JPH0314154B2 - - Google Patents

Info

Publication number
JPH0314154B2
JPH0314154B2 JP56098278A JP9827881A JPH0314154B2 JP H0314154 B2 JPH0314154 B2 JP H0314154B2 JP 56098278 A JP56098278 A JP 56098278A JP 9827881 A JP9827881 A JP 9827881A JP H0314154 B2 JPH0314154 B2 JP H0314154B2
Authority
JP
Japan
Prior art keywords
cobalt
feed water
supply system
cooling water
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56098278A
Other languages
Japanese (ja)
Other versions
JPS58797A (en
Inventor
Yoshinori Meguro
Kimio Sakai
Michoshi Yamamoto
Katsumi Oosumi
Yoshe Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56098278A priority Critical patent/JPS58797A/en
Publication of JPS58797A publication Critical patent/JPS58797A/en
Publication of JPH0314154B2 publication Critical patent/JPH0314154B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原子炉の冷却材供給系に係り、特
に、コストアツプを極力抑制しながら、原子炉内
に持ち込まれ放射化される物質の量を削減するの
に好適な原子炉の冷却材供給系の構造に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a coolant supply system for a nuclear reactor, and in particular, the present invention relates to a coolant supply system for a nuclear reactor. The present invention relates to a structure of a coolant supply system for a nuclear reactor that is suitable for reducing energy consumption.

[従来の技術] 沸騰水型原子炉の圧力容器内で発生した蒸気
は、タービンに送られ、復水器で凝縮される。凝
縮により得られた冷却水は、脱塩器を通り、複数
の給水加熱器で所定温度まで加熱された後、原子
炉圧力容器内に再び戻される。
[Prior Art] Steam generated in the pressure vessel of a boiling water nuclear reactor is sent to a turbine and condensed in a condenser. The cooling water obtained by condensation passes through a demineralizer, is heated to a predetermined temperature by a plurality of feed water heaters, and is then returned to the reactor pressure vessel.

冷却水とともに原子炉圧力容器に持ち込まれ放
射化されたクラツドおよびイオンは、脱塩器によ
り除去される。また、脱塩器の出口側では冷却材
供給系に酸素を注入し、冷却材供給系の腐食によ
るクラツドの発生を防止している。このような対
策を講ずることにより、原子炉圧力容器内に持ち
込まれ放射化される物質は著しく削減される。
Activated crud and ions brought into the reactor pressure vessel with cooling water are removed by a desalter. Additionally, oxygen is injected into the coolant supply system on the outlet side of the demineralizer to prevent crud formation due to corrosion of the coolant supply system. By taking such measures, the amount of material brought into the reactor pressure vessel and activated will be significantly reduced.

しかし、原子炉圧力容器に接続される再循環系
配管の表面線量率は、年々、徐々に傾向にあつ
た。
However, the surface dose rate of the recirculation system piping connected to the reactor pressure vessel showed a gradual trend over the years.

[発明が解決しようとする課題] そこで、例えば、『東芝レビユー』(第35巻第5
号 昭和55年4月発行)404〜409頁に記載のよう
に、コバルトが放射線源として主要な地位をしめ
ているという現実認識から、すべての給水加熱器
のチユーブ材料を低コバルト化することが提案さ
れて、持ち込みコバルトの低減という目的は、一
応達成された。
[Problem to be solved by the invention] Therefore, for example, "Toshiba Review" (Vol. 35, No. 5)
As stated on pages 404-409 (issued April 1982), it was proposed to reduce the cobalt content of all feedwater heater tube materials based on the reality that cobalt plays a major role as a radiation source. Therefore, the objective of reducing the amount of cobalt brought in was achieved to some extent.

ところで、1100MWe級の沸騰水型原子炉にお
ける給水加熱器には、チユーブ材料として、約
300トンのステンレス材が用いられている。コバ
ルトの含有量を特に制限しないすなわち従来のス
テンレス材料は、コストが3500円/Kg程度である
のに対して、仕様により差はあるものの、コバル
トを低減したステンレス材料は、コストが20%〜
70%くらいは高くなる。
By the way, feed water heaters in 1100 MWe class boiling water reactors use tube materials of approx.
300 tons of stainless steel material is used. Conventional stainless steel materials that do not particularly limit the cobalt content cost around 3,500 yen/Kg, while stainless steel materials with reduced cobalt cost 20% to 20%, although this varies depending on the specifications.
It will be about 70% higher.

したがつて、上記文献で提案されているよう
に、すべての給水加熱器のチユーブ材料を低コバ
ルト化すると、 3500円×(20〜70)%×300トン=2億1000万円
〜7億3500万円 ものコストアツプとなる。このように、どの程度
までコバルトを制限するかによつて異なるが、最
低でも2億1000万円程度のコストアツプとなつて
しまう問題があつた。
Therefore, as proposed in the above literature, if the tube materials of all feed water heaters are made to have low cobalt content, the cost will be 3,500 yen x (20-70)% x 300 tons = 210 million yen to 735,000 yen. This will increase costs by as much as 10,000 yen. As described above, there was a problem in which the cost increased by at least 210 million yen, depending on the extent to which cobalt was restricted.

本発明の目的は、すべての給水加熱器のチユー
ブ材料を低コバルト化した場合と同等に原子炉圧
力容器に持ち込まれるコバルト量を削減し、しか
もコストアツプを極力抑制することが可能な構造
の原子炉の冷却材供給水系を提供することであ
る。
The purpose of the present invention is to reduce the amount of cobalt carried into the reactor pressure vessel by reducing the amount of cobalt contained in all feedwater heater tubes, and to reduce the cost increase as much as possible. The objective is to provide a coolant supply water system.

[課題を解決するための手段] 本発明は、上記目的を達成するために、原子炉
容器内に冷却材を供給する配管と、前記配管に設
置された複数のシエルアンドチユーブ型の加熱器
とからなる原子炉の冷却材供給系において、それ
ら複数の加熱器のうち、配管の冷却材温度が100
℃以上になる部分に配置されている加熱器のチユ
ーブが、コバルト含有量0.25%以下のステンレス
鋼またはコバルト含有量0.1%以下のチタン材か
らなり、配管の冷却材温度が100℃未満になる部
分に配置されている加熱器のチユーブが、前記ス
テンレス鋼よりもコバルト含有量の多いステンレ
ス鋼からなる原子炉の冷却材供給系を提供するも
のである。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a pipe for supplying coolant into a reactor vessel, a plurality of shell-and-tube type heaters installed in the pipe, and a pipe for supplying a coolant into a reactor vessel. In a nuclear reactor coolant supply system consisting of
℃ or higher, the tube of the heater is made of stainless steel with a cobalt content of 0.25% or less or titanium material with a cobalt content of 0.1% or less, and the coolant temperature in the pipe is below 100℃. The heater tube located in the reactor provides a coolant supply system for the nuclear reactor made of stainless steel with a higher cobalt content than the stainless steel mentioned above.

[作用] 本発明は、沸騰水型原子炉の冷却材供給系の各
部分における冷却材中に含まれる不純物濃度を詳
細に検討することにより得られた独自の知見に基
づいてなされたものである。その検討過程を次に
説明する。
[Function] The present invention was made based on unique findings obtained through detailed study of the impurity concentration contained in the coolant in each part of the coolant supply system of a boiling water reactor. . The examination process will be explained next.

脱塩器の下流側から原子炉圧力容器に流入する
直前の冷却水中の不純物を分析したところ、コバ
ルト(コバルト59)が多量に含まれていた。こ
のコバルトは、まだ放射化されていない。原子炉
圧力容器に流入する直前のコバルト濃度を100%
として、冷却材供給系内各部分におけるコバルト
の相対的濃度分布の一例を第1図に示す。冷却材
供給系内の冷却水が給水加熱器により加熱され、
その温度が上昇するに伴い、冷却水中のコバルト
の量が増大している。冷却水温度が100℃以上に
なると、冷却水中のコバルト量が増加し始め、特
に、冷却水温度が150℃以上になると、その量が
著しく増大している。このように増加する原因
は、冷却水温度が100℃以上になると、この冷却
水と接触する冷却材供給系の配管からコバルトが
溶出することであると考えられる。
Analysis of impurities in the cooling water just before it flows into the reactor pressure vessel from the downstream side of the desalter revealed that it contained a large amount of cobalt (Cobalt 59). This cobalt has not yet been activated. 100% cobalt concentration just before entering the reactor pressure vessel
FIG. 1 shows an example of the relative concentration distribution of cobalt in each part of the coolant supply system. The cooling water in the coolant supply system is heated by the feed water heater,
As its temperature rises, the amount of cobalt in the cooling water increases. When the cooling water temperature reaches 100°C or higher, the amount of cobalt in the cooling water starts to increase, and especially when the cooling water temperature reaches 150°C or higher, the amount increases significantly. The reason for this increase is thought to be that when the cooling water temperature reaches 100°C or higher, cobalt is eluted from the piping of the coolant supply system that comes into contact with the cooling water.

コバルト59のような非放射性のコバルトが、
原子炉圧力容器内に流入すると、中性子の照射を
受け、放射性コバルトであるコバルト60に変わ
る。このため、再循環系配管内面にコバルト60
が蓄積され、再循環系配管内面の表面線量率が増
大する。
Non-radioactive cobalt, such as cobalt-59,
When it flows into the reactor pressure vessel, it is irradiated with neutrons and turns into cobalt-60, which is radioactive cobalt. For this reason, cobalt 60 is added to the inner surface of the recirculation system piping.
is accumulated, increasing the surface dose rate on the inner surface of the recirculation system piping.

結局、再循環系配管等の表面線量率が増大する
原因は、冷却材供給系からコバルトが冷却材中に
溶出することである。したがつて、このコバルト
の溶出を防止すれば、再循環系配管等の表面線量
率の増加を抑制できることになる。
Ultimately, the reason why the surface dose rate of recirculation system piping and the like increases is that cobalt is leached into the coolant from the coolant supply system. Therefore, if this elution of cobalt is prevented, an increase in the surface dose rate of recirculation system piping, etc. can be suppressed.

一般に、冷却材供給系の配管は炭素鋼で作ら
れ、給水加熱器の伝熱管は、SUS304で作ら
れている。給水加熱器は、冷却材供給系に、例え
ば6段設置されている。第1図に示すA,B,
C,D,E,Fは、冷却材供給系に設置された第
1段、第2段、第3段、第4段、第5段、第6段
(最終段)の給水加熱器を示している。このよう
にSUS304の構造材で作られた給水加熱器を
含む冷却材供給系におけるコバルトの溶出源を探
求したところ、冷却水温度が100℃以上のところ
に配置された給水加熱器の伝熱管であることが判
明した。すなわち、SUS304に含まれている
コバルトが、冷却水中に溶出するのである。
Generally, the pipes of the coolant supply system are made of carbon steel, and the heat exchanger tubes of the feed water heater are made of SUS304. For example, six feed water heaters are installed in the coolant supply system. A, B shown in Figure 1,
C, D, E, F indicate the 1st stage, 2nd stage, 3rd stage, 4th stage, 5th stage, and 6th stage (final stage) feed water heaters installed in the coolant supply system. ing. In this way, we investigated the source of cobalt elution in the coolant supply system, including the feedwater heater made of SUS304 structural material, and found that the heat exchanger tube of the feedwater heater, which is located where the cooling water temperature is over 100℃, It turns out that there is something. In other words, cobalt contained in SUS304 is eluted into the cooling water.

このため、コバルト溶出量の多い給水加熱器の
みを、低コバルト含有材からなる伝熱管を有する
給水加熱器に替えれば、全体の給水加熱器のの伝
熱管を低コバルト含有材に替えた場合と同等に、
原子炉圧力容器に持ち込まれるコバルト量を削減
し、しかもコストアツプを極力抑制することが可
能となる。
Therefore, if only the feed water heater that elutes a large amount of cobalt is replaced with a feed water heater that has heat transfer tubes made of a low cobalt-containing material, it will be the same as replacing the heat transfer tubes of the entire feed water heater with low cobalt-containing materials. Equally,
It becomes possible to reduce the amount of cobalt brought into the reactor pressure vessel and to suppress cost increases as much as possible.

実質的には、150℃以上になる部分の給水加熱
器の伝熱管のみを低コバルト含有材に替えれば、
コスト削減効果は大きいが、より多くの安全率を
見込むと、100℃以上になる部分の給水加熱器の
伝熱管を低コバルト含有材に替えることになる。
その場合でも、全体の給水加熱器の伝熱管を低コ
バルト含有材に替えた場合と比較して、コストを
大幅に削減できる。
Practically speaking, if only the heat transfer tubes in the feed water heater where the temperature exceeds 150°C are replaced with low cobalt-containing materials,
Although the cost reduction effect is significant, in order to increase the safety factor, the heat exchanger tubes in the feedwater heaters where the temperature reaches 100°C or higher will be replaced with low-cobalt-containing materials.
Even in that case, costs can be significantly reduced compared to replacing the heat exchanger tubes in the entire feedwater heater with low-cobalt-containing materials.

[実施例] このような検討結果に基づいてなされた本発明
の好適な一実施例の系統構成を第2図に示す。
[Embodiment] FIG. 2 shows a system configuration of a preferred embodiment of the present invention based on the results of such studies.

原子炉圧力容器1で発生した蒸気は、主蒸気管
2を通り、タービン3に送られる。タービン3か
ら吐出された蒸気は、復水器4で凝縮される。復
水器4内の凝縮水は、冷却水として、復水ポンプ
5で昇圧されて脱塩器6に送られる。脱塩器6
は、冷却水中に含まれるクラツドおよびイオンを
取り除く。脱塩器6から流出した冷却水は、給水
加熱器7,8,9,10,11,13を通る間
に、順次昇温され、給水ポンプ12で昇圧され、
給水配管19を通り、原子炉圧力容器1内に戻さ
れる。原子炉圧力容器1には、再循環系配管14
と再循環ポンプ15とを含む再循環系が設けられ
ている。再循環系配管14からは、炉浄化系配管
17が分岐しており、炉浄化系ポンプ16と浄化
装置18とを介して、浄化した炉水を前記給水配
管19に戻すようになつている。
Steam generated in the reactor pressure vessel 1 passes through the main steam pipe 2 and is sent to the turbine 3. Steam discharged from the turbine 3 is condensed in a condenser 4. The condensed water in the condenser 4 is pressurized by the condensate pump 5 and sent to the demineralizer 6 as cooling water. Desalter 6
removes cruds and ions contained in the cooling water. The cooling water flowing out from the demineralizer 6 is sequentially heated while passing through the feed water heaters 7, 8, 9, 10, 11, and 13, and its pressure is increased by the feed water pump 12.
The water passes through the water supply pipe 19 and is returned into the reactor pressure vessel 1 . Recirculation system piping 14 is installed in the reactor pressure vessel 1.
A recirculation system is provided including a recirculation pump 15 and a recirculation pump 15 . A furnace purification system piping 17 branches off from the recirculation system piping 14, and is configured to return purified reactor water to the water supply piping 19 via a furnace purification system pump 16 and a purification device 18.

各々の給水加熱器7,8,9,10,11,1
3は、シエルアンドチユーブ型の熱交換器であ
り、チユーブ内すなわち伝熱管内を冷却水が流
れ、シエル側をタービンから抽気された蒸気が流
れる構造となつている。すなわち、給水加熱器
は、タービンから抽出した蒸気で冷却水を加熱し
ている。
Each feed water heater 7, 8, 9, 10, 11, 1
3 is a shell and tube type heat exchanger, and has a structure in which cooling water flows inside the tube, that is, inside the heat transfer tube, and steam extracted from the turbine flows through the shell side. That is, the feed water heater heats cooling water with steam extracted from the turbine.

本実施例においては、冷却水温が150℃以上に
なる給水配管19の部分に配置されている給水加
熱器11および13の伝熱管を低コバルト含有材
で製造してある。
In this embodiment, the heat transfer tubes of the feed water heaters 11 and 13, which are disposed in the portion of the water supply piping 19 where the cooling water temperature is 150° C. or higher, are made of a low cobalt-containing material.

給水加熱器11および13の伝熱管を低コバル
ト含有(0.25%以下)のSUS304で製造した場合、
冷却水中に溶出するコバルト量は、第1図の破線
20のようになる。
When the heat exchanger tubes of feed water heaters 11 and 13 are made of SUS304 with low cobalt content (0.25% or less),
The amount of cobalt eluted into the cooling water is as indicated by the broken line 20 in FIG.

このように本実施例では、原子炉圧力容器1内
に流入するコバルト量が従来の約1/10まで激減
する。このため、再循環系配管14等の表面線量
率が1/10に低下する。したがつて、再循環系配
管14および炉浄化系配管17等の保守点検に要
する時間を著しく短縮できる。
As described above, in this embodiment, the amount of cobalt flowing into the reactor pressure vessel 1 is drastically reduced to about 1/10 of the conventional amount. Therefore, the surface dose rate of the recirculation system piping 14 and the like decreases to 1/10. Therefore, the time required for maintenance and inspection of the recirculation system piping 14, the furnace purification system piping 17, etc. can be significantly shortened.

本実例においては、6段の給水加熱器のうち、
最後から2段の給水加熱器E,Fの伝熱管のみを
低コバルト含有のステンレス鋼で製造するので、
コバルト含有量に制限を設けない場合と比べて、 3500円×(20〜70)%×100トン=7000万円〜2億
4500万円 程度のコストアツプにとどまる。
In this example, among the six stages of feed water heaters,
Only the heat exchanger tubes of the last two stages of feed water heaters E and F are manufactured from stainless steel with low cobalt content.
Compared to the case where there is no limit on cobalt content, 3500 yen x (20 to 70)% x 100 tons = 70 million yen to 200 million yen
The cost increase will be limited to around 45 million yen.

したがつて、6段の給水加熱器の伝熱管全体を
低コバルト含有のステンレス鋼で製造した場合と
比較して、1億4000万円〜4億9000万円のコスト
ダウンが達成される。
Therefore, a cost reduction of 140 million yen to 490 million yen will be achieved compared to the case where the entire heat exchanger tube of the 6-stage feed water heater is made of low cobalt-containing stainless steel.

前記実施例の低コバルト含有のステンレス鋼の
代わりに、低コバルト含有チタン材で給水加熱器
の伝熱管を製造してもよい。チタン材のコバルト
含有量は、一般に、0.1%以下である。
Instead of the low cobalt-containing stainless steel of the above embodiment, the heat exchanger tube of the feed water heater may be manufactured from a low-cobalt titanium material. The cobalt content of titanium materials is generally 0.1% or less.

給水加熱器11および13の伝熱管を低コバル
ト含有のチタン材で製造した場合は、低コバルト
含有のSUS304で製造した場合と比較して、コバ
ルトの溶出量がさらに1/10に削減される。
When the heat exchanger tubes of the feed water heaters 11 and 13 are manufactured from a titanium material containing low cobalt, the amount of cobalt eluted is further reduced to 1/10 compared to when they are manufactured from SUS304 containing low cobalt.

このように給水加熱器の伝熱管を低コバルト含
有のチタン材で製造すると、給水配管内を流れる
冷却水中に溶出するコバルト量が著しく削減さ
れ、原子炉圧力容器1内に流入する非放射性のコ
バルト量がさらに少なくなる。
When the heat transfer tubes of the feedwater heater are manufactured from titanium material containing low cobalt in this way, the amount of cobalt eluted into the cooling water flowing inside the feedwater piping is significantly reduced, and non-radioactive cobalt flowing into the reactor pressure vessel 1 is reduced. The quantity becomes even smaller.

上記実施例では、冷却水温が150℃以上になる
給水配管19の部分に配置されている給水加熱器
11および13の伝熱管のみを低コバルト含有材
で製造したが、溶出コバルト量をより削減するに
は、冷却水温度が100℃以上になる位置に配置さ
れる給水加熱器9,10,11,13の伝熱管
も、低コバルト含有の〔0.25%以下の)SUS304
または低コバルト含有チタン材で製造してもよ
い。
In the above example, only the heat transfer tubes of the feed water heaters 11 and 13, which are arranged in the portion of the water supply pipe 19 where the cooling water temperature is 150°C or higher, were manufactured from a low cobalt-containing material, but it is possible to further reduce the amount of eluted cobalt. The heat exchanger tubes of the feed water heaters 9, 10, 11, and 13, which are placed in locations where the cooling water temperature is 100°C or higher, are also made of SUS304 with a low cobalt content (0.25% or less).
Alternatively, it may be manufactured from a titanium material containing low cobalt.

この場合は、6段の給水加熱器のうち、最後か
ら4段の給水加熱器C,D,E,Fの伝熱管のみ
を低コバルト含有のステンレス鋼で製造するの
で、コバルト含有量に制限を設けない場合と比べ
て、 3500円×(20〜70)%×200トン=1億4000万円〜
4億9000万円 程度のコストアツプとなる。この場合もなお、6
段の給水加熱器の伝熱管全体を低コバルト含有の
ステンレス鋼で製造した場合と比較して、7000万
円〜2億4500万円のコストダウンが達成される。
In this case, of the six stages of feed water heaters, only the heat exchanger tubes of the last four stages of feed water heaters C, D, E, and F are manufactured from stainless steel with low cobalt content, so there is no limit to the cobalt content. Compared to the case without installation, 3,500 yen x (20-70)% x 200 tons = 140 million yen ~
The cost will increase by approximately 490 million yen. In this case as well, 6
Compared to the case where the entire heat exchanger tube of the stage feedwater heater was made of low-cobalt stainless steel, a cost reduction of 70 million yen to 245 million yen will be achieved.

[発明の効果] 本発明によれば、給水配管の150℃以上の(よ
り厳密さを求めるならば100℃以上)温度となる
部分に配置された給水加熱器の伝熱管のみを低コ
バルト化しているので、すべての給水加熱器の伝
熱管の材料を低コバルト化した場合と同等に原子
炉圧力容器に持ち込まれるコバルト量を削減しな
がら、コストアツプを極力抑制することが可能な
構造の原子炉の冷却材給水系が得られる。
[Effects of the Invention] According to the present invention, only the heat exchanger tubes of the feed water heater disposed in the portion of the water supply piping that reaches a temperature of 150°C or higher (more precisely, 100°C or higher) are made low in cobalt. Therefore, it is possible to reduce the amount of cobalt carried into the reactor pressure vessel by reducing the amount of cobalt carried into the reactor pressure vessel, equivalent to reducing the cobalt content of heat exchanger tubes in all feedwater heaters, while at the same time minimizing cost increases. A coolant water supply system is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷却材供給系の冷却水温度に対する給
水加熱器の位置および冷却水中のコバルトの相対
濃度の関係を示す特性図、第2図は本発明による
原子炉の冷却材供給系の一実施例の構成を示す系
統図である。 1……原子炉圧力容器、2……主蒸気管、3…
…タービン、4……復水器、5……復水ポンプ、
6……脱塩器、7,8,9,10,11,13…
…給水加熱器、12……給水ポンプ、14……再
循環系配管、15……再循環ポンプ、16……炉
浄化系ポンプ、17……炉浄化系配管、18……
浄化装置、19……給水配管。
Fig. 1 is a characteristic diagram showing the relationship between the position of the feedwater heater and the relative concentration of cobalt in the cooling water with respect to the temperature of the cooling water in the coolant supply system, and Fig. 2 is an implementation of the coolant supply system for a nuclear reactor according to the present invention. FIG. 2 is a system diagram showing an example configuration. 1...Reactor pressure vessel, 2...Main steam pipe, 3...
...Turbine, 4...Condenser, 5...Condensate pump,
6... Desalter, 7, 8, 9, 10, 11, 13...
...Feed water heater, 12...Water pump, 14...Recirculation system piping, 15...Recirculation pump, 16...Furnace purification system pump, 17...Furnace purification system piping, 18...
Purification equipment, 19...Water supply piping.

Claims (1)

【特許請求の範囲】 1 原子炉容器内に冷却材を供給する配管と、前
記配管に設置された複数のシエルアンドチユーブ
型の加熱器とからなる原子炉の冷却材供給系にお
いて、 前記複数の加熱器のうち、前記配管の冷却材温
度が100℃以上になる部分に配置されている加熱
器のチユーブが、コバルト含有量0.25%以下のス
テンレス鋼またはコバルト含有量0.1%以下のチ
タン材からなり、前記配管の冷却材温度が100℃
未満になる部分に配置されている加熱器のチユー
ブが、前記ステンレス鋼よりもコバルト含有量の
多いステンレス鋼からなることを特徴とする原子
炉の冷却材供給系。
[Scope of Claims] 1. A reactor coolant supply system comprising a pipe for supplying coolant into a reactor vessel and a plurality of shell-and-tube type heaters installed in the pipe, comprising: Among the heaters, the tube of the heater located in the part of the pipe where the coolant temperature is 100°C or higher is made of stainless steel with a cobalt content of 0.25% or less or titanium material with a cobalt content of 0.1% or less. , the coolant temperature in the pipe is 100℃
A coolant supply system for a nuclear reactor, characterized in that a tube of a heater disposed in a portion where the cobalt content is lower than that of the stainless steel is made of stainless steel having a higher cobalt content than the stainless steel.
JP56098278A 1981-06-26 1981-06-26 Reactor coolant feeding system Granted JPS58797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56098278A JPS58797A (en) 1981-06-26 1981-06-26 Reactor coolant feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56098278A JPS58797A (en) 1981-06-26 1981-06-26 Reactor coolant feeding system

Publications (2)

Publication Number Publication Date
JPS58797A JPS58797A (en) 1983-01-05
JPH0314154B2 true JPH0314154B2 (en) 1991-02-26

Family

ID=14215464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56098278A Granted JPS58797A (en) 1981-06-26 1981-06-26 Reactor coolant feeding system

Country Status (1)

Country Link
JP (1) JPS58797A (en)

Also Published As

Publication number Publication date
JPS58797A (en) 1983-01-05

Similar Documents

Publication Publication Date Title
EP0078499B1 (en) Method and apparatus for purifying liquid
JPH0314154B2 (en)
JPS6179194A (en) Reactor water feeder
JPS629296A (en) Structural material of nuclear-reactor primary cooling system
JP2895267B2 (en) Reactor water purification system
JPS62108195A (en) Feedwater heater for nuclear reactor
JPS60201296A (en) Reducer for radiation dose
JPS642237B2 (en)
JPH04126902A (en) Feedwater heater
JPS61140703A (en) Feedwater heater for nuclear power plant
JPH01272997A (en) Feed water heater
JPH0493796A (en) Nuclear power plant
JPS6333680B2 (en)
JPS60198493A (en) Method of treating feedwater to nuclear reactor
JPS636303A (en) Feedwater heater
JPS61147002A (en) Moisture separating heater
JPS63113204A (en) Turbine system of nuclear power plant
JPS5953517B2 (en) Reactor coolant sampling device
JPH01291005A (en) Feed water heater
JPS61245093A (en) Feedwater system of nuclear power generating plant
JPS59115997A (en) Method and apparatus for preventing corrosion of condenser in atomic power plant
Whirl et al. Water Technology at the Shippingport Atomic Power Station
JPH01110294A (en) Structural material of reactor primary cooling system
Fueki IGSCC REMEDY APPLICATION FOR RECIRCULATION SYSTEM PIPING IN FUKUSHIMA DAI-ICHI UNIT 3
Pacault REACTOR OF THE BOILING WATER TYPE ASSOCIATED WITH AT LEAST ONE STEAM TURBINE