JPH01272997A - Feed water heater - Google Patents

Feed water heater

Info

Publication number
JPH01272997A
JPH01272997A JP63100286A JP10028688A JPH01272997A JP H01272997 A JPH01272997 A JP H01272997A JP 63100286 A JP63100286 A JP 63100286A JP 10028688 A JP10028688 A JP 10028688A JP H01272997 A JPH01272997 A JP H01272997A
Authority
JP
Japan
Prior art keywords
feed water
heater
heating medium
water
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63100286A
Other languages
Japanese (ja)
Inventor
Tadashi Kaneko
正 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63100286A priority Critical patent/JPH01272997A/en
Publication of JPH01272997A publication Critical patent/JPH01272997A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To extremely suppress the radiation dose in an atomic power plant by using a ferritic stainless steel imparted with an oxide film to form the tubes of a feed water heater disposed in the body. CONSTITUTION:Both ends of the many heater tubes 27 are fixed to both tube plates 25, 26 and are provided to open in inlet side and outlet side water chambers 28, 29. A feed water inlet 30 is provided to an upper stream side water chamber end plate 23 and a feed water outlet 31 to a down stream side water chamber end plate 24, respectively. Further, a heating medium inlet 32 and heating medium outlet 33 for admitting and discharging the heating medium are provided to a body cylinder 22. The feed water introduced from the inlet 30 into the water chamber 28 is heated by a heat exchange with the steam as the heating medium introduced from the inlet 32 into the cylinder 22 during the passage through the inside of the tubes 27 and is discharged through the water chamber 29 from the outlet 31. Since the tubes 27 are constituted of the ferritic stainless steel, the corrosion products therefrom are extremely suppressed and the quantity of the radioactive nuclide to be formed in the reactor core is decreased.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、給水加熱器に係り、特に加熱器チューブを改
良した給水加熱器に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Field of Application) The present invention relates to a feed water heater, and more particularly to a feed water heater with an improved heater tube.

(従来の技術) 沸騰水型原子力発電プラントの給水加熱器は、復水器か
らの復水を給水として加熱し、原子炉圧力容器へ導くも
のである。給水の加熱は給水が給水加熱器の加熱器チュ
ーブを流通する間に熱交換によってなされる。
(Prior Art) A feedwater heater for a boiling water nuclear power plant heats condensate from a condenser as feedwater and guides it to a reactor pressure vessel. Heating of the feed water is accomplished by heat exchange while the feed water flows through the heater tubes of the feed water heater.

このような加熱器チューブは、熱交換効率を高めるため
に給水との接液面積が約20000 m  と大きく構
成される。したがって、腐食防止の観点から加熱器チュ
ーブは腐食されにくいオーステナイト系ステンレス鋼に
よって形成されている。このオーステナイト系ステンレ
ス鋼は腐食速度が小さく腐食量が第4図に示すように少
ないもののへ1含有量が多い。N1が多いとその不純物
として存在するCoも多くなる。
Such a heater tube has a large contact area with the water supply of approximately 20,000 m in order to increase heat exchange efficiency. Therefore, from the viewpoint of corrosion prevention, the heater tube is made of austenitic stainless steel, which is difficult to corrode. Although this austenitic stainless steel has a low corrosion rate and a small amount of corrosion as shown in FIG. 4, it has a high content of 1. When the amount of N1 is large, the amount of Co present as an impurity also increases.

一般に、ステンレス鋼から液体中へ溶出するCOの溶出
量は、ステンレス鋼の腐食速度とN」含有率との積に比
例する。したがって、加熱器チューブを構成するステン
レス鋼のN1含有量が多いことは、COが給水中へ溶出
する溶出量の増大を意味することになる。加熱器チュー
ブがオーステナイト系ステンレス鋼から構成された場合
には、その結果、給水中Co濃度が増大する。
Generally, the amount of CO eluted from stainless steel into a liquid is proportional to the product of the corrosion rate of stainless steel and the N content. Therefore, a high N1 content in the stainless steel constituting the heater tube means an increase in the amount of CO leached into the feed water. If the heater tube is constructed from austenitic stainless steel, this results in an increased Co concentration in the feed water.

また、」二連のように加熱器チューブの接液面積が大き
いことから、給水中のCo量の90%以十、がこの加熱
器チューブから溶出したものとなっている。
Furthermore, since the heater tube has a large surface area in contact with the liquid, as in the double series, more than 90% of the Co amount in the water supply is eluted from the heater tube.

給水中に溶出したCoは、給水中のNi、Fe等ととも
に原子炉圧力容器内の炉心へ導かれて中性子照射を受け
、Co−60,Kn−54,Co−58等の放射性核種
に変化する。このうち、Co −60は放射線量が他に
比へて著しく太きい。したがって、給水中にGOが多量
に存在すると、Co−60の発4ニ量も増大し、プラン
トの放射線量が大きくなって、プラン1〜運転員及び作
業具が被曝する恐れがある。
Co dissolved in the feed water is led to the reactor core in the reactor pressure vessel along with Ni, Fe, etc. in the feed water and is irradiated with neutrons, where it changes into radionuclides such as Co-60, Kn-54, and Co-58. . Among these, Co-60 has a significantly higher radiation dose than the others. Therefore, if a large amount of GO is present in the water supply, the amount of Co-60 emitted will also increase, increasing the radiation dose in the plant, and there is a risk that Plan 1 - operators and work tools will be exposed to radiation.

そこで、これらプラント運転員等の被曝低減の観点から
、N1を含有しないフェライト系ステンレス鋼が給水加
熱器チューブに、適用検討されるようになってきた。
Therefore, from the viewpoint of reducing the exposure of plant operators and the like, ferritic stainless steel that does not contain N1 has been considered for use in feed water heater tubes.

(発明が解決しようとする課題) しかしながら、第4図に示すごとく、フェライト系ステ
ンレス鋼の腐食量は、オーステティ1〜系ステンレス鋼
のそれに比べて極めて多く、腐食生成物低減あるいは前
述のプランl−運転員の被曝低減の観点から好ましくな
い。
(Problem to be Solved by the Invention) However, as shown in FIG. 4, the amount of corrosion in ferritic stainless steel is extremely large compared to that in Austety 1-1 stainless steel, and the above-mentioned plan to reduce corrosion products or Unfavorable from the perspective of reducing radiation exposure for operators.

本発明は、上記事情を考慮してなされたもので、その目
的は、原子力発電プラントにおける放射線量を大幅に抑
制することができる給水加熱器を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to provide a feed water heater that can significantly suppress the radiation dose in a nuclear power plant.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、上記目的を達成するために、原子力発電プラ
ン1〜の給水系に設置され、本体内部に多数の加熱チュ
ーブが配設され、前記加熱器チューブ内を給水が通過す
る間に熱交換され加熱される給水加熱器において、前記
加熱器チューブはその表面に酸化皮膜を形成させたフエ
ライ1へ系ステンレス鋼から形成されることを特徴とす
るものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention is installed in the water supply system of nuclear power generation plan 1~, and a large number of heating tubes are arranged inside the main body, and inside the heater tube. In the feed water heater that heats the feed water by exchanging heat while the feed water passes through the feed water heater, the heater tube is made of stainless steel having an oxide film formed on its surface. .

(作 用) 本発明の給水加熱器によれば、加熱器チューブからの腐
食生成物が大幅に抑制されるので、給水へ溶出する腐食
生成物も甚しく減少し、それに伴なって炉心における放
射性核種の生成斌も低減させることができる。
(Function) According to the feedwater heater of the present invention, corrosion products from the heater tube are significantly suppressed, so corrosion products leached into the feedwater are also significantly reduced, and radioactivity in the core is accordingly reduced. The generation rate of nuclides can also be reduced.

(実施例) 以下、本発明の実施例を図面に鶏づいて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

図において、本発明の給水加熱器の本体2Iは筒形状の
本体胴22と、この本体胴22の両端部に取り付けられ
た上流側氷室鏡板23および下流側氷室鏡板24とから
構成されるにれら」二流側および下流側氷室鏡板23.
24と本体胴22との境界にそれぞれ管板25.26が
配設される。管板25および上流側氷室鏡板23に囲ま
れて入口側水室28が形成され、また管板26およびF
流側水室鏡板z4に囲まれて出に1側水室29が形成さ
れる。
In the figure, the main body 2I of the feed water heater of the present invention is composed of a cylindrical main body shell 22, and an upstream ice chamber head plate 23 and a downstream ice chamber head plate 24 attached to both ends of the main body body 22. 23.
Tube plates 25 and 26 are disposed at the boundaries between 24 and the main body shell 22, respectively. An inlet water chamber 28 is formed surrounded by the tube plate 25 and the upstream ice chamber mirror plate 23, and is surrounded by the tube plate 26 and the F
A first side water chamber 29 is formed at the outset surrounded by the flow side water chamber mirror plate z4.

多数の加熱器チューブ27の両端部は、上記両管板25
.26に固定され、入「」側および14冒1側水室28
゜29に開「1して設けられる。また、−L流側氷室鏡
板23には給水人口30が、下流側氷室鏡板24には給
水出口31がそれぞれ形成される。さらに、本体+5!
 22には加熱冷媒を流入し、排出する加熱媒体人口3
2および加熱媒体出口33が形成される。したがって、
給水人1030から入[」測水室28内へ導かれた給水
は、加熱器チューブ27内を通過する間に加熱器媒体人
口32から本体胴22内へ導かれた加熱媒体としての蒸
気によって熱交換されて加熱され、出[]側氷水室9を
経て給水出口31から流出する。また、本体胴22内へ
導かれた加熱媒体としての蒸気は、熱交換されて冷却さ
れ、加熱媒体量1”] 33から流出する。
Both ends of the large number of heater tubes 27 are connected to both tube plates 25.
.. 26, and the water chamber 28 on the inlet side and 14 side
It is opened at 0.29° and provided. Also, a water supply port 30 is formed in the −L flow side ice chamber head plate 23, and a water supply outlet 31 is formed in the downstream side ice chamber head plate 24.Furthermore, the main body +5!
22 is a heating medium population 3 into which heating refrigerant flows and is discharged.
2 and a heating medium outlet 33 are formed. therefore,
The water supplied from the water supply person 1030 and guided into the water measurement chamber 28 is heated by steam as a heating medium guided from the heater medium 32 into the main body shell 22 while passing through the heater tube 27. The water is exchanged and heated, and flows out from the water supply outlet 31 via the ice water chamber 9 on the outlet side. Further, the steam as a heating medium guided into the main body shell 22 is cooled by heat exchange and flows out from the heating medium amount 1'' 33.

」二記加熱器チューブ27はフェライト系ステンレス鋼
から構成されている。
The heater tube 27 is made of ferritic stainless steel.

チューブ表面が特定の温度範囲で生ずるち密かつ強固な
酸化皮膜がバリヤーとして働き、プラント運転時におい
て、給水への腐食生成物の発生を有効に抑制することが
できる。このため、チューブ製作時点において予め積極
的に、チューブ表面に700〜1100℃の温度で焼き
なますことによって、ち密で腐食生成物の発生抑制効果
にすぐれた酸化皮膜を形成するようにしたものである。
A dense and strong oxide film that forms on the tube surface in a specific temperature range acts as a barrier and can effectively suppress the generation of corrosion products in the water supply during plant operation. For this reason, at the time of tube manufacture, the tube surface is actively annealed at a temperature of 700 to 1100°C to form a dense oxide film that is highly effective in suppressing the generation of corrosion products. be.

この様な酸化皮膜の形成は、フェライト系ステンレス鋼
の素材製作過程において行うことができるが、その場合
、その後の部利加工工程として徒来行われている機械加
工あるいは、酸洗いなどによって形成された酸化皮膜を
除去しないことが肝要である。
Such an oxide film can be formed during the material manufacturing process of ferritic stainless steel, but in that case, it is formed by machining or pickling, which is conventionally performed as a subsequent processing step. It is important not to remove the oxidized film.

また、本発明においては上記の様な良好な腐食生成物発
生抑制効果を有する酸化皮膜を得るためには、チューブ
の焼きなまし温度を700〜1100″Cにすることが
好ましく、更に、好ましくは、750℃〜1050℃で
ある。
Further, in the present invention, in order to obtain an oxide film having a good effect of suppressing the generation of corrosion products as described above, it is preferable that the annealing temperature of the tube is 700 to 1100"C, more preferably 750"C. ℃~1050℃.

熱処理温度が700℃未満では、耐鋭敏化特性が劣り、
一方、1050℃を越える温度で熱処理すると、機能的
性質、特に耐力、引張り強さが劣るため好ましくない。
If the heat treatment temperature is less than 700°C, the sensitization resistance will be poor,
On the other hand, heat treatment at a temperature exceeding 1050° C. is undesirable because functional properties, particularly yield strength and tensile strength, are inferior.

1−記の焼きなまし工程は、上記温度範囲で水冷、また
は急冷後完了する。
The annealing step 1- is completed after water cooling or rapid cooling in the above temperature range.

酸化皮膜を付与したフェライト系ステンレス鋼の腐食速
度は、0.1ny/ a#/ 20daysであり、付
与しないもののそれは、0.6+ng/ aiT/ 2
0daysである。
The corrosion rate of ferritic stainless steel with an oxide film added is 0.1ny/a#/20days, and that of the one without an oxide film is 0.6+ng/aiT/2
It is 0 days.

(第4図参照)従って、皮膜の付与により、溶出量は]
/6に減少する。
(See Figure 4) Therefore, by applying the film, the elution amount is
/6.

ここで、第4図には酸化皮膜を付与したフェライ1へ系
ステンレス鋼と付与しないフェライ1〜系ステンレス鋼
及びオーステナイト系ステンレス鋼との腐食試験におけ
る腐食量の経時変化を示したグラフである。試験水中の
溶存酸素濃度は約50ppbであり、試験温度は280
°Cである。
Here, FIG. 4 is a graph showing the change over time in the amount of corrosion in a corrosion test of Ferrite 1 stainless steel to which an oxide film was applied, Ferrite 1 to type stainless steel to which no oxide film was applied, and austenitic stainless steel. The dissolved oxygen concentration in the test water was approximately 50 ppb, and the test temperature was 280
It is °C.

第2図は本発明に係る給水加熱器を沸騰水型原子力発電
プラン1へのヒータドレンフォワードポンプアップ方式
の給水系に設置した系統図である。
FIG. 2 is a system diagram in which the feed water heater according to the present invention is installed in a water supply system of the heater drain forward pump-up type to the boiling water type nuclear power generation plan 1.

図において、原子炉圧力容器1内で発生した蒸気は、主
蒸気ライン2を介して高圧蒸気タービン3へ導かれ、タ
ービンロータを駆動する。高圧蒸気タービン3で仕事を
した蒸気は、湿分分離再熱器4を経て低圧蒸気タービン
5へ導かれ、タービンロータを駆動する。湿分分離再熱
器4は原子炉圧力容器1からの蒸気を導いて、高圧蒸気
タービン3にて仕事をした蒸気の湿分を除去し再熱する
ものである。
In the figure, steam generated within a reactor pressure vessel 1 is led to a high-pressure steam turbine 3 via a main steam line 2 to drive a turbine rotor. The steam that has done work in the high-pressure steam turbine 3 is guided to the low-pressure steam turbine 5 via a moisture separator and reheater 4, and drives a turbine rotor. The moisture separator reheater 4 guides steam from the reactor pressure vessel 1, removes moisture from the steam that has done work in the high-pressure steam turbine 3, and reheats the steam.

低圧蒸気タービン5へ導かれて仕事をした蒸気は、復水
器6内で冷却凝縮され、復水となる。この復水は、復水
浄化系7へ導かれてろ過および脱塩処理され、給水系8
へ送られて給水となる。給水系8には上流側から順次低
圧給水加熱器9、高圧給水加熱器11が設置される。給
水はこれらの給水加熱器9,11によって段階的に加熱
された後、原子炉圧力容器1へ導かれる。
The steam that has been guided to the low-pressure steam turbine 5 and has done work is cooled and condensed in the condenser 6 to become condensed water. This condensate is led to the condensate purification system 7 where it is filtered and desalinated, and then the water supply system 8
water is sent to the water supply. A low-pressure feedwater heater 9 and a high-pressure feedwater heater 11 are sequentially installed in the water supply system 8 from the upstream side. After the feed water is heated in stages by these feed water heaters 9 and 11, it is led to the reactor pressure vessel 1.

高圧給水加熱器11内で給水と熱交換してこの給水を加
熱する加熱媒体は、湿分分離再熱器4において加熱媒体
として機能し流出した蒸気が用いられる。また、低圧給
水加熱器9の加熱媒体は湿分分離再熱器4にて加熱され
て低圧蒸気タービン5へ導かれる蒸気の一部が使用され
る。これらの高圧、低圧給水加熱器11,9から流出し
た加熱媒体は、各々高圧ドレン回収ライン12、低圧1
くレン回収ライン10を介して高圧給水加熱器11、低
圧給水加熱器9の上流側の給水ラインへそれぞれ送られ
給水となる。
The heating medium that heats the feed water by exchanging heat with the feed water in the high-pressure feed water heater 11 is the steam that functions as a heating medium in the moisture separation reheater 4 and flows out. Further, as the heating medium of the low pressure feed water heater 9, a part of the steam heated in the moisture separation reheater 4 and guided to the low pressure steam turbine 5 is used. The heating medium flowing out from these high pressure and low pressure feed water heaters 11 and 9 is transferred to a high pressure drain recovery line 12 and a low pressure 1, respectively.
It is sent to the water supply lines upstream of the high-pressure feed water heater 11 and the low-pressure feed water heater 9 via the carbon recovery line 10, respectively, and becomes water supply.

給水となった加熱媒体は、他の給水とともに高圧給水加
熱器11、低圧給水加熱器9にて加熱され、原子炉圧力
容器1へ導かれる。このように、低圧および高圧給水加
熱器9,11の加熱媒体を浄化処理することなく直接給
水ラインへ導く給水系をヒ一タ1〜レンフォワードポン
ブアノプ方式の給水系という。
The heating medium, which has become the feed water, is heated together with other feed water in the high pressure feed water heater 11 and the low pressure feed water heater 9, and is guided to the reactor pressure vessel 1. A water supply system in which the heating medium of the low-pressure and high-pressure water heaters 9 and 11 is guided directly to the water supply line without being purified is referred to as a forward pump system.

即ち、この給水方式では、前述のごとく浄化装置なしに
直接加熱媒体が給水へ送られろために、特に腐食生成物
の低減が望まれる。
That is, in this water supply system, since the heating medium is directly sent to the water supply without a purification device as described above, it is particularly desirable to reduce corrosion products.

ところで、前述したように本発明の給水加熱器では加熱
チューブ27は酸化皮膜を付与したフェライト系ステン
レス鋼が用いられている。このように酸化皮膜を付与し
たフェライ1へ系ステンレス鋼は酸化皮膜を付与しない
フェライ1〜系ステンレス鋼に比へ、給水への腐食生成
物発生基が1/6に減少することから、原子炉圧力容器
1内の炉心で生成される放射性核種の生成量が大幅に低
減される。
By the way, as described above, in the feed water heater of the present invention, the heating tube 27 is made of ferritic stainless steel coated with an oxide film. In this way, the Ferrai 1 series stainless steel with an oxide film has a 1/6th reduction in the number of corrosion product generating groups in the feed water compared to the Ferrai 1 series stainless steel that does not have an oxide film. The amount of radionuclides produced in the reactor core within the pressure vessel 1 is significantly reduced.

その結果、原子力発電プラントにおける放射線基が減少
し、作業者の被曝量の低減が可能となる。
As a result, the amount of radioactive radicals in nuclear power plants is reduced, making it possible to reduce the amount of radiation exposure for workers.

また、給水および蒸気中への腐食生成物が少なくなるこ
とから、給水系をヒーター1〜レインフォワー1−ポン
プアップ方式とすることができる。
Moreover, since the amount of corrosion products in the water supply and steam is reduced, the water supply system can be of a heater 1-rainbow 1-pump-up system.

したがって、低圧および高圧給水加熱器9,11の加熱
媒体を復水浄化系7を経ることなく直接給水加熱器9,
11へ導いて加熱することができる。
Therefore, the heating medium of the low-pressure and high-pressure feedwater heaters 9, 11 is directly transferred to the feedwater heaters 9, 11 without passing through the condensate purification system 7.
11 for heating.

その結果、加熱媒体を復水器6へ導いて冷却凝固した後
復水浄化系7へ導く後述のカスグー1一方式の給水系(
第3図参照)に比べ熱経済」二有利となる。
As a result, the heating medium is guided to the condenser 6, cooled and solidified, and then introduced to the condensate purification system 7 in a one-way water supply system (described later).
(See Figure 3) has a thermal economy advantage.

第3図は本発明の給水加熱器をカスケード方式の給水系
に設置した場合の系統図である。なお、既に説明した第
2図と同一構成部分には同一符号を付してその説明は省
略するものとする。
FIG. 3 is a system diagram when the feed water heater of the present invention is installed in a cascade water supply system. Components that are the same as those in FIG. 2 that have already been described are designated by the same reference numerals, and their description will be omitted.

このカスケード方式の給水系は、高圧給水加熱器11か
らの加熱媒体を低圧給水加熱器9へ導いて再び加熱媒体
として使用し、低圧給水加熱器9の加熱媒体を復水器6
へ導き、復水浄化系7で浄化するように構成した点が前
記第2図の給水系とは相違する。この方スケート方式の
給水系は熱経済」二の利点を度外視すれば、加熱媒体中
の腐食生成物を復水浄化系7にて確実に除去することが
できるため、炉心における放射性核種の生成量を一層減
少することができ、プラントの放射線量をより一層低減
させることができる。
In this cascade type water supply system, the heating medium from the high-pressure feedwater heater 11 is guided to the low-pressure feedwater heater 9 and used as a heating medium again, and the heating medium from the low-pressure feedwater heater 9 is transferred to the condenser 6.
The water supply system differs from the water supply system shown in FIG. 2 in that it is constructed so that the condensate water is introduced into water and purified by the condensate purification system 7. If we ignore the second advantage of ``thermoeconomics'' in this skating water supply system, corrosion products in the heating medium can be reliably removed in the condensate purification system 7, so the amount of radionuclides produced in the reactor core can be reduced. The radiation dose of the plant can be further reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の給水加熱器によれば、本
体内部に配設された多数の給水加熱器チューブが酸化皮
1摸を付与したフェライト系ステンレス鋼から形成され
ているので、この加熱器チューブから給水中へ溶出する
腐食生成物を減少させて、炉心における放射性核種の4
成量を低減させることができ、その結果、原子力発電プ
ラントにおける放射線量を大幅に抑制することができる
という効果を奏する。
As explained above, according to the feed water heater of the present invention, the large number of feed water heater tubes disposed inside the main body are made of ferritic stainless steel coated with an oxide layer. 4 radionuclides in the reactor core by reducing corrosion products leaching from the reactor tubes into the feed water.
As a result, the radiation dose in a nuclear power plant can be significantly suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は本発明の
給水加熱器をヒータドレンフォワードポンプアンプ方式
の給水系に設置した沸騰水型原子力発電プラントの系統
図、第3図は本発明の給水加熱器をカスグー1〜方式の
給水系に設置した沸騰水型原子力発電プランl−の系統
図、第4図は酸化皮膜を付与したフェライト系ステンレ
ス鋼と酸化皮膜を付与しないフェライト系ステンレス鋼
及びオーステティ1〜系ステンレス鋼の腐食試験におけ
る腐食量の経時変化を示すグラフである。 1 原子炉圧力容器    3・高圧蒸圧タービン4・
湿分分離再熱器    5 ・低圧蒸気タービン6・・
復水器        7−・復水浄化系8 給水系 
       9・・低圧給水加熱器10・・高圧ドレ
ン回収ライン 11・・・高圧給水加熱器12・低圧ド
レン回収ライン 21・・・加熱器本体22・・加熱器
本体胴     23.24・・・氷室鏡板25.26
・−管板       27・加熱器チューブ28.2
9・・氷室       30・給水入口31−・給水
出口       32・・加熱媒体入口33  加熱
媒体出口 (8733)  代理人 弁理士 猪 股 祥 晃(ほ
か1名)第4図
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a system diagram of a boiling water nuclear power plant in which the feed water heater of the present invention is installed in a water supply system of the heater drain forward pump amplifier type, and Fig. 3 Figure 4 is a system diagram of a boiling water nuclear power generation plan l- in which the feed water heater of the present invention is installed in the water supply system of the Kasugou 1~ method, and Figure 4 shows ferritic stainless steel with an oxide film and ferrite without an oxide film. 1 is a graph showing changes over time in the amount of corrosion in corrosion tests of stainless steels and Austety 1 to stainless steels. 1 Reactor pressure vessel 3・High pressure steam turbine 4・
Moisture separation reheater 5 ・Low pressure steam turbine 6...
Condenser 7-・Condensate purification system 8 Water supply system
9...Low pressure feed water heater 10...High pressure drain recovery line 11...High pressure feed water heater 12...Low pressure drain recovery line 21...Heater main body 22...Heater main body shell 23.24...Ice chamber mirror plate 25.26
・-Tube plate 27・Heater tube 28.2
9... Ice house 30 - Water supply inlet 31 - Water supply outlet 32... Heating medium inlet 33 Heating medium outlet (8733) Agent Patent attorney Yoshiaki Inomata (and 1 other person) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)原子力発電プラントの給水系に設置され、本体内部
に多数の加熱器チューブが配設され、この加熱器チュー
ブ内を給水が通過する間に熱交換され加熱される給水加
熱器において、前記加熱器チューブはその表面に酸化皮
膜を形成させたフェライト系ステンレス鋼から構成され
たことを特徴とする給水加熱器。
1) In a feed water heater installed in the water supply system of a nuclear power plant, in which a large number of heater tubes are arranged inside the main body, and the feed water is heated by heat exchange while passing through the heater tubes, the heating This water heater is characterized in that the tube is made of ferritic stainless steel with an oxide film formed on its surface.
JP63100286A 1988-04-25 1988-04-25 Feed water heater Pending JPH01272997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63100286A JPH01272997A (en) 1988-04-25 1988-04-25 Feed water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63100286A JPH01272997A (en) 1988-04-25 1988-04-25 Feed water heater

Publications (1)

Publication Number Publication Date
JPH01272997A true JPH01272997A (en) 1989-10-31

Family

ID=14269946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63100286A Pending JPH01272997A (en) 1988-04-25 1988-04-25 Feed water heater

Country Status (1)

Country Link
JP (1) JPH01272997A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053897A (en) * 1983-09-05 1985-03-27 株式会社日立製作所 Method of inhibiting eluation of cobalt of feedwater heater tube
JPS62108195A (en) * 1985-11-06 1987-05-19 株式会社日立製作所 Feedwater heater for nuclear reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053897A (en) * 1983-09-05 1985-03-27 株式会社日立製作所 Method of inhibiting eluation of cobalt of feedwater heater tube
JPS62108195A (en) * 1985-11-06 1987-05-19 株式会社日立製作所 Feedwater heater for nuclear reactor

Similar Documents

Publication Publication Date Title
TW201201221A (en) Method for surface-decontamination
US4505824A (en) Method and apparatus for purifying liquid using an electromagnetic filter
JPS6323519B2 (en)
JP3667525B2 (en) Steam generator-attached nuclear power generation turbine facility
JP2016080508A (en) Decontamination treatment system and decomposition method for decontamination waste water
JPH01272997A (en) Feed water heater
JPS5879196A (en) Method of controlling radioactive ion adhesion
JPH04126902A (en) Feedwater heater
JP6088173B2 (en) Method for suppressing radionuclide adhesion to components of nuclear power plant
JP2543905B2 (en) Nuclear power plant turbine system
JPH01230724A (en) Heat treatment method for heat exchanger
JPH07128488A (en) Reactor power plant
JP2020160031A (en) Method for suppressing corrosion of carbon steel pipe
JPS5895580A (en) Water processing method
JPS636303A (en) Feedwater heater
JPS6053897A (en) Method of inhibiting eluation of cobalt of feedwater heater tube
JPH01291005A (en) Feed water heater
JPS63307393A (en) Turbine system for nuclear power plant
JPH01118799A (en) Method for controlling iron concentration in feed water of nuclear power plant
JPH03246496A (en) Sticking suppressing method for radioactive material of piping or equipment for nuclear power plant
JPS5979193A (en) Cleaning device of feedwater heater
JPH0666000B2 (en) Condensate purification system control method for boiling water nuclear power plant
JPH0314154B2 (en)
JPS62108195A (en) Feedwater heater for nuclear reactor
JPS6333680B2 (en)