JPS62224627A - Oxidation resistance treatment for heat resisting steel - Google Patents

Oxidation resistance treatment for heat resisting steel

Info

Publication number
JPS62224627A
JPS62224627A JP6954586A JP6954586A JPS62224627A JP S62224627 A JPS62224627 A JP S62224627A JP 6954586 A JP6954586 A JP 6954586A JP 6954586 A JP6954586 A JP 6954586A JP S62224627 A JPS62224627 A JP S62224627A
Authority
JP
Japan
Prior art keywords
pipe
oxidation resistance
steel
steam
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6954586A
Other languages
Japanese (ja)
Inventor
Yoshio Harada
良夫 原田
Susumu Shono
正野 進
Takaharu Toyoda
豊田 隆治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6954586A priority Critical patent/JPS62224627A/en
Publication of JPS62224627A publication Critical patent/JPS62224627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To improve oxidation resistance to high temp. steam, by cold working the inner surface of heat resisting steel pipe made of high Cr steel or austenitic stainless steel through which high temp. steam is communicated, then irradiating laser beam and rapidly cooling the surface. CONSTITUTION:The inner surface of a pipe material 1 for passing high temp. steam such as heat transfer pipe of boiler for thermal power generation made of high Cr heat resisting steel contg. >=13% Cr or Ni-Cr austenitic stainless steel, etc., is subjected to cold workings such as roller finishing, shot blasting and shot peening. Tightly closing plates 4 having an inlet 2 and an outlet 3 for gas are attached to both ends of the pipe 1, gaseous Ar is fed in the pipe 1 from the inlet 2 and exhausted from the outlet 3 to obtain gaseous Ar atmosphere. Successively, a laser beam 5 is introduced in the pipe 1 through a crystal lense 6 made of KCl, inner surface of steel pipe is irradiated with a reflecting mirror 7 to heat it to 800-1,050 deg.C. The surface is locally melted and water cooled from outer part of steel pipe. Inner surface of the pipe 1 is made amorphous or fine grain layer is formed to improve oxidation resistance to high temp. steam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火力発電用ボイラの過熱器及び再熱器に用い
ら、れる伝熱管、化学プラント。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a heat exchanger tube used in a superheater and a reheater of a boiler for thermal power generation, and a chemical plant.

石油精製2石油化学工業等に用いられる高温の水蒸気を
流通させる配管、高温の水蒸気を熱源とする熱交換器に
用いられる伝熱管等の耐熱鋼管の耐酸化処理方法に関す
る。
This article relates to an oxidation-resistant treatment method for heat-resistant steel pipes such as piping used in the petroleum refining 2 petrochemical industry, etc., for circulating high-temperature steam, and heat transfer tubes used in heat exchangers that use high-temperature steam as a heat source.

〔従来の技術〕[Conventional technology]

火力発電用ボイラの高温及び高圧化に伴い。 With the rise in temperature and pressure of boilers for thermal power generation.

過熱器や再熱器に多量のオーステナイト系スLt7; テ・レス鋼管(以下ヘテ・・ス鋼シフが使用されている
。しかしステンレス鋼管といえども、長期間、高温・高
圧の水蒸気と接触している管内面では、酸化スケールが
生成する。
Superheaters and reheaters use a large amount of austenitic steel pipes (hereinafter referred to as heat steel pipes).However, even stainless steel pipes do not come in contact with high temperature and high pressure steam for long periods of time. Oxidized scale forms on the inner surface of the tube.

この酸化スケールの成長速度は水蒸気の温度。The growth rate of this oxide scale depends on the temperature of water vapor.

水蒸気と接触している時間によって変化すると共にステ
ンレス鋼管の結晶粒度、加工状態によって甚しく影響を
受けることが知られている。酸化スケールの生成は、そ
れが薄く管内面に形成されている場合には問題はないが
厚く成長すると、 CrNi  が母材含有量よシ多い
緻密な構造の母材と密着した下層部と下層部の上に主と
して多孔質なFe3O4から構成される上層部から酸化
スケールが形成され、ボイラ運転中はもとより、ボイラ
の運転停止及び運転開始時などの温度変化が太きいとき
に。
It is known that it changes depending on the time it is in contact with water vapor and is significantly affected by the grain size and processing conditions of the stainless steel pipe. There is no problem with the formation of oxide scale when it is formed thinly on the inner surface of the pipe, but when it grows thickly, the CrNi content is higher than the base material content, and the lower layer and the lower layer are in close contact with the base material, which has a dense structure. Oxidized scale is formed on the upper layer mainly composed of porous Fe3O4, not only during boiler operation, but also when there are large temperature changes such as when the boiler is stopped and started.

酸化スケールの上層部が剥落し、過熱器、再熱器のUベ
ンド部(U字形に曲げられた場所)に堆積して水蒸気の
流通を妨げ、これらの管を過熱して噴破させることがあ
る。又、噴破させないまでも水蒸気と共にタービンへ飛
散し、ノズルやブレードを損傷させる原因となっている
The upper layer of oxide scale flakes off and accumulates in the U-bends of superheaters and reheaters, blocking the flow of water vapor and causing these pipes to overheat and explode. be. Moreover, even if it does not blow out, it is scattered along with steam to the turbine, causing damage to the nozzle and blades.

この対策として1次のような方法が行なわれている。As a countermeasure against this problem, the following method is used.

(1)水蒸気酸化スケール速度は、結晶粒の大きなもの
より細粒の方が遅いので、細粒のステンレス鋼管を使用
する。(結晶粒界を通して母材中のCrが早く表面に拡
散して強固な酸化皮膜を形成し、それ以降の酸化速度を
甚しく遅くさせる作用があるため) (2)管内面をグラインダーやショットピーニング加工
することによって、結晶部に欠餡部を多量につくり、水
蒸気と接触したとき。
(1) Fine-grained stainless steel pipes are used because the steam oxidation scale rate is slower for fine-grained pipes than for large-grained pipes. (This is because Cr in the base metal quickly diffuses to the surface through grain boundaries, forming a strong oxide film, which has the effect of significantly slowing down the oxidation rate thereafter.) (2) Grinding or shot peening the inner surface of the tube When a large amount of missing parts are created in the crystalline part through processing and come into contact with water vapor.

これらの欠陥部を通路として母材中のCrが選択的に表
面に拡散するようにして、耐酸化性に富んだ酸化スケー
ル層を早く生成させる。
By using these defective parts as passageways, Cr in the base material is selectively diffused to the surface, and an oxide scale layer with high oxidation resistance is quickly generated.

(3) Crの拡散浸透処理を施したり、An、Siな
どの耐酸化性元素を管内面に拡散させる。
(3) Perform Cr diffusion/penetration treatment or diffuse oxidation-resistant elements such as An and Si into the inner surface of the tube.

(4)通常使用されているステンレス鋼管(5US30
4.5US316.5US321,5US347)より
、さらにCr含有量の多いステンレス鋼管(例えば25
Cr−2ONi鋼、  25 Cr −12Ni鋼など
)を使用して耐酸化性の向上をはかる。
(4) Usually used stainless steel pipe (5US30
4.5US316.5US321, 5US347), stainless steel pipes with higher Cr content (e.g. 25
Cr-2ONi steel, 25Cr-12Ni steel, etc.) to improve oxidation resistance.

〔解決しようとする問題点〕[Problem to be solved]

しかし、(1)の方法では耐酸化性は向上するものの、
細粒管は高温強度が劣る。(2)の方法ではボイラ建設
期間中に例えば水圧試験時などにおいて、応力腐食割れ
を誘発したり、これらの冷間加工後、溶体化処理を行う
と加工の効果が消失する。(3)の方法は処理費が高く
つくうえ、これらの耐酸化性元素の拡散は一般に鋼管全
体を900℃以上に加熱する必要があるため、母材の強
度劣化が問題となり、再熱処理を施して強度の回復をは
かるなど不経済な点が多い。又(4)の方法は、経済的
な問題が太きいなど現段階では完全な対策は実施されて
いない。
However, although method (1) improves oxidation resistance,
Fine-grained pipes have poor high-temperature strength. In the method (2), stress corrosion cracking is induced during the boiler construction period, for example, during a hydraulic test, and the effect of the processing is lost if solution treatment is performed after these cold workings. Method (3) is expensive, and diffusion of these oxidation-resistant elements generally requires heating the entire steel pipe to over 900°C, which poses a problem of deterioration of the strength of the base material, which requires reheat treatment. There are many uneconomic points, such as trying to recover the strength by using the same method. Furthermore, method (4) has serious economic problems, and a complete countermeasure has not been implemented at this stage.

以上のような状況にあるため、ボイラ停止時に過熱器管
のUベント部をガンマ線を照射して、酸化スケールの堆
積状況を撮影してその有無を判断し、堆積が犬なる場合
はUベンド部を切断して酸化スケールを取り出すなどの
不経済な方法が行われている。
Due to the above situation, when the boiler is stopped, the U-bent part of the superheater tube is irradiated with gamma rays, and the state of oxide scale accumulation is photographed to determine the presence or absence of oxide scale. Uneconomical methods such as cutting the oxide scale to remove the oxide scale are being used.

又、ここ数年来水蒸気温度が650℃にも達するボイラ
の実用化研究が行われており、水蒸気酸化に対して優れ
た鋼管や処理法の開発が期待されている。
Furthermore, in recent years, research has been carried out to put boilers with steam temperatures as high as 650° C. into practical use, and the development of steel pipes and treatment methods that are superior to steam oxidation is expected.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、酸化スケールの成長速度を甚しく小さくする
ことによって、酸化スケールに起因する障害の発生を防
止するために、結晶粒の大きいステンレス鋼の内面を予
め冷間加工した後、レーザビーム照射を行ない、急冷す
ることを特徴とする耐熱鋼の耐酸化処理方法を提供する
In order to prevent the occurrence of failures caused by oxide scale by significantly reducing the growth rate of oxide scale, the present invention cold-works the inner surface of stainless steel with large grains in advance, and then irradiates it with a laser beam. Provided is a method for oxidation-resistant treatment of heat-resistant steel, which is characterized by carrying out oxidation-resistant treatment of heat-resistant steel and rapidly cooling it.

〔作用〕[Effect]

レーザビーム照射面をあらかじめショツトブラスト、シ
ョットピーニング、グラインダ加工をしたり、鋼管内面
にローラを通して加工する等予め冷間加工した後、レー
ザビーム照射によって800〜1050℃に加熱し、0
.01〜1.5眉の表層部を溶融させる。その後1表層
部を急冷させて2表層部を非晶質化したりあるいは表層
部に微細な結晶粒子層を形成させる。
The surface irradiated with the laser beam is subjected to cold processing such as shot blasting, shot peening, and grinding, or by passing a roller through the inner surface of the steel pipe, and then heated to 800 to 1050°C by laser beam irradiation, and then
.. 01-1.5 Melt the surface layer of the eyebrows. Thereafter, the first surface layer is rapidly cooled, and the second surface layer is made amorphous or a fine crystal grain layer is formed in the surface layer.

〔実施例〕〔Example〕

実施例1 供試材: 5US304,5US316SUS321,
5US347  いずれも5US310,5TBA24
  JIS記号5TBA26,5US405 US430 供試材寸法:巾5 Q m X長I Q Q M X厚
5藺供試材の表面仕上二ローラ加工によって冷間圧延し
た。
Example 1 Test material: 5US304, 5US316SUS321,
5US347 Both 5US310, 5TBA24
JIS symbol 5TBA26, 5US405 US430 Sample material dimensions: Width 5 Q m

供試レーザ:炭酸ガスレーザ、出力3kW。Test laser: Carbon dioxide laser, output 3kW.

レーザビームの直径2聰 レーザビームの照射は供試材の片面のみとし、3M間隔
で照射部の一部が溶融する場合と、800〜1050°
Cになる場合とにあらかじめ照射装置の出力と移動速度
を調整した。
The diameter of the laser beam is 2. The laser beam is irradiated on only one side of the specimen, and there are two cases in which a part of the irradiated part melts at intervals of 3M, and a case where a part of the irradiated area is melted at an angle of 800 to 1050 degrees.
The output and moving speed of the irradiation device were adjusted in advance in case C was reached.

又、照射時には照射面の裏側から冷却水又は液体窒素を
用いて冷却することによって供試材の冷却速度を調節し
た。
Furthermore, during irradiation, the cooling rate of the sample material was adjusted by cooling it from the back side of the irradiated surface using cooling water or liquid nitrogen.

O耐酸化性の評価法 レーザ照射後の供試材を管状電気炉中に静置し、水蒸気
を流しつつ650℃で300hの試験を行った。その後
供試材を取出し断面を切断し光学顕微鏡によって酸化ス
ケールの生成状況を観察することによって、耐酸化性を
評価した。又、評価に当っては。
Evaluation method of O oxidation resistance The test material after laser irradiation was placed in a tubular electric furnace, and a test was conducted at 650° C. for 300 hours while water vapor was flowing. Thereafter, the test material was taken out, a cross section was cut, and the oxidation resistance was evaluated by observing the formation of oxide scale using an optical microscope. Also, regarding evaluation.

照射面の裏側(冷却面)を無照射面とすると共に、この
面に生成した酸化スケール層の厚さを100としてその
比で表示した。
The back side of the irradiated surface (cooled surface) was used as the non-irradiated surface, and the thickness of the oxide scale layer formed on this surface was taken as 100, and the ratio was expressed as 100.

尚供試材の結晶粒度は、オーステナイト系ステンレス鋼
はASTMのNoで5〜6のものであったが、液体窒素
で冷却したものでは明確な結晶粒が認められず、非晶質
化していた。水冷したものはASTMNoでは表示でき
ない程、微細であった。
Regarding the crystal grain size of the sample material, the austenitic stainless steel had ASTM No. 5 to 6, but when cooled with liquid nitrogen, no clear crystal grains were observed and it became amorphous. . The water-cooled material was so fine that it could not be indicated by ASTM No.

○耐酸化性試験結果 下記第1表は耐酸化性試験結果を示したもので、供試材
の種類及び冷却方式が変化してもレーザビーム照射面上
に生成する酸化スケールの厚さはいずれも薄く、極めて
耐酸化性に富んでいることが認められた。
○ Oxidation resistance test results Table 1 below shows the oxidation resistance test results. Even if the type of sample material and cooling method change, the thickness of the oxide scale generated on the laser beam irradiated surface will change over time. It was also found that it was thin and had extremely high oxidation resistance.

なお、第1表の()中のものは液体窒素冷却したものを
示す。
Note that those in parentheses in Table 1 indicate those cooled with liquid nitrogen.

これに対しCr鋼では前者に比較すると照射効果は低下
するが、それでも非照射部に比べるとはるかに良好な耐
酸化性を示している。母材中のCr含有量の少ない鋼種
(例えば5TBA24,5TBA26 )では、レーザ
照射の効果は殆んど認められない。尚レーザビーム照射
による供試材表面の影響は800〜1050℃加熱の場
合で0,01〜0.05頭溶融加熱の場合で0.5〜1
.511gItそれぞれの内部に達していた。
On the other hand, in the case of Cr steel, although the irradiation effect is lower than that of the former, it still shows much better oxidation resistance than the non-irradiated part. For steel types with a low Cr content in the base material (for example, 5TBA24, 5TBA26), almost no effect of laser irradiation is observed. The effect of laser beam irradiation on the surface of the specimen is 0.01 to 0.05 in the case of heating at 800 to 1050°C, and 0.5 to 1 in the case of melting heating.
.. It reached the inside of each of 511gIt.

第1表 〈備考〉()内は窒素冷却したもの 実施例2(ステンレス鋼管の内面に適用した実際のステ
ンレス鋼管の内面にレーザ照射を行い、その耐酸化性を
試験した。
Table 1 (Remarks) Items in parentheses are nitrogen-cooled Example 2 (Applied to the inner surface of a stainless steel tube The inner surface of an actual stainless steel tube was irradiated with a laser to test its oxidation resistance.

供試材料: 5US304HTB、5US316HTB
Test material: 5US304HTB, 5US316HTB
.

5US321HTB、5US347HTB供試鋼管:外
径74 m x厚6 m x長2007m鋼管内面は予
めローラ加工済 供試鋼管の内面仕上:市販されている状態そのまま供試
した。
5US321HTB, 5US347HTB Test steel pipes: Outer diameter 74 m x Thickness 6 m x Length 2007 m The inner surface of the steel pipes had been roller-processed in advance.Inner surface finish of the test steel pipes: They were tested as they were on the market.

供試レーザ:実施例1と同じ 照射方法:第1図に示すようにステンレス鋼管1の両端
にArガス注入口2とAr ガス出口3を有する密閉板4をそ れぞれとりつけてArガス雰囲気が 構成されるようにし炭酸ガスレーザ 源(図面外)から発生したレーザ ビーム5をKCL製の結晶レンズ6 を通して鋼管内部へ導入する。鋼 管内部にはAgメッキした反射鏡7 が設置されており、ビームはコレ に轟って90°に変光して鋼管内面 を照射するようになっている。
Test laser: Same irradiation method as in Example 1: As shown in Fig. 1, a sealing plate 4 having an Ar gas inlet 2 and an Ar gas outlet 3 was attached to each end of a stainless steel pipe 1 to create an Ar gas atmosphere. A laser beam 5 generated from a carbon dioxide laser source (not shown) is introduced into the steel pipe through a crystal lens 6 made of KCL. An Ag-plated reflector 7 is installed inside the steel pipe, and the beam is radiated to the inside of the steel pipe with a 90° angle change.

照射条件:実施例1と同じ。照射部の温度が800〜1
050℃及び局部的に溶融 状態となる温度に調節し、冷却は 鋼管外部より水冷した。
Irradiation conditions: Same as Example 1. The temperature of the irradiation part is 800-1
The temperature was adjusted to 050° C., which locally caused a melting state, and cooling was performed by water cooling from the outside of the steel pipe.

○耐酸化性の評価 照射後、供試鋼管から長50藺×巾202gの試験片を
切り出し、実施例1と同条件で水蒸気酸化試験を行うと
共に評価した。この場合の非照射面は鋼管の外部(水冷
部)であり、この面における酸化スケールの生成原を1
00とし、照射面の耐酸化性を評価した。
Evaluation of oxidation resistance After irradiation, a test piece measuring 50 g long x 202 g wide was cut out from the test steel pipe, and subjected to a steam oxidation test under the same conditions as in Example 1 and evaluated. In this case, the non-irradiated surface is the outside of the steel pipe (water-cooled part), and the source of oxide scale generation on this surface is
00, and the oxidation resistance of the irradiated surface was evaluated.

O耐酸化性試験結果 試験結果を要約すると下記第2表の通りであり、大きな
鋼管を使用してもレーザ照射による効果は明らかに認め
られて、照射部は何れも著しく耐酸化性が向上した。
O Oxidation Resistance Test Results The test results are summarized in Table 2 below, and the effect of laser irradiation was clearly recognized even when large steel pipes were used, and the oxidation resistance of all irradiated areas was significantly improved. .

第  2 表 実施例3(ステンレス鋼管の内面に適用した場合) 実施例2と同じ供試鋼管を用い、レーザ照射間隔のみ変
化させたものについて耐酸化性を調査した。すなわち2
実施例2ではレーザビームの間隔を3 vrmとしたが
、ここではさらに間隔を小さくし、レーザによって局部
溶融している個所が一部重なり合うようにした場合につ
いて実施した。
Table 2 Example 3 (When applied to the inner surface of a stainless steel pipe) Using the same test steel pipe as in Example 2, the oxidation resistance was investigated with only the laser irradiation interval being changed. That is, 2
In Example 2, the interval between the laser beams was 3 vrm, but here the interval was made even smaller so that the areas locally melted by the laser partially overlapped.

照射部を800〜1050°Cに加熱した場合には、照
射部の溶融現象は認められないが、ビームの一部が重な
るように照射した。本実施例ではビームの直径が約2w
Itであったので。
When the irradiated part was heated to 800 to 1050°C, no melting phenomenon was observed in the irradiated part, but the irradiation was performed so that the beams partially overlapped. In this example, the diameter of the beam is approximately 2W.
Because it was.

2麿間隔となるように供試鋼管の移動を調整した。鋼管
の冷却方法、照射後の試験片の採取方法及び耐酸化性試
験条件などは実施例2と同じである。
The movement of the test steel pipes was adjusted so that the distance was 2 mm. The method for cooling the steel pipe, the method for collecting test pieces after irradiation, the oxidation resistance test conditions, etc. are the same as in Example 2.

下記第3表は本実施例における耐酸化性試験結果を示し
たもので2表中の照射方法(A)は実施例2の3顛間隔
で処理したもの、又(B)は本実施例のものである。こ
の結果から明らかなようにレーザビームが重なった場合
、特に溶融状態に照射したものは、その耐酸化性が幾分
低下しているのが認められる。これはレーザビームの重
さなりによって溶融状態が長く続く結果、結晶粒の成長
が促進されたためと考えられる。しかし5oo−ios
o℃加熱のものを含め、非照射部のものに比べると良好
な耐酸化性を保持しているのがわかる。
Table 3 below shows the oxidation resistance test results in this example. In Table 2, irradiation method (A) is the one in which the irradiation method was applied at three-frame intervals as in Example 2, and (B) is the irradiation method in this example. It is something. As is clear from these results, when the laser beams overlap, it is recognized that the oxidation resistance is somewhat reduced, especially when the laser beams are irradiated to the melted state. This is thought to be due to the fact that the molten state continued for a long time due to the weight of the laser beam, which promoted the growth of crystal grains. But 5oo-ios
It can be seen that the samples, including those heated at 0° C., maintain better oxidation resistance than the non-irradiated portions.

第3衣 実施例4(ステンレス鋼管の外面に適用した例) 実施例2に用いたものと同じ供試材料、鋼管寸法のもの
を用い、鋼管の外面を鋼球によるショットピーニング後
、第2図に示す装置を用いてレーザ照射を行った。すな
わちテンレス鋼管11にArガス入口部12を。
Third coating Example 4 (example applied to the outer surface of a stainless steel pipe) Using the same test material and steel pipe dimensions as those used in Example 2, the outer surface of the steel pipe was shot peened with a steel ball, as shown in Figure 2. Laser irradiation was performed using the apparatus shown in . That is, an Ar gas inlet portion 12 is provided in a stainless steel pipe 11.

けた雰囲気構成容器13を鋼管と密着した;態に取付け
ている。鋼管11はレーザビー照射時に回転するので、
注入したArの一部(雰囲気構成容器13とステンレス
鋼管11の僅かな隙間から外部へ洩れるので、そのづA
rの供給を行い、非酸化雰囲気を構成させ゛いる。レー
ザビーム14は雰囲気構成容器(一部に取付けているK
Cβ結晶のし/ズ15(通して鋼管表面へ照射できるよ
うになってしる。
A container 13 for constructing a high-level atmosphere is attached in close contact with the steel pipe. Since the steel pipe 11 rotates during laser beam irradiation,
A part of the injected Ar (as it leaks to the outside from a small gap between the atmosphere configuration container 13 and the stainless steel pipe 11)
A non-oxidizing atmosphere is created by supplying r. The laser beam 14 is
It becomes possible to irradiate the surface of the steel pipe through the Cβ crystal.

照射条件は、実施例2と同じである。本)流側では、レ
ーザビーム照射時鋼管内部に分水して冷却を行った。
The irradiation conditions are the same as in Example 2. On the downstream side, water was separated into the steel pipe for cooling during laser beam irradiation.

下記第4表は、この場合の耐酸化性試験舶来を示したも
ので、第2表と同様レーザ魚身の効果が認められておシ
、鋼管の内外部を川わず耐酸化性が向上することが明ら
かとなづス    た。
Table 4 below shows the oxidation resistance test carried out in this case, and as in Table 2, the effect of laser fish meat was recognized, and the oxidation resistance improved without flowing inside and outside the steel pipe. It was clear that this would happen.

没 犬 ム よ ヒ ご 〔発明の効果〕 )  高Cr鋼及びオーステナイト系ステンレス鋼の表
面を冷間加工した後レーザビーム照射し慝 た後、急冷
することによって照射部を非晶質n 化させ、又は照射
部に超微細な結晶粒子層が形成されるので、水蒸気など
の酸化雰囲気生芽 において、母材中に含まれているC
rを選択的t に酸化させ1強固な保護皮膜を形成させ
るこj  とによって耐酸化性を向上させることができ
[る。
[Effect of the invention]) The surface of high Cr steel and austenitic stainless steel is cold-worked, irradiated with a laser beam, and then rapidly cooled to make the irradiated part amorphous. Or, since an ultrafine crystal grain layer is formed in the irradiated area, the carbon contained in the base material is removed during germination in an oxidizing atmosphere such as water vapor.
Oxidation resistance can be improved by selectively oxidizing r to form a strong protective film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2ステンレス鋼管の内面を処理する状態を示す
図、第2図はステンレス鋼管の外面を処理する状態を示
す図である。 1.11ニステンレス鋼管、2,12:Arガス入口、
3:Arガス出口、4:密閉板、514:レーザビーム
、6.15:KCu結晶レンズ、7二反射鏡、13:雰
囲気構成容器。 5 し〜す゛′ヒ゛−ム 第1図
FIG. 1 is a diagram showing a state in which the inner surface of a stainless steel pipe is treated, and FIG. 2 is a diagram showing a state in which the outer surface of a stainless steel pipe is treated. 1.11 stainless steel pipe, 2,12: Ar gas inlet,
3: Ar gas outlet, 4: Sealing plate, 514: Laser beam, 6.15: KCu crystal lens, 7 two reflecting mirrors, 13: Atmosphere configuration container. 5 Seam Diagram 1

Claims (1)

【特許請求の範囲】[Claims] 13%以上の高Cr鋼及びオーステナイト系ステンレス
鋼の表面を冷間加工後レーザビーム照射し、急冷するこ
とを特徴とする耐熱鋼の耐酸化処理方法。
A method for oxidation-proofing treatment of heat-resistant steel, characterized in that the surface of high Cr steel of 13% or more and austenitic stainless steel is irradiated with a laser beam after cold working and rapidly cooled.
JP6954586A 1986-03-27 1986-03-27 Oxidation resistance treatment for heat resisting steel Pending JPS62224627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6954586A JPS62224627A (en) 1986-03-27 1986-03-27 Oxidation resistance treatment for heat resisting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6954586A JPS62224627A (en) 1986-03-27 1986-03-27 Oxidation resistance treatment for heat resisting steel

Publications (1)

Publication Number Publication Date
JPS62224627A true JPS62224627A (en) 1987-10-02

Family

ID=13405793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6954586A Pending JPS62224627A (en) 1986-03-27 1986-03-27 Oxidation resistance treatment for heat resisting steel

Country Status (1)

Country Link
JP (1) JPS62224627A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196130A (en) * 2009-02-26 2010-09-09 Sumitomo Wiring Syst Ltd Method and apparatus for modifying steel surface
EP2728031A1 (en) * 2011-06-28 2014-05-07 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel pipe
RU2652327C1 (en) * 2016-10-20 2018-04-25 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФГБУН ФИАН) Method for laser parothermal oxidation of metal surfaces and device therefor (options)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550423A (en) * 1978-10-05 1980-04-12 Coherent Inc Heat treating method and apparatus by laser beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550423A (en) * 1978-10-05 1980-04-12 Coherent Inc Heat treating method and apparatus by laser beam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196130A (en) * 2009-02-26 2010-09-09 Sumitomo Wiring Syst Ltd Method and apparatus for modifying steel surface
EP2728031A1 (en) * 2011-06-28 2014-05-07 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel pipe
EP2728031A4 (en) * 2011-06-28 2015-03-25 Nippon Steel & Sumitomo Metal Corp Austenitic stainless steel pipe
US9612008B2 (en) 2011-06-28 2017-04-04 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel tube
RU2652327C1 (en) * 2016-10-20 2018-04-25 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФГБУН ФИАН) Method for laser parothermal oxidation of metal surfaces and device therefor (options)

Similar Documents

Publication Publication Date Title
US4086104A (en) Method of preventing oxidation of austenitic stainless steel material in high temperature steam
JPS62224627A (en) Oxidation resistance treatment for heat resisting steel
JPH08104949A (en) Formation of structure having surface treated layer and surface treated layer
KR101130829B1 (en) Method of Preventing Initiation of Primary Water Stress Corrosion Cracking of Ni-base Alloy for Nuclear Power Plant
JPS5935715B2 (en) metal welding method
JPS59107068A (en) Treatment in weld zone of nickel alloy
JP4702095B2 (en) Method for producing Cr-containing nickel-base alloy tube
US10204712B2 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
JPH01230724A (en) Heat treatment method for heat exchanger
JPS60238423A (en) Improvement of corrosion resistance in weld zone of two-phase stainless steel
Holcomb et al. Oxidation behavior of Fe-and Ni-base alloys in supercritical CO2 and related environments
EP1143198A1 (en) Device and method for cooling fume intakes
Melekhov et al. Some specific features of degradation of superheater tubes of the boilers of thermal electric power plants made of 12Kh18N12T steel
Fuks et al. Analysis of the structure, phase composition and mechanical properties of a pipe welded joint made of heat-resistant HP40NBTI alloy
JPH0293022A (en) Heat treatment for condensation heat exchanger body made of low-carbon austenitic stainless steel
JPS5830365B2 (en) Method for manufacturing austenitic stainless steel products with excellent corrosion and oxidation resistance
JPS60106921A (en) Solution heat treatment of austenitic stainless steel
Li et al. Influence of post-welding heat treatment on microstructure and peculiarity of 10Cr9Mo1VNb boiler steel welded by hot wire TIG
Koswara Case of Metal Dusting on HK40 HyL III Radiant Pipe Heat Exchanger
Yu et al. Effects of Thermal Ageing on Microstructure and Hardness of Ni Cladding on Austenitic Stainless Steel by GTAW
JPS5983717A (en) Heat treatment of build-up welded part
JPS62267417A (en) Grain refining method for surface layer of austenitic stainless steel
JPH09176824A (en) Heat treatment for improving corrosion resistance of high cr austenitic steel
JPH01242787A (en) Surface treating material, surface treatment of material and surface treating device thereof
Parker Roping and Intergranular Corrosion of 430 Stainless Steel