JPH03141608A - Rare earth element-iron-nitrogen magnetic material controlled in microstructure, manufacture, and manufacture of powder which is its stock - Google Patents

Rare earth element-iron-nitrogen magnetic material controlled in microstructure, manufacture, and manufacture of powder which is its stock

Info

Publication number
JPH03141608A
JPH03141608A JP1278360A JP27836089A JPH03141608A JP H03141608 A JPH03141608 A JP H03141608A JP 1278360 A JP1278360 A JP 1278360A JP 27836089 A JP27836089 A JP 27836089A JP H03141608 A JPH03141608 A JP H03141608A
Authority
JP
Japan
Prior art keywords
iron
rare earth
magnetic material
earth element
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1278360A
Other languages
Japanese (ja)
Other versions
JP2691034B2 (en
Inventor
Kurimasa Kobayashi
小林 久理真
Nobuyoshi Imaoka
伸嘉 今岡
Akinobu Sudo
須藤 昭信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1278360A priority Critical patent/JP2691034B2/en
Priority to EP90117488A priority patent/EP0417733B1/en
Priority to US07/580,556 priority patent/US5164104A/en
Priority to DE69007720T priority patent/DE69007720T2/en
Priority to AU62481/90A priority patent/AU624995C/en
Publication of JPH03141608A publication Critical patent/JPH03141608A/en
Application granted granted Critical
Publication of JP2691034B2 publication Critical patent/JP2691034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To improve magnetic characteristics by controlling the particle diameter, mixture of phases, and phase splitting of Re-Fe alloys prepared initially and by classifying them by every grade before composition of Re-Fe-N or Re- Fe-N-H-O magnetic materials. CONSTITUTION:Before composition of the base alloy of rare earth element-iron- nitrogen magnetic material, to average crystal particle diameter of the base alloy is adjusted to a range of submicrons to 300mum by controlling the cooling speed of molten metal and by varying the annealing temperature over a range of 700-1300 deg.C to time annealing at a duration where a phase consisting mainly of iron can be reduced to an allowable amount as the magnetic material. After preparation of rare earth element-iron alloy or composition of rare earth element-iron-nitrogen magnetic material powder, classification is conducted to sort out the powder of an arbitrary region of particle size distribution ranging from submicrons to 300mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類元素−鉄一窒素(以下“Re−Fe−N
”という)系磁性材料の微構造における平均結晶粒径を
サブミクロンから300μ謡の範囲で制御することによ
り、特性を向上させた磁性材料、その製法及びその材料
の粉体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to rare earth element-iron-nitrogen (hereinafter "Re-Fe-N
The present invention relates to a magnetic material with improved characteristics by controlling the average crystal grain size in the microstructure of the magnetic material in the range of submicrons to 300 μm, a method for producing the same, and a method for producing powder of the material.

[従来の技術] 永久磁石及び磁気記録媒体は磁性材料の工業的応用分野
の中心的位置を占めている。これらに用いられる磁性材
料は顕著な特徴を有する。
[Prior Art] Permanent magnets and magnetic recording media occupy a central position in the field of industrial applications of magnetic materials. The magnetic materials used in these have remarkable characteristics.

すなわち、Nd−Fe−B系やSm−Co系などの永久
磁石材料は焼結もしくは焼鈍時に形成される微構造にそ
の特徴がある。Nd−Fe−B系では50〜100μ1
以上の結晶粒径を有する焼結体で最も高い磁気特性が発
現し、その粒子の粒界部分の組成、構造は磁石の性能を
左右する重要な因子である。Sm−Co系でもこの事情
は大差なくあてはまり、特にSm2CO17系磁石で多
段時効処理と呼ばれる熱処理で粒子境界部に析出するS
mlCo5系の組成物が磁気特性の発現にとって重要で
ある。
That is, permanent magnet materials such as Nd-Fe-B and Sm-Co are characterized by the microstructure formed during sintering or annealing. 50 to 100μ1 for Nd-Fe-B system
A sintered body having a crystal grain size above the above exhibits the highest magnetic properties, and the composition and structure of the grain boundary portion of the grains are important factors that influence the performance of the magnet. This situation also applies to Sm-Co magnets, and in particular, Sm2CO17 magnets precipitate at grain boundaries during heat treatment called multi-stage aging treatment.
The mlCo5-based composition is important for the development of magnetic properties.

一方、磁気記録媒体用の磁性材料、例えば7−FezO
3、Fe−Nt−Co系合金、バリウム及びストロンチ
ウムフェライトでは、利用方法として数μm厚の塗布用
バインダー中に分散して用いられる場合が多いため、サ
ブミクロンから1〜2μ腸以下の微細粒子として用いら
れる。これらの粒子ではまず第一に微細粒子であって、
なおかつ比較的高い保磁力(He)及び残留磁化(Br
)が要求されることから、粒子の形状、配向方法などに
技術的工夫が必要である。
On the other hand, magnetic materials for magnetic recording media, such as 7-FezO
3. Fe-Nt-Co alloys, barium, and strontium ferrite are often used by being dispersed in a coating binder with a thickness of several μm, so they are used as fine particles ranging from submicrons to 1 to 2 μm in size. used. These particles are first of all fine particles,
Furthermore, relatively high coercive force (He) and residual magnetization (Br
), it is necessary to make technical improvements to the particle shape, orientation method, etc.

従って上記の磁性材料の特徴を概括すれば、永久磁石材
料では単磁区粒子径よりもはるかに大きな粒子径で粒子
境界部分の組成や微構造の制御によって磁気特性が発現
し、磁気記録用の磁性粉体では粒子径、粒子の形状磁気
異方性など微細粒子であることを最大限生かすことで磁
気特性を引き出している。
Therefore, to summarize the characteristics of the magnetic materials mentioned above, in permanent magnet materials, magnetic properties are expressed by controlling the composition and microstructure of the grain boundary area at a particle size much larger than the single domain particle size, and magnetic properties for magnetic recording are achieved. In powder, magnetic properties are brought out by making the most of the fact that they are fine particles, such as particle size and particle shape magnetic anisotropy.

[発明が解決しようとする課題] 本発明は微構造を制御することによって、従来のものに
比較して磁性特性が一層優れた磁性材料及びその粉体の
製造法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention aims to provide a magnetic material with even better magnetic properties than conventional materials by controlling the microstructure, and a method for producing its powder. .

[課題を解決するための手段] 上記課題を解決するための本発明の構成は、(1)材料
の微構造における平均結晶粒径がサブミクロンから30
0μmの範囲にある希土類元素−鉄一窒素系磁性材料、 (2)希土類元素−鉄一窒素系磁性材料の母合金を合成
する際、溶湯の冷却速度を制御すること、及び焼鈍時の
温度を700〜1300℃の範囲で変化させ、焼鈍時間
は鉄を主成分とする柑が磁性材料として許容できる量ま
で減少させ得る時間とすることによって母合金の平均結
晶粒径をサブミクロンから300μ−の範囲に調整する
希土類元素−鉄一窒素系磁性材料の製造方法、 (3)希土類元素−鉄一窒素系磁性材料分体において、
希土類元素−鉄合金調製後、あるいは希土類元素−鉄一
窒素系磁性材料粉体合成後に部級を施しサブミクロンか
ら300μ−の範囲の任意の粒径分布領域の粉体を分別
する希土類−鉄一窒素系磁性材料粉体の製造方法である
[Means for Solving the Problems] The structure of the present invention for solving the above problems is as follows: (1) The average crystal grain size in the microstructure of the material is from submicron to 30.
When synthesizing a rare earth element-iron-nitrogen magnetic material in the range of 0 μm, (2) a master alloy of rare earth element-iron-nitrogen magnetic material, it is necessary to control the cooling rate of the molten metal and the temperature during annealing. By varying the temperature in the range of 700 to 1,300°C and setting the annealing time to a time that allows the iron-based material to be reduced to an amount acceptable as a magnetic material, the average grain size of the master alloy can be changed from submicron to 300μ. A method for producing a rare earth element-iron-nitrogen magnetic material, (3) a rare earth element-iron-nitrogen magnetic material fraction,
After preparing a rare earth element-iron alloy or after synthesizing a rare earth element-iron-nitrogen magnetic material powder, classification is applied to classify the powder in any particle size distribution range from submicron to 300μ. This is a method for producing nitrogen-based magnetic material powder.

上記製造方法を具体的に説明すると、はじめに合成する
Re−Fe合金を粉砕後、粒径側に分級するか、もしく
はこの合金に窒素、水素、酸素のいずれか一種又は二種
以上を化合又は含有させた後に粉砕し、粒径側に分級す
るものである。
To explain the above manufacturing method specifically, first, the Re-Fe alloy to be synthesized is crushed and then classified according to particle size, or this alloy is combined with or contains one or more of nitrogen, hydrogen, and oxygen. After that, it is crushed and classified according to particle size.

少し具体的に説明すると製法では溶湯の冷却速度を制御
すること、及び焼鈍温度を700〜1300℃の範囲で
変化させ、焼鈍時間は鉄を主成分とする相が磁性材料と
して許容できる量まで減少する時間とすることを特徴と
する。また、平均結晶粒径の制御の効果を明瞭にするた
めに、希土類元素−鉄(以下“Re−Fe  という)
合金またはRe−Fe−N系磁性材料粉体に分級をほど
こし、サブミクロンから300μmの範囲の任意の粒径
分布領域で粉体を分別する。
To explain a little more concretely, the manufacturing method involves controlling the cooling rate of the molten metal, varying the annealing temperature in the range of 700 to 1300°C, and reducing the annealing time to an amount that allows the iron-based phase to be used as a magnetic material. It is characterized by having the time to do so. In addition, in order to clarify the effect of controlling the average grain size, rare earth element - iron (hereinafter referred to as "Re-Fe")
The alloy or Re-Fe-N based magnetic material powder is classified, and the powder is separated in any particle size distribution range from submicron to 300 μm.

本発明ではRe−Fe−N系磁性材料及び先願の磁性材
料(特願昭63−228547号)が、従来の磁性材料
に比較して、微粒子の状態で高い磁気特性を発現し得る
という特徴を十分にひき出すために母合金の粒子径を焼
鈍条件を変えることにより制御し、同時に各粉砕後に分
級して粒径を整える操作を行う。この操作によりこれら
磁性材料の特性をより明瞭にひき出すことを可能にした
ものである。
In the present invention, the Re-Fe-N magnetic material and the magnetic material of the previous application (Japanese Patent Application No. 63-228547) are characterized in that they can exhibit higher magnetic properties in the form of fine particles than conventional magnetic materials. In order to sufficiently draw out the particles, the particle size of the master alloy is controlled by changing the annealing conditions, and at the same time, after each crushing, an operation is performed to adjust the particle size by classifying. This operation made it possible to bring out the characteristics of these magnetic materials more clearly.

また本発明ではRe−Fe−N系磁性材料、前記先願の
Re−Fe−N−H系磁性材料及び希土類元素−鉄一窒
素一水素一酸素(以下”Re−Fe−N−H−C)’と
いう)(特願平1−235822号)系磁性材料におい
て、はじめに合成するRe−Fe合金の母合金の結晶粒
径を焼鈍条件を変えることで制御し、窒素、水素あるい
は酸素を含有させた後、粉砕し分級することで、これら
の処理工程を経ない場合に比べて磁気特性を大きく向上
させることを特徴とする磁性材料の製造方法である。な
お、ここでいう磁気特性とは磁化、保磁力、磁気異方性
、角型比をいう。
In addition, the present invention uses a Re-Fe-N magnetic material, the Re-Fe-N-H magnetic material of the prior application, and a rare earth element-iron-nitrogen-hydrogen-oxygen (hereinafter referred to as "Re-Fe-N-H-C"). )' (Japanese Patent Application No. 1-235822) system magnetic materials, the crystal grain size of the Re-Fe alloy master alloy that is first synthesized is controlled by changing the annealing conditions, and nitrogen, hydrogen, or oxygen is added. This is a manufacturing method for magnetic materials that is characterized by greatly improving magnetic properties by pulverizing and classifying the material, compared to the case without these processing steps.The magnetic properties here refer to magnetization. , coercive force, magnetic anisotropy, and squareness ratio.

結局、本発明は上記特許請求の範囲、の請求項(1)か
ら(3)に述べたように、Re−Fe−N系磁性材料ま
たはRe−F e−N−H−0系材料の製造工程で、は
じめに合成する母合金の粒径を制御すること、及びその
母合金を粉砕後分級するか、あるいは窒化、水素化後、
分級するか、あるいは母合金を粉砕、分級後、窒化、水
素化し、更に分級するかにより磁性材料の粒径を制御す
ることにより、磁気特性を向上させる製法に関する。
As stated in claims (1) to (3) of the above-mentioned claims, the present invention relates to the production of a Re-Fe-N magnetic material or a Re-Fe-N-H-0 material. In the process, it is necessary to control the particle size of the master alloy synthesized first, and to classify the master alloy after crushing, or after nitriding and hydrogenating.
The present invention relates to a manufacturing method for improving magnetic properties by controlling the particle size of a magnetic material by classification, or by pulverizing and classifying a master alloy, nitriding, hydrogenating, and further classifying.

(製造方法の詳細) ここではRe−Fe合金としてRe2Fei合金を用い
、その母合金に窒素、水素及び酸素を含有させた磁性材
料の作製方法を例としてのべる。
(Details of manufacturing method) Here, a method for manufacturing a magnetic material using a Re2Fei alloy as the Re-Fe alloy and containing nitrogen, hydrogen, and oxygen in the mother alloy will be described as an example.

前記先願のRe−Fe−N−H系及びRe−Fe−N−
H−0系磁性材料の製造工程は以下のとおりである。
The Re-Fe-N-H system and Re-Fe-N- of the earlier application
The manufacturing process of the H-0 magnetic material is as follows.

(1)Re−Fe系合金の合成 (2)粗粉砕 (3)窒化、水素化 (4)微粉砕 このうち(2)粗粉砕後及び(3)窒化、水素化後に分
級を施すことが粒径の制御の方法として有効である。ま
た、母合金の微構造は主に、(1)の合金の合成後の焼
鈍条件により制御することができる。
(1) Synthesis of Re-Fe alloys (2) Coarse pulverization (3) Nitriding and hydrogenation (4) Fine pulverization Among these, classification is performed after (2) coarse pulverization and (3) after nitridation and hydrogenation. This is an effective method for controlling the diameter. Further, the microstructure of the master alloy can be controlled mainly by the annealing conditions after the synthesis of the alloy (1).

以下に特に母合金の微構造の制御法及び分級の効果的な
施工法を中心にして述べる。
Below, we will focus on methods for controlling the microstructure of the master alloy and effective methods for classification.

(1)母合金の合成 原料合金は高周波炉、アーク溶解炉によっても、また液
体超急冷法によっても作製できる。
(1) Synthesis of master alloy The raw material alloy can be produced by a high frequency furnace, an arc melting furnace, or by a liquid ultra-quenching method.

その組成はReが5〜25原子%、Feが75〜95原
子%の範囲にあることが好ましい。Reが5原子%未満
では合金中にα−Fe相が多く存在し、高保磁力が得ら
れない。また、。Reが25原子%を越えると高い飽和
磁束密度が得られない。
The composition preferably ranges from 5 to 25 atomic % Re and from 75 to 95 atomic % Fe. If Re is less than 5 atomic %, a large amount of α-Fe phase exists in the alloy, making it impossible to obtain a high coercive force. Also,. If Re exceeds 25 atomic %, high saturation magnetic flux density cannot be obtained.

母合金の合成は一般的に溶解した希土類元素、鉄の混合
物を急冷して行うことになる。このことは上記のいずれ
の方法でも同じである。第5図に例としてSm−Fe系
母合金の相図の一部を引用する( ”Iron−Bin
ary Phase DiagraLIlsOrtru
d Kubaschevskl、Sprlnger−v
erlagq1982、P2O3から)。
The synthesis of the master alloy is generally carried out by rapidly cooling a mixture of molten rare earth elements and iron. This is the same for any of the above methods. Figure 5 shows a part of the phase diagram of the Sm-Fe base alloy as an example ("Iron-Bin").
ary Phase DiagraLIlsOrtru
d Kubaschevskl, Sprlnger-v.
erlagq1982, from P2O3).

この相図から明らかなように、例えば Sm 2 F e 17合金を作製する場合、1500
〜1800℃で一度溶解した融解合金を急冷する場合、
1280〜1450℃付近ではa−Feが析出し、10
10〜1280℃の間ではS m 2 F e 17合
金が析出し、101O℃以下でSm1Fe3相が析出す
る。その結果、はじめに得られる合金はα−Fe。
As is clear from this phase diagram, when producing Sm 2 Fe 17 alloy, for example, 1500
When rapidly cooling a molten alloy once melted at ~1800°C,
At around 1280-1450°C, a-Fe precipitates and 10
The S m 2 Fe 17 alloy precipitates between 10 and 1280°C, and the Sm1Fe3 phase precipitates below 1010°C. As a result, the first alloy obtained is α-Fe.

Sm2FeI7、Sm1Fe3相の3相を主構成相とし
ている。この母合金を例えば800〜1250℃の間で
焼鈍すると、α−Feと5rrzFez相は徐々に消失
し、Sm2FeI7相を主相としたX線回折では均一な
2−17合金を作製できる。
The three main constituent phases are Sm2FeI7 and Sm1Fe3. When this master alloy is annealed at, for example, 800 to 1250°C, the α-Fe and 5rrzFez phases gradually disappear, and a uniform 2-17 alloy can be produced by X-ray diffraction with the Sm2FeI7 phase as the main phase.

この焼鈍の間2−17主相の微構造、すなわち粒子径や
粒界部分の相分離、析出の状態は変化し、焼鈍条件によ
り微構造は大きく異なる。
During this annealing, the microstructure of the 2-17 main phase, that is, the particle size and the state of phase separation and precipitation at grain boundaries, changes, and the microstructure varies greatly depending on the annealing conditions.

例えば超急冷法などの急冷法を用いた場合は、焼鈍後の
母合金の平均粒径を5μm以下のSm2Ferr合金を
調製できる。一方、高周波炉で溶解後金属鋳型などに流
し込んだ場合はa−Fe、Sml Fe3相の分相は大
きく、SmzFen相単一を得るために比較的高温かつ
長時間の焼鈍を要するが、得られた2−17相は150
μ国以上の粒子径で、かつ高結晶化度のものである。
For example, when a rapid cooling method such as an ultra-quenching method is used, an Sm2Ferr alloy in which the average grain size of the mother alloy after annealing is 5 μm or less can be prepared. On the other hand, when melted in a high frequency furnace and poured into a metal mold, the phase separation of the three a-Fe and SmlFe phases is large, and relatively high temperature and long annealing is required to obtain a single SmzFen phase. The 2-17 phase is 150
It has a particle size of μ or more and a high degree of crystallinity.

母合金の組成はこの例の場合Sm2Fe17単−相であ
ることが好ましいが、微構造は5μ−以下の平均粒径か
ら300μm程度の平均粒径まで変化させ得る。更にこ
れらの微構造の相違は、母合金の機械的性質、すなわち
強度、硬軟などと深く相関していると同時に、結晶化度
や後の工程における気相との反応性などに関連し、材料
の磁気を含む種々の特性に影響する。
The composition of the master alloy is preferably Sm2Fe17 single-phase in this example, but the microstructure can vary from an average grain size of less than 5 .mu.m to an average grain size on the order of 300 .mu.m. Furthermore, these microstructural differences are deeply correlated with the mechanical properties of the master alloy, such as strength, hardness, and softness, as well as with the degree of crystallinity and reactivity with the gas phase in subsequent processes, resulting in material affects various properties including magnetism.

(2)粗粉砕 この段階の粉砕はショークラッシャー、スタンプミルの
ような粗粉のみを調製するような方法でもよいし、ボー
ルミル、ジェットミルによっても条件次第で可能である
。しかし、この粉砕は次の段階における窒化、水素化を
均一に行わしめるためのものである。
(2) Coarse pulverization The pulverization at this stage may be performed using a method such as a show crusher or stamp mill that prepares only coarse powder, or may be performed using a ball mill or jet mill depending on the conditions. However, this pulverization is for the purpose of uniformly performing the nitriding and hydrogenation in the next step.

粗粉砕と(1)で述べた母合金の微構造には相関がある
。例えば5〜30μ慣程度の比較的細かい平均粒子径を
有する母合金は一般に硬く、粗粉砕時の応力、時間に多
くを要する。また粉砕後は粒子の形状も比較的球状に近
く、いわゆる粒界破断による粉砕が進行しているように
見える。
There is a correlation between coarse pulverization and the microstructure of the master alloy described in (1). For example, a master alloy having a relatively fine average particle size of about 5 to 30 μm is generally hard and requires a lot of stress and time during coarse grinding. In addition, the shape of the particles after pulverization is relatively spherical, and it appears that pulverization is progressing due to so-called intergranular fracture.

一方150μm以上の平均粒径まで成長した母合金では
、粗粉砕により同様に微粉化できるが、粒内破断による
鋭い端部を有する粒子も多く見られる。
On the other hand, a master alloy that has grown to an average particle size of 150 μm or more can be similarly pulverized by coarse pulverization, but many particles have sharp edges due to intragranular fractures.

以上に述べた粗粉砕後は通常平均粒径が50〜100μ
mの粒子の集合体が得られる。しかし母合金の微構造及
び粉砕方法により、得られた粒子の様子は大きくことな
り、そのことが粗粉砕後の処理の効果に大きく影響する
After the above-mentioned coarse grinding, the average particle size is usually 50 to 100μ.
An aggregate of m particles is obtained. However, the appearance of the obtained particles varies greatly depending on the microstructure of the master alloy and the grinding method, which greatly affects the effectiveness of the treatment after coarse grinding.

(3)分級 上記(2)の粗粉砕後分級を施すと、その後の処理の結
果を大きく左右する場合がある。すなわち、粗粉砕時の
平均粒径やその粒度分布は母合金と粗粉砕方法により大
きく異なり、一般には微細化された粒子では機械的応力
による粒子内の欠陥や表面の酸化等組成の変化も多く見
られる。従ってこの後、固相−気相反応で強磁性体を形
成する場合は、できるだけ結晶内が欠陥を含まず、粒子
表面も正常な粒子が好ましいため、分級により、例えば
50μm以下の粒子を除去すると、その後の処理を経て
最終的に得られる磁性材料の特性が向上する。
(3) Classification If classification is performed after the coarse pulverization described in (2) above, the results of subsequent processing may be greatly influenced. In other words, the average particle size and particle size distribution during coarse grinding vary greatly depending on the mother alloy and the coarse grinding method, and in general, fine particles have many changes in composition due to mechanical stress, such as defects within the particles and oxidation on the surface. Can be seen. Therefore, when forming a ferromagnetic material through a solid phase-gas phase reaction, it is preferable that the inside of the crystal contains as few defects as possible and the surface of the particles is normal. , the properties of the magnetic material finally obtained through subsequent processing are improved.

ここで例として述べているRe−Fe−N系磁性材料ま
たはRe−Fe−N−H−0系磁性材料では、(1)〜
(3)までの工程の後、まず窒素、水素を主に反応させ
た後、酸素を含有させる。なおここまでの段階における
材料粉体中の窒素、水素量は根鉢程度であり、酸素量は
300〜10001)p11100含有量である。
In the Re-Fe-N magnetic material or Re-Fe-N-H-0 magnetic material described here as an example, (1) to
After the steps up to (3), first, nitrogen and hydrogen are mainly reacted, and then oxygen is added. Note that the amount of nitrogen and hydrogen in the material powder at this stage is about the same as that of a root ball, and the amount of oxygen is 300 to 10,000 p11100.

(4)窒化、水素化 粉砕された原料母合金中に窒素及び水素を化合もしくは
含浸させる方法としては原料合金粉末をアンモニアガス
或いはアンモニアガスを含む還元性の混合ガス中で加圧
あるいは加熱処理する方法が有効である。合金中に含ま
れる窒素及び水素量はアンモニアガス含有混合ガスの混
合成分比、及び加熱温度、加圧力、処理時間によって制
御し得る。
(4) Nitriding and Hydrogenation A method for combining or impregnating nitrogen and hydrogen into the pulverized raw material master alloy is to pressurize or heat-treat the raw material alloy powder in ammonia gas or a reducing mixed gas containing ammonia gas. The method is valid. The amount of nitrogen and hydrogen contained in the alloy can be controlled by the mixture component ratio of the ammonia gas-containing mixed gas, heating temperature, pressurizing force, and treatment time.

混合ガスとしては水素、ヘリウム、ネオン、窒素及びア
ルゴンのいずれか、もしくは2種以上とアンモニアガス
を混合したガスが有効である。混合比は処理条件との関
連で変化させ得るが、アンモニアガス分圧としては、と
くに0.02〜0.75atmが有効であり、処理温度
は200〜650℃の範囲が好ましい。低温では侵入速
度が小さく、650℃以上の高温では鉄の窒化物が生成
し、磁気特性は低下する。加圧処理ではlOatm程度
の加圧でも窒素、水素の含有量を変化させ得る。
As the mixed gas, a mixture of hydrogen, helium, neon, nitrogen, and argon, or a mixture of two or more of them and ammonia gas is effective. Although the mixing ratio can be changed in relation to the processing conditions, it is particularly effective for the ammonia gas partial pressure to be from 0.02 to 0.75 atm, and for the processing temperature to be preferably in the range of 200 to 650°C. At low temperatures, the penetration rate is low, and at high temperatures of 650° C. or higher, iron nitrides are produced, and the magnetic properties are degraded. In the pressurized treatment, the nitrogen and hydrogen contents can be changed even at a pressure of about 1 Oatm.

アンモニアガス以外のガスを窒化、水素化雰囲気の主成
分とすると、反応効率は著しく低下する。しかし、たと
えば水素ガスと窒素ガスの混合ガスを用い長時間反応を
行うと窒素及び水素の導入は可能である。
If a gas other than ammonia gas is used as the main component of the nitriding or hydrogenation atmosphere, the reaction efficiency will be significantly reduced. However, it is possible to introduce nitrogen and hydrogen, for example, by carrying out a long reaction using a mixed gas of hydrogen gas and nitrogen gas.

(5)焼鈍 窒化、水素化により窒素、水素を化合もしくは含有した
磁性体はその段階では組成の不均一性及び歪による結晶
内の欠陥などが存在し磁気特性は劣化している。従って
焼鈍により磁気特性は向上する。雰囲気としてはアルゴ
ン、ヘリラムのように窒素あるいは水素を含有しないガ
ス種が好ましい。
(5) Magnetic materials that combine or contain nitrogen and hydrogen through annealing and nitriding or hydrogenation have deteriorated magnetic properties due to compositional non-uniformity and defects within the crystal due to strain. Therefore, magnetic properties are improved by annealing. The atmosphere is preferably a gas species that does not contain nitrogen or hydrogen, such as argon or helium.

(8)分級 (5)の焼鈍が終了した後、いわゆるガス吸蔵・粉砕あ
るいは熱シヨツク粉砕により粒子系の分布は広がり粒子
径ごとに磁気物性にも相違が生じる。この磁気特性の相
違を明確にするために分級が有効である。分級は一般的
な機械的メツシュによる分級でも十分有効である。しか
しジェットミルなどを用いた分級でも有効である。
(8) After the annealing of classification (5) is completed, the distribution of the particle system expands due to so-called gas absorption and pulverization or thermal shock pulverization, and differences in magnetic properties occur depending on the particle size. Classification is effective in clarifying this difference in magnetic properties. Classification using a general mechanical mesh is also sufficiently effective. However, classification using a jet mill or the like is also effective.

(7)微粉砕 窒化、水素化後の粗粉はそのままでも飽和磁化13KG
、保磁力500〜7000eを有しているが、これを振
動ボールミル、遊星ボールミル、更に回転型の通常のポ
ット型ボールミルで粉砕することにより、保磁力をlo
KOe以上まで向上させることが可能である。通常磁化
は多少低下するが、必要な磁化、保磁力を有する粉体を
この微粉砕条件の設定で得ることができる。
(7) The coarse powder after finely pulverized nitriding and hydrogenation has a saturation magnetization of 13KG as it is.
, has a coercive force of 500 to 7000e, but by grinding it with a vibrating ball mill, a planetary ball mill, and even a rotary ordinary pot-type ball mill, the coercive force can be reduced to lo
It is possible to improve it to KOe or higher. Normally, the magnetization decreases to some extent, but powder having the required magnetization and coercive force can be obtained by setting these pulverization conditions.

この微粉砕工程において、グローブボックス中における
操作、空気中における操作等雰囲気中の酸素分圧を制御
することで物質が含む酸素量は変化する。また粉砕に用
いる溶媒、例えばエタノール、水の有機溶媒中の水分及
び酸素量によって、物質の含有する酸素量及びその存在
状態は変化する。この段階では酸素量を、例えば350
0ppm以上のレベルで制御できる。
In this pulverization process, the amount of oxygen contained in the substance is changed by controlling the oxygen partial pressure in the atmosphere, such as during operation in a glove box or in air. Further, the amount of oxygen contained in the substance and its state of existence vary depending on the amount of water and oxygen in the organic solvent of the solvent used for pulverization, such as ethanol and water. At this stage, the amount of oxygen is set to 350, for example.
It can be controlled at a level of 0 ppm or higher.

以上のようにして作製した磁性粉体を、焼結、ボンドの
永久磁石、磁気記録用の塗布膜などに形成できる。
The magnetic powder produced as described above can be formed into sintered or bonded permanent magnets, coating films for magnetic recording, and the like.

[実施例コ 以下に本発明を実施例によって詳細に説明する。[Example code] The present invention will be explained in detail below using examples.

実施例1 希土類元素としてSmを用いたSm−Fe−N−H−0
系磁性粉体の調製方法について述べる。はじめにSm−
Feの組成としてSm2Fe+5.sとなるようにそれ
ぞれ3Nの純度のSm及びFeインゴットを計量+る。
Example 1 Sm-Fe-N-H-0 using Sm as the rare earth element
The method for preparing the system magnetic powder will be described. Introduction Sm-
The composition of Fe is Sm2Fe+5. Sm and Fe ingots each having a purity of 3N are weighed so that s is obtained.

ますFe金属を高周波炉中に設置したセラミックス製鋳
型中へ入れ、10’ aim程度の減圧下で溶解する。
First, Fe metal is placed in a ceramic mold placed in a high frequency furnace and melted under reduced pressure of about 10' aim.

次いでアルゴンガスを導入して、多少減圧下でSm金属
をFe溶解物中へ混入させ、1600℃付近で数分間高
周波溶解する。この混合溶融体を1500〜1600℃
に保持したまま、鉄製約3mm幅の鋳型中へ流し込み冷
却する。鋳型を室温まで冷却した後、装置から取り出し
合金を数crA角程度に粗粉砕し、管状炉中へ移してか
ら850〜1250℃の温度範囲で2〜48時間の範囲
で焼鈍する。ただしこの時管状炉には高純度アルゴンガ
スを流す。
Next, argon gas is introduced, and Sm metal is mixed into the Fe melt under somewhat reduced pressure, followed by high frequency melting at around 1600° C. for several minutes. This mixed melt was heated to 1500 to 1600℃.
The mixture was poured into a steel mold with a width of about 3 mm and cooled. After the mold is cooled to room temperature, the alloy is taken out from the apparatus, coarsely ground into pieces of several crA square, transferred to a tube furnace, and then annealed at a temperature in the range of 850 to 1250°C for 2 to 48 hours. However, at this time, high-purity argon gas is flowed through the tube furnace.

第1図に示したのは、上記の焼鈍の結果の例である。焼
鈍温度は940℃、1095℃、1255℃の3温度で
、焼鈍時間は45分から32時間の範囲で変化させた。
FIG. 1 shows an example of the results of the above annealing. The annealing temperature was 940°C, 1095°C, and 1255°C, and the annealing time was varied within a range of 45 minutes to 32 hours.

その場合、各条件ごとに最終的に得られる母合金の平均
結晶粒径は変化する。
In that case, the average crystal grain size of the master alloy finally obtained changes for each condition.

平均結晶粒径は示差型電子顕微鏡写真を撮影後、その写
真からジェフリー(Jel’[’ry)法により計測し
た。また焼鈍後の合金からα−Fe相が消失し、5tr
zFez柑とSm2FeI7相のみの混合相となる焼鈍
条件は図中の破線よりも右上の領域にある。第1図より
明らかなように、αFe相が消失した母合金はこの実施
例の実験条件の範囲内では約30μIから 150μm
までの平均結晶粒径を有している。また、鋳型の幅を狭
くして約1laIllとした以外は全く同じ処理を施し
た場合には950℃で約24時間焼鈍するとα−Fe相
は消失し、平均結晶粒径は約6μmとなる。
The average crystal grain size was measured by the Jel'['ry] method after taking a differential electron micrograph. In addition, the α-Fe phase disappears from the alloy after annealing, and the 5tr
The annealing conditions that result in a mixed phase of only the zFez orange and Sm2FeI7 phases are in the upper right region of the broken line in the figure. As is clear from Figure 1, the master alloy in which the αFe phase has disappeared has a thickness of about 30 μI to 150 μI within the experimental conditions of this example.
It has an average grain size of up to . Further, when the same treatment is performed except that the width of the mold is narrowed to about 1 la Ill, the α-Fe phase disappears after annealing at 950° C. for about 24 hours, and the average crystal grain size becomes about 6 μm.

以上のようにして作製した母合金を50〜100μmの
平均結晶粒径を有するようにコーヒーミルを用いて粗粉
砕し、アンモニア−水素モル比0.35−0.65の混
合ガス中、465℃で2時間加熱し、その後アルゴンガ
ス中で465℃で2.5時間加熱処理する。更に処理後
の粉体を20〜108μmのフルイを用いて8段階に分
級し、各粒度ごとの物性を振動型磁気測定機(VSM)
を用いて、測定して第2図及び第3図の結果を得た。
The master alloy prepared as described above was coarsely ground using a coffee mill to have an average crystal grain size of 50 to 100 μm, and the mixture was heated at 465°C in a mixed gas with an ammonia-hydrogen molar ratio of 0.35 to 0.65. for 2 hours, and then heat treated at 465° C. for 2.5 hours in argon gas. Furthermore, the treated powder was classified into eight stages using a sieve of 20 to 108 μm, and the physical properties of each particle size were measured using a vibrating magnetometer (VSM).
The results shown in FIGS. 2 and 3 were obtained using the following.

なお、これらのRe−Fe−N−H−0系磁性材料は、
平均組成を組成式で表わすとS m2 F 617N3
.7−3.g Ho、0+00,5となる◎組成の変動
は磁気特性と相関するが、ここで論じている内容を覆え
すほどの変化ではない。
In addition, these Re-Fe-N-H-0 based magnetic materials are:
The average composition is expressed as a composition formula: S m2 F 617N3
.. 7-3. g Ho, 0+00,5 ◎The variation in composition correlates with the magnetic properties, but the change is not large enough to override what is being discussed here.

第2図では、磁気異方性はσ1/σ’ (15kOe)
で測定したが、これは4πI−H曲線の磁場配向方向(
σ−)と、それに90℃方向(σ1)の磁化の比を示し
、数値が小さいほど磁気異方性は良好である。これらの
試料では3つのグループが存在し、50〜150μ11
27.31μ■及び88mは数値が大きく異なる。しか
し、これらのデータで第一に注目すべきなのは、母合金
の平均結晶粒径近くに粉砕された粒子がもっともよい磁
気異方性を示ししている。なお150μmの母合金平均
結晶粒系の試料ではこの粒径領域ではほぼ同様の磁気異
方性を示している。
In Figure 2, the magnetic anisotropy is σ1/σ' (15kOe)
This was measured in the magnetic field orientation direction of the 4πI-H curve (
σ−) and the magnetization in the 90° C. direction (σ1). The smaller the value, the better the magnetic anisotropy. Three groups are present in these samples, 50-150μ11
27.31μ■ and 88m have very different numerical values. However, what is most noteworthy about these data is that particles ground to a size close to the average grain size of the master alloy exhibit the best magnetic anisotropy. Note that samples with a master alloy average grain size of 150 μm show almost the same magnetic anisotropy in this grain size region.

第3図では第2図の試料の母合金平均結晶粒径ごとに分
級粒子径の平均と飽和磁化の相関を示した。ここでは磁
気異方性と同様に50.150μmの試料がもっとも高
い磁化を示し、6μ−の試料がもっとも低い磁化を示し
ている。また、明瞭とは言えぬが母合金平均結晶粒径と
粉砕結晶粒径が近い値で飽和磁化も高い傾向がある。
FIG. 3 shows the correlation between the average classified particle size and the saturation magnetization for each mother alloy average crystal grain size of the sample shown in FIG. 2. Here, similarly to the magnetic anisotropy, the 50.150 μm sample shows the highest magnetization, and the 6 μm sample shows the lowest magnetization. Although it is not clear, there is a tendency for saturation magnetization to be high when the average crystal grain size of the mother alloy and the crushed crystal grain size are close to each other.

以上のことは、合成された母合金の平均結晶粒径が磁気
特性、すなわち飽和磁化、保磁力、磁気異方性、角型比
に関連することを示している。
The above shows that the average grain size of the synthesized master alloy is related to the magnetic properties, namely saturation magnetization, coercive force, magnetic anisotropy, and squareness ratio.

次に各母合金粒子径ごとに分級して20〜38μ麿の径
の部分のみを取り出し、通常の回転ボールミルで粉砕し
た。この粉体を一軸加圧のダイスで成形圧力的10to
n/ca+、2で成形し、10+nmX5IIlffl
X2I11の圧粉体を得て、この磁気塗膜性を7111
1定した結果を第4図に示す。第4図には30.50.
80.150μIの母合金平均結晶粒径を出発試料とし
た場合も代表例として示した。なお、回転ボールミルで
粉砕した後の微粉体はいずれの試料でも5μm以下に粉
砕されている。
Next, each mother alloy particle was classified according to its particle size, and only a portion with a diameter of 20 to 38 μm was taken out and pulverized using an ordinary rotary ball mill. This powder is molded using a uniaxial pressure die at a pressure of 10 to
Molded with n/ca+, 2, 10+nmX5IIlffl
A powder compact of X2I11 was obtained, and the magnetic coating properties were 7111.
Figure 4 shows the results. Figure 4 shows 30.50.
A case where the starting sample had a master alloy average crystal grain size of 80.150 μI was also shown as a representative example. In addition, the fine powder after being pulverized with a rotary ball mill was pulverized to 5 μm or less in all samples.

第4図から最大磁気エネルギー積(B11)□1値は3
0μmの母合金平均結晶粒径の試料で最大になっている
ことが明らかである。以上のことは、母合金の平均結晶
粒径を制御することが微粉砕後の粉体の磁気特性にまで
影響することを示している。
From Figure 4, the maximum magnetic energy product (B11) □1 value is 3
It is clear that the sample with a mother alloy average crystal grain size of 0 μm has the largest value. The above shows that controlling the average grain size of the master alloy affects the magnetic properties of the powder after pulverization.

[発明の効果] 以上述べたようにRe−Fe−N系磁性材料またはRe
−Fe−N−H−0系磁性材料においては、その合成時
、はじめに作製するRe−Fe合金の微構造、特に粒子
径及び各相の混合及び分相状態を制御すること、及び各
段階で分級を行うことが磁気特性を向上させるために有
効である。
[Effect of the invention] As described above, Re-Fe-N magnetic material or Re
-Fe-N-H-0-based magnetic materials need to be synthesized by controlling the microstructure of the initially produced Re-Fe alloy, especially the particle size and the mixing and phase separation state of each phase, and at each stage. Classification is effective for improving magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼鈍条件と焼鈍後の平均結晶粒径の相関を示す
グラフ、 第2図は母合金の平均結晶粒径とそれを粉砕した後の各
粒子系ごとの磁気異方性の相関を示すグラフ。 第3図は母合金の平均結晶粒径とそれを粉砕した後の各
粒径ごとの飽和磁化の相関を示すグラ八 第4図は微粉砕条件を同一にした場合のボンド磁石磁気
特性と母合金平均結晶粒径の相互関係を示すグラフ、 第5図はSm−Fe系相図の一部を示す状態図である。
Figure 1 is a graph showing the correlation between annealing conditions and the average grain size after annealing. Figure 2 is a graph showing the correlation between the average grain size of the master alloy and the magnetic anisotropy of each particle system after crushing it. Graph showing. Figure 3 shows the correlation between the average crystal grain size of the master alloy and the saturation magnetization for each grain size after crushing it. Figure 4 shows the magnetic properties of the bonded magnet and the master alloy under the same pulverization conditions. FIG. 5 is a graph showing the interrelationship of average grain size of the alloy. FIG. 5 is a phase diagram showing a part of the Sm-Fe system phase diagram.

Claims (3)

【特許請求の範囲】[Claims] (1)材料の微構造における平均結晶粒径がサブミクロ
ンから300μmの範囲にあることを特徴とする希土類
元素−鉄−窒素系磁性材料。
(1) A rare earth element-iron-nitrogen magnetic material characterized in that the average crystal grain size in the material's microstructure is in the range of submicrons to 300 μm.
(2)希土類元素−鉄−窒素系磁性材料の母合金を合成
する際、溶湯の冷却速度を制御すること、及び焼鈍時の
温度を700〜1300℃の範囲で変化させ、焼鈍時間
は鉄を主成分とする相が磁性材料として許容できる量ま
で減少させ得る時間とすることによって母合金の平均結
晶粒径をサブミクロンから300μmの範囲に調整する
ことを特徴とする希土類元素−鉄−窒素系磁性材料の製
造方法。
(2) When synthesizing a master alloy of rare earth element-iron-nitrogen magnetic material, it is necessary to control the cooling rate of the molten metal, vary the temperature during annealing in the range of 700 to 1300°C, and set the annealing time to A rare earth element-iron-nitrogen system characterized by adjusting the average crystal grain size of the master alloy to a range from submicron to 300 μm by allowing the phase as the main component to decrease to an amount acceptable as a magnetic material. Method of manufacturing magnetic materials.
(3)希土類元素−鉄−窒素系磁性材料粉体の製造方法
において、希土類元素−鉄合金調製後、あるいは希土類
元素−鉄−窒素系磁性材料粉体合成後に分級を施しサブ
ミクロンから300μmの範囲の任意の粒径分布領域の
粉体を分別することを特徴とする希土類−鉄−窒素系磁
性材料粉体の製造方法。
(3) In the method for producing rare earth element-iron-nitrogen magnetic material powder, classification is performed after preparing the rare earth element-iron alloy or after synthesizing the rare earth element-iron-nitrogen magnetic material powder in the range from submicron to 300 μm. 1. A method for producing rare earth-iron-nitrogen magnetic material powder, which comprises separating powder having an arbitrary particle size distribution region.
JP1278360A 1989-09-13 1989-10-27 Method for producing rare earth element-iron-nitrogen based magnetic material with controlled microstructure Expired - Lifetime JP2691034B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1278360A JP2691034B2 (en) 1989-10-27 1989-10-27 Method for producing rare earth element-iron-nitrogen based magnetic material with controlled microstructure
EP90117488A EP0417733B1 (en) 1989-09-13 1990-09-11 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen
US07/580,556 US5164104A (en) 1989-09-13 1990-09-11 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen and bonded magnet containing the same
DE69007720T DE69007720T2 (en) 1989-09-13 1990-09-11 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen.
AU62481/90A AU624995C (en) 1989-09-13 1990-09-12 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1278360A JP2691034B2 (en) 1989-10-27 1989-10-27 Method for producing rare earth element-iron-nitrogen based magnetic material with controlled microstructure

Publications (2)

Publication Number Publication Date
JPH03141608A true JPH03141608A (en) 1991-06-17
JP2691034B2 JP2691034B2 (en) 1997-12-17

Family

ID=17596255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1278360A Expired - Lifetime JP2691034B2 (en) 1989-09-13 1989-10-27 Method for producing rare earth element-iron-nitrogen based magnetic material with controlled microstructure

Country Status (1)

Country Link
JP (1) JP2691034B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206046A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Magnet molding and method of making the same
JP4936593B2 (en) * 1998-03-27 2012-05-23 株式会社東芝 Method for producing magnet powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936593B2 (en) * 1998-03-27 2012-05-23 株式会社東芝 Method for producing magnet powder
JP2010206046A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Magnet molding and method of making the same

Also Published As

Publication number Publication date
JP2691034B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JPS6187825A (en) Manufacture of permanent magnet material
EP0546799A1 (en) Method for producing rare earth alloy magnet powder
McGuiness et al. The production and characterization of bonded, hot-pressed and die-upset HDDR magnets
US5137587A (en) Process for the production of shaped body from an anisotropic magnetic material based on the sm-fe-n system
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH03141608A (en) Rare earth element-iron-nitrogen magnetic material controlled in microstructure, manufacture, and manufacture of powder which is its stock
JP2857476B2 (en) Permanent magnet consisting of single domain particles
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JP3667783B2 (en) Method for producing raw powder for anisotropic bonded magnet
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH10317003A (en) Production of anisotropic rare earth alloy powder for permanent magnet
JPH0845718A (en) Magnetic material and its manufacture
JP3222919B2 (en) Method for producing nitride-based magnetic material
JP2926161B2 (en) Manufacturing method of permanent magnet
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2003133117A (en) METHOD FOR MANUFACTURING 2-17 BASED Sm-Co RARE-EARTH PERMANENT MAGNET
JP2001155912A (en) Method of manufacturing rare earth based alloy powder for permanent magnet, material alloy of intermediate product of the powder and manufacturing method therefor
JP2000232012A (en) Manufacture of rare-earth magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JPH06112019A (en) Nitride magnetic material
JPS62122106A (en) Sintered permanent magnet
JPH0199201A (en) Rare earth element-fe-b series cast permanent magnet and manufacture thereof
JPH03160705A (en) Bonded magnet
JPS63216307A (en) Alloy powder for magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13