JPH01230724A - Heat treatment method for heat exchanger - Google Patents

Heat treatment method for heat exchanger

Info

Publication number
JPH01230724A
JPH01230724A JP63053514A JP5351488A JPH01230724A JP H01230724 A JPH01230724 A JP H01230724A JP 63053514 A JP63053514 A JP 63053514A JP 5351488 A JP5351488 A JP 5351488A JP H01230724 A JPH01230724 A JP H01230724A
Authority
JP
Japan
Prior art keywords
heat treatment
heat exchanger
temp
exhaust gas
residual stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63053514A
Other languages
Japanese (ja)
Inventor
Masahiro Kimura
匡宏 木村
Masanobu Konno
近野 正伸
Yoshio Uchiyama
内山 義雄
Wataru Sagawa
渉 佐川
Takeshi Koakutsu
小圷 斌
Shigeo Hattori
成雄 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63053514A priority Critical patent/JPH01230724A/en
Publication of JPH01230724A publication Critical patent/JPH01230724A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To extend the service life of a heat exchanger by executing heat treatment in the specific range of temp. after welding process at the time of manufacturing stainless steel-made heat exchanger and reducing residual stress. CONSTITUTION:After welding work to the austenitic stainless steel, the temp. is raised to near the solid solution heat treatment temp., and by slowly cooled from the above temp., influences to sensibility during raising the temp., work hardening, etc., are eliminated and the residual stress is reduced and welded strength is improved. Then, by using a deformation preventing jig, holding time for heat treatment is shortened, and further, deformation of the body is prevented. By this method, welded strength is improved and also the stress corrosion crack is prevented and the service life of the heat exchanger can be extended.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、塩素イオン持込みのある高温乾湿環境で使用
するオーステナイトステンレス鋼製熱交換器に係り、特
に、貫粒型応力腐食割れ防止に好適な、残留応力低減特
殊熱処理施工法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an austenitic stainless steel heat exchanger used in a high temperature, dry and humid environment where chloride ions are introduced, and is particularly suitable for preventing through-grain type stress corrosion cracking. Regarding a special heat treatment method for reducing residual stress.

〔従来の技術〕[Conventional technology]

オーステナイトステレンス鋼の応力腐食割れ(SCC)
防止策として(a)応力除去熱処理(SR処理) 、(
b)高周波加熱応力改善技術(IH3I法) 、 (C
)材質改善等がある。(a)SR処理は溶接、冷間加工
などによる残留応力を除くために行なわれ、一般に、8
50℃以上の温度での熱処理で有害な残留応力はほとん
ど除去されると言われている。しかし、熱交換器胴体の
ような、多数の管台9脚、などを取付けた複合溶接構造
物を対象としたものは、熱処理時の変形問題が存在して
いた事と1種々の板厚の構造物を均一に冷却す′る手段
が確立されていなかったために行なわれていない。更に
、SR処理温度についても、鋼種によって粒界腐食など
の別種の腐食を引き起こす危険があるため、すべての材
料を区別なしに設定できなかった。
Stress corrosion cracking (SCC) of austenitic stainless steel
As a preventive measure, (a) stress relief heat treatment (SR treatment), (
b) High frequency heating stress improvement technology (IH3I method), (C
) There are improvements in materials, etc. (a) SR treatment is performed to remove residual stress due to welding, cold working, etc.
It is said that most of the harmful residual stress is removed by heat treatment at a temperature of 50° C. or higher. However, for composite welded structures such as heat exchanger bodies, which are equipped with a large number of nine nozzle legs, etc., there are problems with deformation during heat treatment and structures with various plate thicknesses. This was not done because there was no established means to cool things uniformly. Furthermore, the SR treatment temperature could not be set for all materials without distinction because there is a risk of causing different types of corrosion such as intergranular corrosion depending on the steel type.

(b)IH3Imは、具体的には管外面から高周波誘導
加熱コイルにより加熱すると同時に、管内面に冷却水を
流して管内外面に適当な温度差を与え、その時に生じる
熱応力を利用して残留応力を改善しようとするものであ
る。このI HS I法は。
(b) Specifically, IH3Im heats the tube from the outside with a high-frequency induction heating coil, and at the same time flows cooling water onto the inside of the tube to create an appropriate temperature difference between the inside and outside of the tube, and utilizes the thermal stress generated at that time to reduce residual This is an attempt to improve stress. This I HS I method.

すでに組立てが完了した配管に対してそれを解体するこ
とな〈実施できるところに特徴があり、周継手、長手継
手、管台溶接部等の継手について適用されている。この
熱交換器の場合は、配管と異なり、(1)溶接構造物が
複雑で太きいため内面冷却が不十分になり易い。(2)
周継手でもフランジと胴体のように剛性急変部に周継手
をもつ。(3)管台溶接部、すみ肉溶接部などの各種継
手をもつ上、それぞれの形状と肉厚が一様でないため適
用が非常に困難である。これらT HS I法の詳細に
ついて述へである発明には特開昭53−38246号2
特開昭61−24117号、特開昭61−170517
号、特開昭60−77919号公報がある。
It is unique in that it can be applied to pipes that have already been assembled without dismantling them, and is applied to joints such as circumferential joints, longitudinal joints, and nozzle welds. In the case of this heat exchanger, unlike piping, (1) the welded structure is complex and thick, so internal cooling tends to be insufficient. (2)
Circumferential joints also have circumferential joints in areas where rigidity suddenly changes, such as the flange and the body. (3) It is extremely difficult to apply because it has various joints such as nozzle welds and fillet welds, and the shape and thickness of each joint is not uniform. The details of these T HSI methods are described below.
JP-A-61-24117, JP-A-61-170517
No. 60-77919.

このように使用機器、及び、環境が特殊であり、いずれ
の方法も満足のゆく解決手段とはなっていなかった。
As described above, the equipment and environment used are special, and neither method has been a satisfactory solution.

〔発明が解決しようとする課題〕 原子力発電プラントの放射性排ガス処理経路を、第2図
に示す、原子炉内1で発生した放射性ガスはタービン2
.主復水器3を経由し、空気抽出器4により抽出され排
ガス処理設備11に移行する。
[Problem to be solved by the invention] The radioactive exhaust gas treatment route of a nuclear power plant is shown in Figure 2.
.. It passes through the main condenser 3, is extracted by the air extractor 4, and is transferred to the exhaust gas treatment equipment 11.

排が入処理設備11は酸素・水素、及び水蒸気を処理す
るための排ガス予熱器5.排ガス再結合器6、排ガスコ
ンデンサ7、短半減期の放射性同位元素を減衰させるた
めの排ガス減衰管8.放射性希ガスを時間減衰させるた
めの活性炭吸着塔9等から構成されており、放射能放出
率を許容値より十分低くして排ガスを排気筒10から大
気へ放出する。本発明の対象機器の一例である排ガスコ
ンデンサは、原子炉冷却水の放射線分解によって発生し
た酸素および水素を再結合させる排ガス再結合器の後に
配置され、大部分の水蒸気を凝縮・除去する働きをする
The exhaust gas input treatment equipment 11 includes an exhaust gas preheater 5 for treating oxygen, hydrogen, and water vapor. Exhaust gas recombiner 6, exhaust gas condenser 7, exhaust gas attenuation pipe 8 for attenuating short half-life radioisotopes. It is composed of an activated carbon adsorption tower 9 and the like to attenuate the radioactive rare gas over time, and discharges the exhaust gas from the exhaust stack 10 to the atmosphere with the radioactivity emission rate sufficiently lower than the permissible value. The exhaust gas condenser, which is an example of equipment covered by the present invention, is placed after the exhaust gas recombiner that recombines oxygen and hydrogen generated by radiolysis of reactor cooling water, and has the function of condensing and removing most of the water vapor. do.

第3図に排ガスコンデンサ胴体内の流動状態を模式的に
示す。水素と酸素が排ガス再結合器で反応結合した後、
高温の過熱蒸気(約280℃)となって排ガスコンデン
サ胴体側に流入する。流入し゛た蒸気は伝熱管群と直角
に横切ることにより飽和温度まで冷却(過熱蒸気冷却ゾ
ーン)され、更に、凝縮して水滴となり(水蒸気凝縮ゾ
ーン)、1目内壁を伝い底部へ流出し、ドレンポットレ
こ回収される。凝縮後に残った非凝縮性ガス(空気)は
伝熱管群で更に、冷却され、管板近傍の上部排ガス出口
ノズルより流出する。
FIG. 3 schematically shows the flow state inside the exhaust gas condenser body. After hydrogen and oxygen are reactively combined in the exhaust gas recombiner,
It becomes high-temperature superheated steam (approximately 280°C) and flows into the exhaust gas condenser body side. The inflowing steam crosses the heat transfer tube group at right angles to be cooled to the saturation temperature (superheated steam cooling zone), and then condenses into water droplets (steam condensation zone), flows along the inner wall of the first eye, flows to the bottom, and drains into the drain pot hole. This will be collected. The non-condensable gas (air) remaining after condensation is further cooled in the heat transfer tube group and flows out from the upper exhaust gas outlet nozzle near the tube plate.

排ガスコンデンサ胴体の使用環境は次の通りである。The usage environment of the exhaust gas condenser body is as follows.

(a)CQ−流入境環 排ガス再結合器の触媒に蓄潰された塩素、又は運転中系
外からの塩素流入等の要因で、塩素が存在しうる環境で
ある。
(a) CQ - Inflow environment This is an environment where chlorine can exist due to factors such as chlorine stored in the catalyst of the exhaust gas recombiner or chlorine flowing in from outside the system during operation.

(b)温度環境 約280”Cの高温過熱蒸気を含む高温の排ガスが流入
する入口ノズルから過熱蒸気ゾーン及び凝縮の完了する
水蒸気ゾーンまでが、100℃以上の高温部となる。
(b) Temperature environment The area from the inlet nozzle into which high-temperature exhaust gas containing high-temperature superheated steam of approximately 280"C flows, to the superheated steam zone and the steam zone where condensation is completed, becomes a high temperature section of 100"C or higher.

(c)湿分環境 排ガスコンデンサの入口部は過熱蒸気が流入するため乾
燥状態にある。それに続く胴中央部に位置する水蒸気凝
縮ゾーンの環境は湿度100%の湿り状態となっており
、特に、胴上部は凝縮液滴が少ないため乾燥湿潤を繰返
す領域となっている。
(c) Humid environment The inlet of the exhaust gas condenser is in a dry state due to the inflow of superheated steam. The environment of the water vapor condensation zone located in the center of the body next to the body is humid with a humidity of 100%, and in particular, the upper part of the body is an area where drying and wetting are repeated because there are few condensed droplets.

特に、塩素イオン流入環境下では、この乾燥・湿潤の繰
返しによって、塩素イオンが濃縮される可能性が大きく
、TGSCC発生の危険性も大きい。
In particular, in an environment where chlorine ions are introduced, there is a high possibility that chlorine ions will be concentrated due to this repeated drying and wetting, and there is also a high risk of TGSCC occurring.

(d)応力環境 排ガスコンデンサ運転時の発生応力は、非常に小さいた
めに、胴体の応力分布は加工及び溶接残留応力で支配さ
れる。その溶接残留応力は、長手溶接線近傍であって、
周溶接線付近、及び、周溶接線から離れた場所に、引張
残留応力として存在しており、SCC発生ポテンシャル
を十分持っている。
(d) Stress environment Since the stress generated during operation of the exhaust gas condenser is very small, the stress distribution in the fuselage is dominated by processing and welding residual stress. The welding residual stress is near the longitudinal weld line,
It exists as tensile residual stress near the circumferential weld line and at a location away from the circumferential weld line, and has sufficient SCC generation potential.

一般に、TGSCCの発生は、塩素イオン濃度及び温度
に依存することが知られており、この様な使用環境では
、TGSCCの発生の可能性が非常に高い。しかし、従
来の技術では、TGSCC防止について考慮がされてお
らず、長期運転時にTGSCCを起こす問題があった。
It is generally known that the occurrence of TGSCC depends on the chloride ion concentration and temperature, and in such a usage environment, there is a very high possibility that TGSCC will occur. However, in the conventional technology, no consideration is given to preventing TGSCC, and there is a problem in that TGSCC occurs during long-term operation.

本発明の目的は、塩素流入の可能性が否定できず、高温
乾湿環境下で使用されるオーステナイトテンレス製熱交
換器の’rasccを防止することにある。
An object of the present invention is to prevent 'rascc' in an austenitic stainless steel heat exchanger used in a high temperature, dry and humid environment where the possibility of chlorine inflow cannot be denied.

〔課題を解決するための手段〕[Means to solve the problem]

TGSCC発生の最も重要な因子は(1)環境、(2)
材質、(3)応力と言われている。いま、熱交換器の過
熱蒸気を冷却凝縮する機能上、高温乾湿環境は変更不可
能であり、CQ−″持込みを防止する手段が存在しない
ため、(1)環境の改善はできない。更に、(2)材質
屹原子カプラントで一般に使用されるオーステナイトス
テンレス鋼に限定する。従って、TGSCCの防止対策
として(3)応力改善を考える。
The most important factors for TGSCC occurrence are (1) environment; (2)
It is said to be material quality and (3) stress. Currently, due to the function of the heat exchanger to cool and condense superheated steam, the high-temperature, dry-humid environment cannot be changed, and there is no means to prevent CQ-'' from being brought in. Therefore, (1) the environment cannot be improved.Furthermore, ( 2) The material is limited to austenitic stainless steel, which is commonly used in nuclear couplants.Therefore, as a preventive measure against TGSCC, consider (3) stress improvement.

つまり、材質、環境下で使用される熱交換器のTGSC
C防止目的は、熱交換器機能上支障ないように考慮した
変形防止治具を用い、酸化防止のための不活性ガスパー
ジを行う第1図(c)に示す熱処理条件で特殊熱処理を
し、残留応力を低減することにより達成される。
In other words, the TGSC of the heat exchanger used in the material and environment
The purpose of preventing C is to perform special heat treatment under the heat treatment conditions shown in Figure 1 (c), using a deformation prevention jig that does not interfere with the function of the heat exchanger and inert gas purge to prevent oxidation. This is achieved by reducing stress.

〔作用〕[Effect]

前述の特殊熱処理は(1)残留応力除去効果、(2)溶
接部強度特性、をそれぞれ向上させる働きをする。
The above-mentioned special heat treatment works to improve (1) residual stress removal effect and (2) weld strength characteristics.

(1)残留応力除去効果 溶接部残留応力に及ぼす溶接後熱処理の影eを第4図に
示す。材料は高温になる程、変形抵抗が低下するので、
残留応力を低減するには、出来るだけ高温側の熱処理温
度とするのが望ましい。固溶体化熱処理温度近くでは、
昇温過程の鋭敏化と加工硬化等の影響を消し去り、残留
応力の低減がなされている。また、冷却方法は、固溶化
温度かに徐冷し、全体を均一に冷却するため、部分的な
冷却速度の違いにより生じる引張応力が残留しない働き
をする。
(1) Effect of removing residual stress The effect of post-weld heat treatment on the residual stress in the weld zone is shown in FIG. 4. The higher the temperature of the material, the lower its deformation resistance.
In order to reduce residual stress, it is desirable to set the heat treatment temperature as high as possible. Near the solid solution heat treatment temperature,
Residual stress is reduced by sensitizing the heating process and eliminating the effects of work hardening. In addition, the cooling method involves slow cooling to the solution temperature and uniformly cooling the entire body, so that no tensile stress remains due to differences in local cooling rates.

(2)溶接部強度特性 固溶体化熱処理温度より比較的低い温度範囲で熱処理を
行うと、オーステナイトステンレスの溶接金属中にシグ
マ相が生成して靭性が低下する。
(2) Weld strength characteristics If heat treatment is performed in a temperature range relatively lower than the solid solution heat treatment temperature, a sigma phase will be generated in the weld metal of austenitic stainless steel, resulting in a decrease in toughness.

このシグマ相ば、デルタフエライ1−が変化したもので
あるが、−底生じたシグマ相は高温で固溶化処理すれば
、オーステナイト地中に固溶して消失するため溶接部の
靭性は向上されている。
This sigma phase is a change of delta ferrite 1-, but if the sigma phase formed at the bottom is solution treated at high temperature, it dissolves in the austenite ground and disappears, improving the toughness of the weld. There is.

これによって溶接部の残留応力が低下し、溶接部強度は
向上するので、TGSCCを予防する効果がある。
This reduces the residual stress in the weld and improves the strength of the weld, which is effective in preventing TGSCC.

更に、変形防止治具は、胴体を完全に拘束し、熱処理後
の変形を防止する働きをし、不活性ガスパージは、胴体
内面の酸化防止の作用をする。これらより熱交換器の機
能上必要な形状、材料表面状態を満足させることが可能
となる。
Further, the deformation prevention jig serves to completely restrain the fuselage and prevent deformation after heat treatment, and the inert gas purge serves to prevent oxidation of the inner surface of the fuselage. These make it possible to satisfy the functionally necessary shape and material surface condition of the heat exchanger.

〔実施例〕〔Example〕

以下、本発明の一実施例である排ガスコンデンサについ
て図を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An exhaust gas condenser which is an embodiment of the present invention will be described below with reference to the drawings.

排ガス処理設備内の排ガスコンデンサは前述の通り、水
蒸気を凝縮させる熱交換器であり、機幸全体の構成は全
〈従来の横置U字管型熱交換器と相違ない。
As mentioned above, the exhaust gas condenser in the exhaust gas treatment facility is a heat exchanger that condenses water vapor, and its overall structure is the same as that of a conventional horizontal U-shaped tube heat exchanger.

高温乾湿、CQ−流入環境で使用される排ガスコンデン
サ胴体の拘束治具取付時の断面図を第1図(a)に示す
。胴体の拘束方法は、内部に円形の拘束リング12を数
ケ所取付け、外部から拘束バンド13で締め付ける。拘
束治具の材質は胴体と同一膨張率をもつものを選定する
。また、内面の酸化を防止するために、胴体に取付けら
れたすべての管台とフランジ面に閉止板を溶接して密閉
する。排ガス入口ノズル16に取付けた閉止板15に、
二本の不活性ガスパージ用の配管14を設置し、内部空
気を不活性ガスに置換する際に用いる。胴体外表面しこ
数箇所熱電対を取付は実体温度で温度管理する。
FIG. 1(a) shows a cross-sectional view of an exhaust gas condenser body used in a high-temperature, dry-humid, CQ-inflow environment when a restraining jig is installed. The method of restraining the torso is to attach circular restraint rings 12 at several places inside and tighten them with restraint bands 13 from the outside. Select a material for the restraint jig that has the same expansion rate as the fuselage. In addition, to prevent internal oxidation, all nozzles and flanges attached to the fuselage are welded with closing plates to seal them. On the closing plate 15 attached to the exhaust gas inlet nozzle 16,
Two inert gas purge pipes 14 are installed and used when replacing internal air with inert gas. Thermocouples are installed at several locations on the outer surface of the fuselage to control the temperature based on the actual temperature.

次に熱処理方法について説明する。」二記構成から成る
拘束治具付胴体を炉内へ移動し、内部空気を不活性ガス
に置換し、熱処理を実施する。熱処理条件は第1図(b
)に示す通りであり、取付けた熱電対の実体温度で管理
する。
Next, the heat treatment method will be explained. The body with a restraining jig consisting of the structure described above is moved into the furnace, the internal air is replaced with inert gas, and heat treatment is performed. The heat treatment conditions are shown in Figure 1 (b
) and is controlled by the actual temperature of the attached thermocouple.

本実施例によれば、i体の変形及び、内面酸化を防ぎ、
溶接部の残留応力が低減して耐食性が向上する。
According to this embodiment, deformation of the i-body and internal oxidation are prevented,
Residual stress in welds is reduced and corrosion resistance is improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、オーステナイト鋼製熱交換器に於いて
、溶接部残留応力が低減され、TGSCCの予防ができ
、熱交換器の寿命延長の効果がある。
According to the present invention, in an austenitic steel heat exchanger, residual stress in welds is reduced, TGSCC can be prevented, and the life of the heat exchanger can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図(a)。 (a)のB−B矢視図(b)熱処理条件を示す図(C)
、第2図は、原子カプラントの放射性排ガス処理系統の
図、第3図は排ガスコンデンサ胴体内の流動状態の模式
図、第4図は溶接後熱処理に及ぼす溶接後熱処理の影響
を示す図である。 1・・原子炉、2・・・タービン、3・・主復水器、4
・・空気抽出器、5・・・排ガス予熱器、6・・排ガス
再結第1図 第2図 第3図
FIG. 1 is a sectional view (a) of an embodiment of the present invention. (a) B-B arrow view (b) Diagram showing heat treatment conditions (C)
, Fig. 2 is a diagram of the radioactive exhaust gas treatment system of the atomic couplant, Fig. 3 is a schematic diagram of the flow state in the exhaust gas condenser body, and Fig. 4 is a diagram showing the influence of post-weld heat treatment on post-weld heat treatment. . 1... Nuclear reactor, 2... Turbine, 3... Main condenser, 4
... Air extractor, 5... Exhaust gas preheater, 6... Exhaust gas recombination Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] 1. 塩素イオン持込みのある高温乾湿環境で使用する
熱交換器に於いて、 加工及び溶接残留応力を低減するために溶接後熱処理を
行なうことを特徴とする熱交換器の熱処理方法。
1. A heat treatment method for a heat exchanger that is used in a high temperature, dry and humid environment where chlorine ions are carried in, the heat treatment being performed after welding in order to reduce processing and welding residual stress.
2. 前記熱処理後の変形を防止するために円形治具を
使用し、固溶体化熱処理温度近くで、保持時間を短くし
たことを特徴とする特許請求の範囲第1項記載の熱交換
器の熱処理方法。
2. 2. The heat treatment method for a heat exchanger according to claim 1, wherein a circular jig is used to prevent deformation after the heat treatment, and the holding time is shortened near the solid solution heat treatment temperature.
JP63053514A 1988-03-09 1988-03-09 Heat treatment method for heat exchanger Pending JPH01230724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053514A JPH01230724A (en) 1988-03-09 1988-03-09 Heat treatment method for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053514A JPH01230724A (en) 1988-03-09 1988-03-09 Heat treatment method for heat exchanger

Publications (1)

Publication Number Publication Date
JPH01230724A true JPH01230724A (en) 1989-09-14

Family

ID=12944927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053514A Pending JPH01230724A (en) 1988-03-09 1988-03-09 Heat treatment method for heat exchanger

Country Status (1)

Country Link
JP (1) JPH01230724A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006742A (en) * 2009-06-25 2011-01-13 Toyota Motor Corp Jig and heat treatment method for cylindrical member
CN103849744A (en) * 2012-11-30 2014-06-11 宜兴北海封头有限公司 Novel end closure heat treatment fixing tool
CN104561453A (en) * 2013-10-11 2015-04-29 溧阳市永恒热处理有限公司 Method for prolonging service life of granulator mold
CN105014312A (en) * 2015-06-04 2015-11-04 昆明新道为机械制造有限公司 Processing method for fork-shaped pull rods
CN107460282A (en) * 2017-08-08 2017-12-12 合肥正明机械有限公司 A kind of processing method for eliminating stainless steel welded part residual stress
CN112322886A (en) * 2020-11-19 2021-02-05 上海电气核电设备有限公司 Anti-deformation method suitable for heat treatment of heat exchanger

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494414A (en) * 1978-01-11 1979-07-26 Hitachi Ltd Method of hot-forming polygonal pipe
JPS5719169A (en) * 1980-07-08 1982-02-01 Mitsubishi Electric Corp Pulse arc welding machine
JPS5854175A (en) * 1981-09-22 1983-03-31 日産自動車株式会社 Window glass lifting and falling apparatus
JPS5913565A (en) * 1982-07-15 1984-01-24 Mitsubishi Heavy Ind Ltd Production of casting
JPS5940892A (en) * 1982-05-17 1984-03-06 ロツクウエル・リモルデイ・エスピ−エイ Stitchcontrol apparatus of sewing machine
JPS60116752A (en) * 1983-11-29 1985-06-24 Nippon Light Metal Co Ltd Heat treatment of metallic material
JPS60121227A (en) * 1983-12-02 1985-06-28 Hitachi Ltd High-frequency heating treatment of barrel body for heat exchanger
JPS61170517A (en) * 1985-01-23 1986-08-01 Hitachi Ltd Heat treatment of welded structure
JPS61227133A (en) * 1985-04-01 1986-10-09 Hitachi Ltd Heat treatment
JPS627820A (en) * 1985-07-02 1987-01-14 Ishikawajima Harima Heavy Ind Co Ltd Method for inhibiting oxidation of vessel or the like during annealing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494414A (en) * 1978-01-11 1979-07-26 Hitachi Ltd Method of hot-forming polygonal pipe
JPS5719169A (en) * 1980-07-08 1982-02-01 Mitsubishi Electric Corp Pulse arc welding machine
JPS5854175A (en) * 1981-09-22 1983-03-31 日産自動車株式会社 Window glass lifting and falling apparatus
JPS5940892A (en) * 1982-05-17 1984-03-06 ロツクウエル・リモルデイ・エスピ−エイ Stitchcontrol apparatus of sewing machine
JPS5913565A (en) * 1982-07-15 1984-01-24 Mitsubishi Heavy Ind Ltd Production of casting
JPS60116752A (en) * 1983-11-29 1985-06-24 Nippon Light Metal Co Ltd Heat treatment of metallic material
JPS60121227A (en) * 1983-12-02 1985-06-28 Hitachi Ltd High-frequency heating treatment of barrel body for heat exchanger
JPS61170517A (en) * 1985-01-23 1986-08-01 Hitachi Ltd Heat treatment of welded structure
JPS61227133A (en) * 1985-04-01 1986-10-09 Hitachi Ltd Heat treatment
JPS627820A (en) * 1985-07-02 1987-01-14 Ishikawajima Harima Heavy Ind Co Ltd Method for inhibiting oxidation of vessel or the like during annealing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006742A (en) * 2009-06-25 2011-01-13 Toyota Motor Corp Jig and heat treatment method for cylindrical member
CN103849744A (en) * 2012-11-30 2014-06-11 宜兴北海封头有限公司 Novel end closure heat treatment fixing tool
CN103849744B (en) * 2012-11-30 2015-09-09 宜兴北海封头有限公司 A kind of end socket thermal treatment fixing tool
CN104561453A (en) * 2013-10-11 2015-04-29 溧阳市永恒热处理有限公司 Method for prolonging service life of granulator mold
CN105014312A (en) * 2015-06-04 2015-11-04 昆明新道为机械制造有限公司 Processing method for fork-shaped pull rods
CN107460282A (en) * 2017-08-08 2017-12-12 合肥正明机械有限公司 A kind of processing method for eliminating stainless steel welded part residual stress
CN112322886A (en) * 2020-11-19 2021-02-05 上海电气核电设备有限公司 Anti-deformation method suitable for heat treatment of heat exchanger
CN112322886B (en) * 2020-11-19 2022-02-15 上海电气核电设备有限公司 Anti-deformation method suitable for heat treatment of heat exchanger

Similar Documents

Publication Publication Date Title
US4975128A (en) Method for heat-treating straight bead welded pipes
JPH01230724A (en) Heat treatment method for heat exchanger
JPH0580187A (en) Intra-reactor structure maintaining method
TWI401699B (en) Adhesion inhibition method for radioactive material and attachment inhibition device
JPH0670257B2 (en) Heat treatment method for condensing heat exchanger body made of low carbon austenitic stainless steel
KR920004505B1 (en) Apparatus for and method of chromizing articles
JP3074838B2 (en) Shroud maintenance method and heat treatment apparatus therefor
JPH06167596A (en) Corrosion suppression method and device for reactor primary system structure material
JP3146445B2 (en) Repair method of primary reactor piping
JP2020160031A (en) Method for suppressing corrosion of carbon steel pipe
JP6049256B2 (en) Oxidation resistance method for ferritic heat resistant steel
RU2559598C2 (en) Reconditioning of articles from low-carbon perlite steel after operation
JP3470250B2 (en) Heat treatment method for improving corrosion resistance of high Cr austenitic steel
Rosborg Corrosion problems in boiling water reactors and their remedies
JPS5989775A (en) Method for inhibiting leaching of cobalt from metal containing cobalt
US20170018319A1 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
JPS5952689B2 (en) Method for improving residual stress on the inner and outer surfaces of steel pipes
Blat-Yrieix et al. Feedback from Stainless Steels Corrosion related Issues during Maintenance Operation in Sodium Fast Reactor: SCC in caustic solution and Intergranular Corrosion by Acid Solution
JPS62224627A (en) Oxidation resistance treatment for heat resisting steel
Cattant BWRs Cracking
Melekhov et al. Some specific features of degradation of superheater tubes of the boilers of thermal electric power plants made of 12Kh18N12T steel
JPH0636066B2 (en) Method and apparatus for producing anticorrosion coating for nuclear power plant
Gu et al. Impact of Surface Roughness on the Oxidative Film-forming Properties of T22 Heat Exchange Pipe at High Temperatures
JPS5831560B2 (en) Method and device for collecting radioactive impurities in liquid metal
JPS63286520A (en) Heat treatment of heat transfer pipe of heat exchanger for nuclear reactor