmier。
As a recent example, an inverted T-shaped gate electrode is adopted as a further improvement of the LDD IN structure, and the gate electrode has a channel i! There has been research published on creating a structure that covers the n region so that the above-mentioned problems will not occur even in further miniaturized devices.
It is disclosed in the following paper. (l shi, +t shi)
M2O, [31,7], (19116), (US) I”7
42-745: TIano-Yuan Iluang
at al, “^ novel Su
bmier.

ts t、DD Trar+5fsLor with 
Inverse−T Gate 5LruetuO 〔発明が解決しようとする課題〕 トランジスタのさらなる微細化により前記従来例に於け
るLDD構造でも低濃度不純物領域」二のサイドウオー
ルに注入された電荷により、低濃度不純物領域の抵抗が
増大し、電流駆動能力が低ドするという課題が顕在化し
た。
ts t, DD Trar+5fsLor with
Inverse-T Gate 5LruetuO [Problem to be Solved by the Invention] Due to the further miniaturization of transistors, even in the LDD structure in the conventional example, the charge injected into the sidewall of the second low concentration impurity region The problem of increased resistance and reduced current drive capability became apparent.

この課題を解決する見地からは前出の文献に開示された
構造と製造ノj法は有効であるが、ゲート電極を形成す
る過程に於いて、ゲート電極を構成する多結果シリコン
層のエツチングを途中でストップし、逆T字状にすので
あるがこれは制御すること自体が難しく再現性が悪いと
いう問題が指摘できる。
From the standpoint of solving this problem, the structure and manufacturing method disclosed in the above-mentioned document are effective, but in the process of forming the gate electrode, etching of the multi-resistance silicon layer constituting the gate electrode is necessary. It stops midway and forms an inverted T-shape, but it can be pointed out that this is difficult to control and has poor reproducibility.

本発明はかかる課題を解決し、実現性と再現性のよいゲ
ート電極IN造を提供するものである。
The present invention solves these problems and provides a gate electrode IN structure with good feasibility and reproducibility.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の゛(を導体装置はMIS型半導体装置に於いて
、第一導電型の半導体基板又は基板領域と該1−導体基
板又は基板上に形成された第一の絶縁膜、該第一の絶縁
膜上に形成された第一のゲート7Ii極と該第一のデー
11極の少くとも側面の一部が接するように形成されか
つ該第一のゲート電極より大きく形成された第2のゲー
ト電極と該第2のゲ−)Fi極」二の該第1のゲート電
極の側面に形成された側壁絶縁膜と該第一のゲート電極
の外側で、該第2のゲート電極下に形成された濃度の低
い第2導電型の第一の不純物層と第2のゲート電極の外
側に形成された第2導電型の第2の濃度の高い不純物層
からなることを特徴とする711導体装置である。
A conductor device of the present invention is a MIS type semiconductor device, which includes a semiconductor substrate or substrate region of a first conductivity type; A second gate formed so that at least a part of the side surface of the first gate 7Ii electrode formed on the insulating film and the first electrode 11 are in contact with each other, and the second gate is formed larger than the first gate electrode. a sidewall insulating film formed on the side surface of the first gate electrode; A 711 conductor device comprising a first impurity layer of a second conductivity type with a low concentration and a second high concentration impurity layer of a second conductivity type formed outside the second gate electrode. be.

〔実 施 例〕〔Example〕

第1図はこの発明の一実施例を示ず1く導体装置の構造
を説明する図である。
FIG. 1 is a diagram illustrating the structure of a conductor device without showing an embodiment of the present invention.

図に於いて、101は1を導体基板、102は素子分離
絶縁膜、103はゲート絶縁膜、104は第一の膜から
なる第一のゲート電極、110は第2の膜からなる第2
のゲート電極、105は側壁絶縁膜、1〔)6は高濃度
不純物領域、107は低濃度不純物領域、108は層間
絶縁膜、109はAL等の配線ft!極である。
In the figure, 101 is a conductive substrate, 102 is an element isolation insulating film, 103 is a gate insulating film, 104 is a first gate electrode made of a first film, and 110 is a second gate electrode made of a second film.
, 105 is a sidewall insulating film, 1[)6 is a high concentration impurity region, 107 is a low concentration impurity region, 108 is an interlayer insulating film, and 109 is a wiring such as AL ft! It is extreme.

図のように第2のゲート電極110は第一のゲート電極
1.04と接するように上に形成されかつ、低濃度領域
1()7上に延在している。このため、Lドレイン領域
のチャンネル側に発生するホットエレクトロンによる電
荷の集中を従来のLDD構造よりも防止できた。
As shown in the figure, the second gate electrode 110 is formed on and in contact with the first gate electrode 1.04, and extends over the low concentration region 1()7. Therefore, concentration of charge due to hot electrons generated on the channel side of the L drain region can be prevented more than in the conventional LDD structure.

この製造上程を述べると、第一のゲート電極104のパ
ターン形成後に第2のゲート電極層110を形成しさら
にCVDにより絶縁膜を形成する。
To describe this manufacturing process, after patterning the first gate electrode 104, the second gate electrode layer 110 is formed, and then an insulating film is formed by CVD.

これをまず絶縁膜をRIEによりエッチバックすること
により、サイドウオール絶縁H105を形成する。さら
にこのサイドウオール絶縁膜105をマスクとして下層
の第2のゲートm極層11〔]をエエラチンすれば、こ
の構造は実現できる。
First, the insulating film is etched back by RIE to form a sidewall insulating layer H105. Furthermore, by etching the lower second gate m-pole layer 11 using this sidewall insulating film 105 as a mask, this structure can be realized.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、従来のゲート電極を包
むように第2の電極層を設けて、これをLDD構造の低
濃度不純物領域上に位置するように形成したので、ホッ
トキャリア注入による電流駆動能力の著しい低下を防+
L、することができた。
As described above, according to the present invention, the second electrode layer is provided so as to surround the conventional gate electrode, and this is formed so as to be located on the low concentration impurity region of the LDD structure, so that the current due to hot carrier injection is Prevents significant decrease in driving ability +
L, I was able to do it.

よって素子を微細化しても特性が維持てきるため、高集
積の半導体装置に適用できるという大きな効果を得た。
Therefore, even if the element is miniaturized, the characteristics can be maintained, and this has the great effect of being applicable to highly integrated semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す素子の断面図、第2図
は従来技術を示す素子の断面図である。 図中に於いて、 101.2〔〕1 102.202 103.203 104.204 1 (]5. 106. 1 〔]7. 108. 109. 11() ・ 205 ・ 206 ・ 207 ・ 208・ 209 ・ 71′−導体基板 素子分離絶縁膜 ゲート絶縁膜 デーl−電極(第一のゲー ト電極) サイドウオール絶縁膜 高濃度不純物層 低   I・ 居間絶縁膜 配線電極 第2のゲート電極 第2図
FIG. 1 is a sectional view of an element showing an embodiment of the present invention, and FIG. 2 is a sectional view of an element showing a conventional technique. In the figure, 101.2 [] 1 102.202 103.203 104.204 1 (] 5. 106. 1 [] 7. 108. 109. 11 () ・ 205 ・ 206 ・ 207 ・ 208 ・ 209・71'-Conductor substrate Element isolation insulating film Gate insulating film D-Electrode (first gate electrode) Sidewall insulating film High concentration impurity layer Low I-Living room insulating film Wiring electrode Second gate electrode Fig. 2

Claims (1)

【特許請求の範囲】[Claims]  半導体装置特にMIS型半導体装置に於いて、第一導
電型の半導体基板又は基板領域と該半導体基板又は基板
上に形成された第一の絶縁膜、該第一の絶縁膜上に形成
された第一のゲート電極と該第一のゲート電極の少なく
とも側面の一部が接するように形成されかつ該第一のゲ
ート電極より大きく形成された第2のゲート電極と該第
2のゲート電極上の該第1のゲート電極の側面に形成さ
れた側壁絶縁膜と、該第一のゲート電極の外側で、該第
2のゲート電極下に形成された濃度の低い第2導電型の
第一の不純物層と第2のゲート電極の外側に形成された
第2導電型の第二の濃度の高い不純物層からなることを
特徴とする半導体装置。
In a semiconductor device, particularly an MIS type semiconductor device, a semiconductor substrate or substrate region of a first conductivity type, a first insulating film formed on the semiconductor substrate or substrate, and a first insulating film formed on the first insulating film are used. A second gate electrode is formed such that at least a part of the side surface of the first gate electrode is in contact with the first gate electrode, and the second gate electrode is formed to be larger than the first gate electrode. a sidewall insulating film formed on the side surface of the first gate electrode; and a first impurity layer of a second conductivity type with a low concentration formed outside the first gate electrode and under the second gate electrode. and a second highly concentrated impurity layer of a second conductivity type formed outside the second gate electrode.
JP28564289A 1989-11-01 1989-11-01 Semiconductor device Pending JPH03147334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28564289A JPH03147334A (en) 1989-11-01 1989-11-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28564289A JPH03147334A (en) 1989-11-01 1989-11-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03147334A true JPH03147334A (en) 1991-06-24

Family

ID=17694174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28564289A Pending JPH03147334A (en) 1989-11-01 1989-11-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03147334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096585A (en) * 1996-11-29 2000-08-01 Kabushiki Kaisha Toshiba Method of manufacturing thin film transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096585A (en) * 1996-11-29 2000-08-01 Kabushiki Kaisha Toshiba Method of manufacturing thin film transistor
US6670641B1 (en) 1996-11-29 2003-12-30 Kabushiki Kaisha Toshiba Thin film transistor, method of manufacturing the same and thin film transistor liquid crystal display device

Similar Documents

Publication Publication Date Title
JP4538182B2 (en) MOSFET manufacturing method
JPH09246568A (en) Vertical double gate field effect transistor
JPH053206A (en) Offset gate transistor and manufacture thereof
JP2000101069A (en) Semiconductor element and manufacture thereof
US5502322A (en) Transistor having a nonuniform doping channel
JP3164047B2 (en) Semiconductor device
JPH03101238A (en) Mos type semiconductor device and its manufacture
JPH05251694A (en) Mos type semiconductor device and its manufacture
JP3057792B2 (en) Method for manufacturing thin film transistor
JP2001217418A (en) Mos transistor and its manufacturing method
JP2729422B2 (en) Semiconductor device
JPH03147334A (en) Semiconductor device
JP2776059B2 (en) Insulated gate field effect transistor
JPH0661481A (en) Mos-type-semiconductor device
JPH0493083A (en) Semiconductor device and manufacture thereof
JPS62262462A (en) Semiconductor device
JPS6197967A (en) Semiconductor device and manufacture thereof
US6165829A (en) Thin film transistor and fabrication method therefor
JP2856603B2 (en) Method for manufacturing semiconductor device
JPH1126766A (en) Mos field effect transistor and manufacture thereof
JPH04186733A (en) Semiconductor device and manufacture thereof
JPH07273329A (en) Semiconductor device and its manufacture
JPH0244734A (en) Manufacture of mis transistor
JP2750724B2 (en) Method for manufacturing semiconductor device
JPH0493084A (en) Semiconductor device and manufacture thereof