JPS62108195A - Feedwater heater for nuclear reactor - Google Patents

Feedwater heater for nuclear reactor

Info

Publication number
JPS62108195A
JPS62108195A JP60247074A JP24707485A JPS62108195A JP S62108195 A JPS62108195 A JP S62108195A JP 60247074 A JP60247074 A JP 60247074A JP 24707485 A JP24707485 A JP 24707485A JP S62108195 A JPS62108195 A JP S62108195A
Authority
JP
Japan
Prior art keywords
water
heater
reactor
feed water
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60247074A
Other languages
Japanese (ja)
Inventor
泉谷 雅▲清▼
川上 寿雄
湊 昭
大角 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60247074A priority Critical patent/JPS62108195A/en
Publication of JPS62108195A publication Critical patent/JPS62108195A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Discharge Heating (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は例えば沸騰水型原子力発電プラントにおける復
水を加熱するのに備えられている給水加熱器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a feedwater heater provided for heating condensate in, for example, a boiling water nuclear power plant.

〔発明の背景〕[Background of the invention]

沸騰水型原子力発電プラント(以下、BWRプラントと
称す)の実験炉では給水加熱器加熱管は銅合金が用いら
れていたが、加熱管より溶出する銅が原子炉内の燃料棒
およびタービンに析出して種々不都合が発生することが
わかり、商業炉ではいわゆる腐食しにくい304ステン
レス鋼が使用されている(Power、 June、 
S −12(1979) ) 。
In experimental reactors of boiling water nuclear power plants (hereinafter referred to as BWR plants), copper alloys were used for feedwater heater heating tubes, but copper eluted from the heating tubes was deposited on the fuel rods and turbines inside the reactor. It has been found that various inconveniences occur due to the corrosion, and so-called corrosion-resistant 304 stainless steel is used in commercial furnaces (Power, June,
S-12 (1979)).

ところが、商業炉の運転経験が増すに従って、原子炉−
次系配管および機器の内面にCo −58やG o −
60の放射性核種が蓄積しその囲りの放射線量が増大す
ること、およびCo −58やCo −60の蓄積の機
構は多少わかってきた(Procaedingof W
ater Che+5istry n 、 papar
44 、 B N 5(1980) )。その概略は以
下のようである。原子炉内およびその上流側の構成材料
から溶出したイオンあるいは固形粒子(通常クラッドと
呼んでいる)状のニッケル、コバルトあるいは鉄の一部
は原子炉内の燃料棒表面に付着し、そこで中性子照射を
受けて放射化し、Go−58,Co−’60゜Mn−5
4,Fe−59等の放射性核種となる。
However, as experience in operating commercial reactors increases,
Co-58 and Go-
The accumulation of 60 radionuclides and the increase in the radiation dose surrounding them, as well as the mechanism of accumulation of Co-58 and Co-60, have been somewhat understood (Procaeding of W.
ater Che+5istry n, paper
44, BN 5 (1980)). The outline is as follows. Some of the nickel, cobalt, or iron in the form of ions or solid particles (commonly called cladding) eluted from the reactor and its upstream constituent materials adheres to the surfaces of the fuel rods in the reactor, where they are irradiated with neutrons. Go-58, Co-'60゜Mn-5
4, becomes radioactive nuclides such as Fe-59.

これらの放射性核種の一部が燃料棒表面から溶出あるい
ははく離し、さらにその一部が原子炉−次系の配管や機
器の内表面に再び付着し、その回りの放射線量が増加す
る。これまでの実プラントでの運転経験から原子炉へ持
ち込まれる鉄量が多いほど、m子炉水中のCo −60
濃度が高く、従つて原子炉−次系の配管2機器の放射線
量が高くなることがわかっている。これは炉水中のコバ
ルトやニッケルは鉄クラツドの表面に付着し、さらに燃
料棒表面に付着するためであり、鉄クラツドが多いほど
ニッケルおよびコバルトが付着しやすく、また燃料棒表
面への付着および燃料棒表面からの溶出、はく離が激し
くなるためであると考えられている。さらにニッケルお
よびコバルトの原子炉内への持ち込み量が多い程、同じ
く放射能が増加する。
Some of these radionuclides are eluted or separated from the surface of the fuel rods, and some of them re-adhere to the inner surfaces of piping and equipment in the reactor system, increasing the radiation dose around them. Based on past operational experience in actual plants, the larger the amount of iron brought into the reactor, the greater the amount of Co-6 in the reactor water.
It is known that the concentration is high, and therefore the radiation dose of the two piping equipment in the reactor-subsystem will be high. This is because cobalt and nickel in the reactor water adheres to the surface of the iron cladding and then to the surface of the fuel rods. This is thought to be due to the intense elution and peeling from the rod surface. Furthermore, the greater the amount of nickel and cobalt brought into the reactor, the more radioactivity increases.

それ故、沸騰水型原子力発電所の原子炉−次系配管9機
器の放射線量を低減するため鉄クラツドおよびニッケル
、コバルトの放出量を低減することが有効であると考え
られる。そこで、復水脱塩装置を強化し、復水器、復水
配管、抽気管、ドレン配管等に耐食鋼を採用し、給水へ
の鉄クラツド放出量を抑制し、かつ給水加熱器の加熱管
にコバルト含有量が0.05%の304型ステンレス鋼
を採用(従来はコバルトを0.25%程度含む)し、コ
バルトの溶出も抑制したプラントAを作り実際に運転し
たところ、第1表に示すように、Aプラントでは鉄クラ
ツドは明らかに減少し、炉水中でのコバルト濃度も他プ
ラントと比較して低いかほとんど同等にもかかわらず、
炉水中のCo−58が高く、かつ−次系配管の表面線量
も高くなるという現象が認められた。
Therefore, it is considered effective to reduce the amount of iron cladding, nickel, and cobalt emitted in order to reduce the radiation dose of the nine components of the reactor-subsystem piping of a boiling water nuclear power plant. Therefore, we strengthened the condensate desalination equipment and adopted corrosion-resistant steel for the condenser, condensate piping, bleed pipe, drain piping, etc. to suppress the amount of iron crud released into the water supply, and to reduce the amount of iron crud released into the water supply. Plant A was constructed using type 304 stainless steel with a cobalt content of 0.05% (previously it contained about 0.25% cobalt), and the elution of cobalt was also suppressed. As shown, in Plant A, iron cladding clearly decreased and the cobalt concentration in the reactor water was lower or almost the same as in other plants.
It was observed that Co-58 in the reactor water was high and the surface dose of secondary system piping was also high.

第1表 このような現象はこれまでの関係技術上の常識ないしは
学術的概念とは相反する予想外のことである。
Table 1 Such a phenomenon is unexpected and contradicts the conventional common knowledge in related technology or academic concepts.

〔発明の目的〕[Purpose of the invention]

本発明は放射性の低いプラントとなるような原子炉給水
設備を提供することを目的とし、その特徴とするところ
は、フェライト系ステンレス鋼製の加熱管を用いた給水
加熱器であることにある。
The present invention aims to provide a nuclear reactor water supply system that provides a plant with low radioactivity, and is characterized by a feed water heater using a heating tube made of ferritic stainless steel.

〔発明の概要〕[Summary of the invention]

本発明のBWR用給水給水加熱器その加熱管をフェライ
ト系ステンレス鋼から選ばれるもので構成したことを特
徴とする。
The feed water heater for BWR according to the present invention is characterized in that its heating tube is made of a material selected from ferritic stainless steel.

本発明者らは系統的、基礎的に鋭意研究を進めた結果、
鉄クラツドが極端に少ないため、燃料棒表面に付着する
ニッケルの形態が従来のフェライト型酸化物(NiFe
zOa)  ではなく、酸化ニッケル(N i O)が
主な形態となるためであることがわかった。すなわち、
フェライト型酸化物に対する酸化ニッケルの中性水、2
88℃での溶解度の比は約1 、000であり、燃料棒
表面に付着した酸化ニッケルは鉄フェライト(NiFe
zOa)  の場合に比べ放射化したCo−58が容易
に、かつ多量に一次冷却水に放出されるためである。
As a result of systematic and fundamental research, the present inventors found that
Because there is extremely little iron cladding, the form of nickel that adheres to the fuel rod surface is different from the conventional ferrite type oxide (NiFe).
It was found that this is because nickel oxide (N i O) rather than nickel oxide (N i O) is the main form. That is,
Neutral water of nickel oxide for ferrite type oxide, 2
The solubility ratio at 88°C is approximately 1,000, and the nickel oxide attached to the fuel rod surface is iron ferrite (NiFe).
This is because activated Co-58 is released into the primary cooling water more easily and in large quantities than in the case of zOa).

従って、鉄フェライトを形成させるため、復水浄化系の
一部バイパス、鉄イオン注入などの対策が考えられるが
、M n −54、F e −59などの放射性核種が
そのため増加することになり好ましくない、根本的な解
決法は冷却水中へのニッケルの放出を抑制することにあ
る。
Therefore, in order to form iron ferrite, countermeasures such as partial bypass of the condensate purification system and iron ion implantation can be considered, but this is not preferable since radionuclides such as M n -54 and Fe -59 will increase. No, the fundamental solution lies in suppressing the release of nickel into the cooling water.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例になる給水−加熱器を適用し
た沸騰水型原子力発電プラントの系統図を示す図である
。原子炉圧力容器1で発生した蒸気は主蒸気管2を通り
タービン3に送られる。タービン3で仕事をした蒸気は
復水器4で凝縮冷却されて復水となり、復水ポンプ5で
昇圧され給水配管6を経て復水脱塩装置7で浄化され、
低圧給水加熱器8へ送られる。低圧給水加熱器8で加熱
された給水は給水ポンプ10で昇圧され高圧給水加熱器
9へ送られ、さらに加熱され、給水配管6を経て原子炉
圧力容器1へ戻される。商業用の発電プラントではその
発電容量によって異なるが、通常低圧給水加熱器8およ
び高圧給水加熱器9はそれぞれ直列に2〜3台が配置さ
れており、これを1系列として、2〜3系列の給水加熱
器群が並列に設置されている。
FIG. 1 is a diagram showing a system diagram of a boiling water nuclear power plant to which a water supply-heater according to an embodiment of the present invention is applied. Steam generated in the reactor pressure vessel 1 is sent to the turbine 3 through the main steam pipe 2. The steam that has done work in the turbine 3 is condensed and cooled in a condenser 4 to become condensate, which is pressurized by a condensate pump 5, passes through a water supply pipe 6, and is purified in a condensate desalination device 7.
It is sent to the low pressure feed water heater 8. The feedwater heated by the low-pressure feedwater heater 8 is pressurized by the feedwater pump 10 and sent to the high-pressure feedwater heater 9, where it is further heated and returned to the reactor pressure vessel 1 via the water supply piping 6. In a commercial power generation plant, two to three low-pressure feedwater heaters 8 and high-pressure feedwater heaters 9 are each arranged in series, although this varies depending on the power generation capacity. A group of feed water heaters are installed in parallel.

第2図は本発明の一実施例になる給水加熱器の断面図で
ある。その詳細はプラントにより、あるいは低圧給水加
熱器か高圧給水加熱器かによって異なるが、基本的には
本図で説明できる。給水は給水入口配管20より水室2
1aに入り、加熱管22を通って氷室21bより給水出
口配管23から送出される。加熱管は多数本設けられて
管群を形成しており、管板24によって水室21に開口
するとともに、管支持板25によって胴体26に対して
支持されている。一方、タービンから抽気された加熱蒸
気は蒸気入口配管27から器内に流入する。また、当該
加熱器より高圧側にある加熱器で加熱作用を終えた凝縮
水もドレン入口配管28から器内に流入する。これらの
加熱流体は管 群の各加熱管22の表面に接触して、管
中を流れる給水との間で熱交換を行い凝縮してドレンと
なって器内底部に溜り、ドレンクーラ29を経由してド
レン出口30より排出される。加熱流体中にずい伴して
流入した不凝縮ガスは加熱流体の流れに伴って加熱器中
を管支持板25により、流れ方向を誘導されながら、胴
体終端部不凝縮ガス排出口31より器外に排出される。
FIG. 2 is a sectional view of a feed water heater according to an embodiment of the present invention. The details differ depending on the plant or whether it is a low-pressure feedwater heater or a high-pressure feedwater heater, but it can basically be explained using this diagram. Water is supplied from the water supply inlet pipe 20 to the water chamber 2
1a, passes through the heating pipe 22, and is sent out from the ice chamber 21b through the water supply outlet pipe 23. A large number of heating tubes are provided to form a tube group, which opens into the water chamber 21 through a tube plate 24 and is supported to a body 26 by a tube support plate 25. On the other hand, heated steam extracted from the turbine flows into the vessel from the steam inlet pipe 27. Further, the condensed water that has been heated by the heater located on the higher pressure side of the heater also flows into the vessel from the drain inlet pipe 28. These heating fluids come into contact with the surface of each heating tube 22 in the tube group, exchange heat with the feed water flowing through the tubes, condense, become drain, accumulate at the bottom of the vessel, and pass through the drain cooler 29. and is discharged from the drain outlet 30. The non-condensable gas that has flown into the heating fluid is guided in its flow direction through the heater by the tube support plate 25 along with the flow of the heating fluid, and is discharged outside the device from the non-condensable gas outlet 31 at the end of the body. is discharged.

胴体26.管板24、水室21および管支持板25は通
常炭素鋼塵である。これに対し、加熱Ir!22はフェ
ライト系ステンレス鋼製である。
Fuselage 26. The tube sheet 24, water chamber 21 and tube support plate 25 are typically carbon steel dust. On the other hand, heating Ir! 22 is made of ferritic stainless steel.

鋼を加熱管として使用するには強度、加工性。Steel needs strength and workability to be used as a heating tube.

溶接性なども考慮されなければならない。本発明で使用
するフェライト系ステンレス鋼においては通常の製鋼工
程で含有される程度の不可避的な混入不純物は許容でき
る。
Weldability etc. must also be considered. In the ferritic stainless steel used in the present invention, unavoidable impurities contained in a normal steel manufacturing process can be tolerated.

また、本発明において140℃以上に限定してもよい理
由は、第3図に示すように、従来加熱管として使用され
ているオーステナイトステンレス鋼(SUS304)の
中性水中での鋼の放出速度は140℃以上で顕著になる
からであり、140℃以下に従来通りの、例えば5US
304を使用しても本発明の目的が達成できるからであ
る。
In addition, the reason why the temperature may be limited to 140°C or higher in the present invention is that, as shown in Figure 3, the release rate of austenitic stainless steel (SUS304), which is conventionally used as a heating tube, in neutral water is This is because it becomes noticeable at temperatures above 140℃, and below 140℃, conventional
This is because the object of the present invention can be achieved even if 304 is used.

本発明の給水加熱器を適用した例を第4図について説明
する。水質を調整するタンク34より。
An example in which the feed water heater of the present invention is applied will be explained with reference to FIG. From the tank 34 that adjusts water quality.

溶存酸素および電導塵を実機と同じように調整した水を
ポンプ35で予熱器36に送り、さらに給水加熱器37
で加熱して圧力容器38に通水する。
Water whose dissolved oxygen and conductive dust have been adjusted in the same way as in the actual machine is sent to a preheater 36 by a pump 35, and then sent to a feed water heater 37.
The pressure vessel 38 is heated with water.

電気ヒータ39で加熱蒸発した水は冷却器40で凝縮し
、さらにイオン交換樹脂塔41を通して調整タンク34
に戻るようになっている。この装置の接木部は予熱器3
6及び給水加熱器37以外は全てチタンで装置からのニ
ッケルの放出はない。
The water heated and evaporated by the electric heater 39 is condensed in the cooler 40 and further passed through the ion exchange resin tower 41 to the adjustment tank 34.
It is now back to . The grafting part of this device is the preheater 3.
6 and the feed water heater 37 are all made of titanium and no nickel is released from the device.

予熱器36は5US304製であり、給水加熱器はフェ
ライト系ステンレス鋼製である。予熱器36で水は室温
から140℃まで加熱され、さらに給水加熱器37で2
40℃まで温められ、圧力容器38で電気ヒータ39で
280℃で沸騰されるようになっている。本装置で10
00時間運転したが、圧力容器38内の水にはニッケル
成分は1ρpb以下しか認められなかった。
The preheater 36 is made of 5US304 and the feed water heater is made of ferritic stainless steel. The water is heated from room temperature to 140°C in the preheater 36, and further heated to 140°C in the feed water heater 37.
It is heated to 40°C and boiled at 280°C in a pressure vessel 38 with an electric heater 39. 10 with this device
Although the system was operated for 00 hours, only 1 pb or less of nickel was found in the water in the pressure vessel 38.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ステンレス鋼からのニッケルの溶出が
ないので、放射能を低減できる効果かある。
According to the present invention, there is no elution of nickel from stainless steel, which has the effect of reducing radioactivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の沸騰水型原子力発電プラン
トの系統図、第2図は同じく給水加熱器断面図、第3図
は5US304鋼の鋼放出速度の特性線図、第4図は本
発明の他の実施例の説明図である。 1・・・原子炉圧力容器、8・・・低圧給水加熱器、9
・・・高圧給水加熱器 32 燃料棒 18−次系配 
 、=”’7)(1゜
Fig. 1 is a system diagram of a boiling water nuclear power plant according to an embodiment of the present invention, Fig. 2 is a sectional view of the feed water heater, Fig. 3 is a characteristic diagram of the steel discharge rate of 5US304 steel, and Fig. 4 FIG. 3 is an explanatory diagram of another embodiment of the present invention. 1... Reactor pressure vessel, 8... Low pressure feed water heater, 9
...High pressure feed water heater 32 Fuel rod 18-Sequential distribution
,=”'7)(1゜

Claims (1)

【特許請求の範囲】[Claims] 1、復水を加熱して原子炉に供給するための原子力発電
プラント用給水加熱器において、復水を加熱する加熱管
をフェライト系ステンレス鋼から選ばれるもので構成し
たことを特徴とする原子炉給水加熱器。
1. A nuclear power plant feed water heater for heating condensate and supplying it to a nuclear reactor, characterized in that a heating tube for heating condensate is made of a material selected from ferritic stainless steel. Feed water heater.
JP60247074A 1985-11-06 1985-11-06 Feedwater heater for nuclear reactor Pending JPS62108195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60247074A JPS62108195A (en) 1985-11-06 1985-11-06 Feedwater heater for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60247074A JPS62108195A (en) 1985-11-06 1985-11-06 Feedwater heater for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS62108195A true JPS62108195A (en) 1987-05-19

Family

ID=17158040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60247074A Pending JPS62108195A (en) 1985-11-06 1985-11-06 Feedwater heater for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS62108195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272997A (en) * 1988-04-25 1989-10-31 Toshiba Corp Feed water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272997A (en) * 1988-04-25 1989-10-31 Toshiba Corp Feed water heater

Similar Documents

Publication Publication Date Title
US3663725A (en) Corrosion inhibition
US3400049A (en) Steam cooled nuclear reactor power system
JPH079477B2 (en) Radioactivity reduction method for nuclear power plant and nuclear power plant
SE460628B (en) METHOD OF OPERATION OF NUCLEAR POWER PLANT WITH COOKER REACTOR
TW540069B (en) Method for controlling water quality in nuclear reactor and nuclear power generation equipment
JP3149738B2 (en) Boiling water nuclear power plant and operating method thereof
Saltanov et al. World experience in nuclear steam reheat
JPS62108195A (en) Feedwater heater for nuclear reactor
JPH055077B2 (en)
JPS61140703A (en) Feedwater heater for nuclear power plant
JPS6193996A (en) Method of reducing radioactivity of nuclear power plant
JPS60201296A (en) Reducer for radiation dose
JPS5895580A (en) Water processing method
JPH0314154B2 (en)
JPH0229364Y2 (en)
JP2895267B2 (en) Reactor water purification system
JPS642237B2 (en)
JPS63113204A (en) Turbine system of nuclear power plant
JPS636303A (en) Feedwater heater
JPS61186897A (en) Feed water facility for nuclear reactor
JPH04126902A (en) Feedwater heater
JPH05288893A (en) Control method of concentration of chromium of boiling water nuclear power plant
LeSurf et al. Material selection and corrosion control methods for CANDU nuclear power reactors
JPH085777A (en) Boiling water reactor
Fueki IGSCC REMEDY APPLICATION FOR RECIRCULATION SYSTEM PIPING IN FUKUSHIMA DAI-ICHI UNIT 3