JPH01242787A - Surface treating material, surface treatment of material and surface treating device thereof - Google Patents
Surface treating material, surface treatment of material and surface treating device thereofInfo
- Publication number
- JPH01242787A JPH01242787A JP6977188A JP6977188A JPH01242787A JP H01242787 A JPH01242787 A JP H01242787A JP 6977188 A JP6977188 A JP 6977188A JP 6977188 A JP6977188 A JP 6977188A JP H01242787 A JPH01242787 A JP H01242787A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- composite metal
- metal material
- corrosion
- metallic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 61
- 238000004381 surface treatment Methods 0.000 title claims description 25
- 239000007769 metal material Substances 0.000 claims abstract description 57
- 239000002131 composite material Substances 0.000 claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 claims abstract description 41
- 239000002184 metal Substances 0.000 claims abstract description 41
- 239000010935 stainless steel Substances 0.000 claims abstract description 26
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 26
- 238000005260 corrosion Methods 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 15
- 239000000956 alloy Substances 0.000 claims abstract description 15
- 230000007797 corrosion Effects 0.000 claims abstract description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 11
- 239000011248 coating agent Substances 0.000 claims abstract description 7
- 238000000576 coating method Methods 0.000 claims abstract description 7
- 229910001026 inconel Inorganic materials 0.000 claims abstract description 7
- 229910001347 Stellite Inorganic materials 0.000 claims abstract description 5
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 claims abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 10
- 239000011651 chromium Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 229910000531 Co alloy Inorganic materials 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 6
- 239000000941 radioactive substance Substances 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 3
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 230000000704 physical effect Effects 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 238000013532 laser treatment Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- -1 Stellai 1- Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 241000270281 Coluber constrictor Species 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- OQZCSNDVOWYALR-UHFFFAOYSA-N flurochloridone Chemical compound FC(F)(F)C1=CC=CC(N2C(C(Cl)C(CCl)C2)=O)=C1 OQZCSNDVOWYALR-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は火力発電所や原子力発電所等のボイラ、配管お
よび機器、炉内M4造物などに適した表面処理材料、材
料の表面処理方法J3よびその表面処理装置に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention provides surface treatment materials and materials suitable for boilers, piping and equipment, M4 structures in reactors, etc. of thermal power plants, nuclear power plants, etc. The present invention relates to a surface treatment method J3 and a surface treatment apparatus thereof.
(従来の技術)
火力発電所や軽水型原子力発電所等では高温水や高温蒸
気が使用されており、火力発電所や原イカ発電所で用い
られるボイラ(原子炉)、配管a3よび113、炉内構
造物等には、高温水や高温蒸気に充分に耐え1ηる材料
が選択される。(Conventional technology) High-temperature water and high-temperature steam are used in thermal power plants and light water nuclear power plants, etc., and boilers (nuclear reactors), pipes A3 and 113, and furnaces used in thermal power plants and nuclear power plants. For the internal structures, etc., materials are selected that can sufficiently withstand high-temperature water and high-temperature steam by 1η.
?:S温水や高温蒸気を使用する場所に用いられる金属
材料は、通常の使用)115度以上の温度で高温水、′
rS温蒸気、酸素を含むガスあるいはこれらを組み合せ
た雰囲気中T−1ffl化させて予め酸化処理し、金属
表面に酸化皮膜を形成し、金属材料の腐食の軽減や放射
性物質の付札の抑制を図っている。? :S Metal materials used in places where hot water or high-temperature steam is used are not suitable for normal use).
T-1ffl is pre-oxidized in an atmosphere of rS hot steam, oxygen-containing gas, or a combination of these to form an oxide film on the metal surface, reducing corrosion of metal materials and suppressing the tagging of radioactive substances. I'm trying.
(発明が解決しようとり−る課題)
従来の技術において、より効果のある金属材料の酸化条
件として一般に通常使用温度以−Lあるいは通常使用酸
素分圧以上での酸化が考えられており、この条件で酸化
さI!ないと、金属材料の表面に防食性が高くかつ粒径
が小さく緻雷な酸化物をnることができない。(Problems to be Solved by the Invention) In the conventional technology, oxidation at a temperature higher than the normally used temperature or at a higher than the normally used oxygen partial pressure is generally considered to be a more effective oxidation condition for metal materials. Oxidized by I! Otherwise, it is impossible to form a fine oxide with high corrosion resistance and small particle size on the surface of the metal material.
しかし、この条件で金属材料を酸化させると、金属材料
のもつ機械的・物理化学的特性に変化が生じ易く、材料
の鏝械的強度や)応力腐食割れ等に対し悪影響が生じる
。このため、金属材料のもつ本来の機械的・物理化学的
特性を損うことなく、金属材料の表面に防食性の高い酸
化物を生成させるには、如何に構成したらよいか問題に
なっていlこ 。However, when a metal material is oxidized under these conditions, the mechanical and physicochemical properties of the metal material tend to change, which adversely affects the material's mechanical strength, stress corrosion cracking, etc. Therefore, the question is how to form a highly anticorrosive oxide on the surface of a metal material without impairing its original mechanical and physicochemical properties. child .
本発明は上述した事情を考慮してなされたもので、材料
の機械的・物理化学的特性変化を極力抑i11し、材料
の表面上に防食性の高い酸化物を生成して材料表面の物
性改善を図った表面処理材料、材料の表面処理方法おJ
:びその表面処理装置を提供することを目的とする。The present invention was made in consideration of the above-mentioned circumstances, and it suppresses changes in the mechanical and physicochemical properties of the material as much as possible, and generates highly anticorrosive oxides on the surface of the material to improve the physical properties of the material surface. Improved surface treatment materials and surface treatment methods for materials J
:The purpose is to provide surface treatment equipment.
本発明の他の目的は、基材の機械的・物理化学的特性に
変化を生じさせることなく、レーザ光照射による金属表
面の酸化・溶解作用により、金属材料の表面に粒径が小
さくて緻密な酸化物を簡単に生成することができる表面
処理材料、材料の表面処理方法およびその表面処理装置
を提供するにある。 本発明のさらに他の目的は、材料
表面子に生成される酸化物の物性改善ににり酸化膜の防
食性を改善し、放射性物質の付着を大幅に軽減させる表
面処理材料、材料の表面処理方法J3よびその表面51
!l理装置を提供するにある。Another object of the present invention is to create small and dense particles on the surface of a metal material by oxidizing and dissolving the metal surface by laser beam irradiation without causing any change in the mechanical or physicochemical properties of the base material. An object of the present invention is to provide a surface treatment material, a method for surface treatment of materials, and a surface treatment apparatus for the same, which can easily generate oxides. Still another object of the present invention is to provide a surface treatment material that improves the corrosion resistance of an oxide film by improving the physical properties of oxides generated on the surface of the material, and significantly reduces the adhesion of radioactive substances. Method J3 and its surface 51
! Our goal is to provide processing equipment.
(課題を解決するだめの手段)
本発明に係る表面処理材料は、ステンレス鋼、ステライ
1−等のコバルト基合金やインコネル等のニッケル駐合
金などの基材に、クロム等の防食性を右する金属を表面
にコーティングして複合金属材料を形成し、この複合金
属材料の金属表面に防食性の高い酸化物を生成したもの
である。(Means for Solving the Problem) The surface treatment material according to the present invention imparts anti-corrosion properties such as chromium to base materials such as stainless steel, cobalt-based alloys such as Stellai 1-, and nickel-based alloys such as Inconel. A composite metal material is formed by coating a metal on the surface, and a highly anticorrosive oxide is generated on the metal surface of this composite metal material.
また、本発明に係る材料の表面処理方法は、スプーンレ
ス鋼、ステライト等のコバルト基合金やインコネル等の
ニツク−ル基合金などの基材に、クロム等の防食性を有
する金属を]−ティングして複合金属材料を形成し、こ
の複合金属材料の金属表面」二に、酸素を含め雰囲気中
でレーザ光を照射1ノで上記金属表面に防食性の高い酸
化物を生成4る表面処理方法である。Furthermore, the method for surface treatment of materials according to the present invention includes coating a base material such as spoonless steel, a cobalt-based alloy such as Stellite, or a nickel-based alloy such as Inconel with a metal having anticorrosion properties such as chromium. A surface treatment method in which a composite metal material is formed, and the metal surface of the composite metal material is irradiated with a laser beam in an atmosphere containing oxygen to generate an oxide with high anticorrosion properties on the metal surface. It is.
さらに、本発明は水蒸気や耐糸を含むガスが充填された
反応槽と、コバルl−i1合金やニッケル早合金等の基
材にクロム等の防食性を有する金属がコーティングされ
た複合金属材料と、前記反応槽内に収容された複合金属
材料の金属表面にレーザ光を照射させるレーザ装置とを
備え、上記レーザ装置から出力されるレーザ光により前
記複合金属材料の金属表面に防食性の高い酸化物を生成
した材料の表面処理装置である。Furthermore, the present invention uses a reaction tank filled with gas containing water vapor and yarn resistance, and a composite metal material in which a base material such as Kobal l-i1 alloy or nickel early alloy is coated with a metal having anticorrosion properties such as chromium. , a laser device that irradiates the metal surface of the composite metal material housed in the reaction tank with a laser beam, and the laser beam output from the laser device oxidizes the metal surface of the composite metal material with high corrosion resistance. This is a surface treatment device for the material that produced the product.
(作用)
材料の表面処理方法およびその表面処理装置は、反応槽
内に水蒸気(高温水を含む)や酸素を含むガスを充填さ
せるとともに、ニッケル丼合金やコバルト基合金等の基
材にクロム等の防食性をイjする金属をコーティング1
ノだ複合金属44籾を収容し、この複合金属材料にレー
ザ装置からレーザ光を照射して複合金属材料の表面に生
成させる酸化皮膜を溶解し、基材の機械的・物理化学的
特性に変化をうえることなく、複合金属材料の表面に、
筒中に防食性の高い酸化物を生成し、複合金属材料表面
の物性改善を図ったものである。(Function) The method for surface treatment of materials and its surface treatment equipment include filling a reaction tank with gas containing steam (including high-temperature water) and oxygen, and applying chromium, etc. to a base material such as a nickel bowl alloy or a cobalt-based alloy. Coated with metal that improves corrosion resistance1
Noda Composite Metal 44 Rice is stored, and this composite metal material is irradiated with laser light from a laser device to dissolve the oxide film that is generated on the surface of the composite metal material, changing the mechanical and physicochemical properties of the base material. on the surface of composite metal materials without
A highly anticorrosive oxide is produced inside the cylinder to improve the physical properties of the surface of the composite metal material.
これにより、表向処理材料はニッケル導、(合金やコバ
ルト基合金等の基材の機械的・物理化学的特性に変化を
与えることなく、金属表面に防食性の高い酸化物を生成
し、この酸化物により、金属表面の酸化による腐食を防
止し、放射性物質の付着用を大幅に低減させることがで
きる。As a result, surface-treated materials produce highly corrosion-resistant oxides on the metal surface without changing the mechanical or physicochemical properties of the base materials, such as nickel conductors (alloys or cobalt-based alloys). The oxide can prevent corrosion due to oxidation of the metal surface and significantly reduce the adhesion of radioactive substances.
(実施例) ゛
以下、本発明の一実施例について添付図面を参照して説
明する。(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.
第1図は本発明に係る材料の表面処理装置の一例を示す
原理図であり、この表面処理装置は給排気口1.2を備
えた反応13を有する。反応槽3内には水蒸気(高温水
を含む)や酸素を含むガス、あるいはこれらの混合物で
充填されており、内部に酸素を有する雰囲気4が形成さ
れる。FIG. 1 is a principle diagram showing an example of a material surface treatment apparatus according to the present invention, which has a reaction 13 equipped with an air supply and exhaust port 1.2. The reaction tank 3 is filled with water vapor (including high-temperature water), a gas containing oxygen, or a mixture thereof, and an atmosphere 4 containing oxygen is formed inside.
一方、反応槽3内には、材料支持台5が設置され、この
支持台5上に複合金属材料6が設けられる。材料支持台
5はζ固定式の他、移動・回転機構を有してもよく、ま
た、材料支持台5は自然数冷却の他に、ヘリウムや液体
窒素、水等を用いた冷却機構を備えてもよい。また、複
合金属材料6はステンレス鋼、ステライト等のコバルト
基台金やインコネル等のニッケル基合金などからなる基
材に、り[1ムやモリブデン等の防食性効果のある金属
を表面にコーティングして形成され、複合金属材料6の
表面は防食被覆される。On the other hand, a material support stand 5 is installed in the reaction tank 3, and a composite metal material 6 is provided on this support stand 5. The material support stand 5 may have a moving/rotating mechanism in addition to the ζ fixed type, and the material support stand 5 may be equipped with a cooling mechanism using helium, liquid nitrogen, water, etc. in addition to natural number cooling. Good too. In addition, the composite metal material 6 is a base material made of a cobalt-based metal such as stainless steel or stellite, or a nickel-based alloy such as Inconel, and the surface thereof is coated with a metal having an anticorrosion effect such as aluminum or molybdenum. The surface of the composite metal material 6 is coated with an anti-corrosion coating.
この複合金属材料6を反応槽3内に収容すると、反応槽
3内は酸素を有する雰囲気4に維持されているので、複
合金属材料6は酸化され、表面に酸化皮膜が形成される
。When this composite metal material 6 is placed in the reaction tank 3, the interior of the reaction tank 3 is maintained in an atmosphere 4 containing oxygen, so the composite metal material 6 is oxidized and an oxide film is formed on the surface.
一方、反応槽3内に収容された複合金属材料6に、レー
ザ装置7からレーザ光が局所的(全体でもよい。)に照
射されると、このレーザ光照射により、複合金属材料6
の表面に形成された酸化皮膜が加熱・溶解され、酸化物
が金属表面に形成される。レーザ装置7には炭酸ガスレ
ーザ等のガスレーザや、YAGレーシー、ルビーレーザ
等の固体レーザなと種々の一レーザ装置が考えられる。On the other hand, when the composite metal material 6 housed in the reaction tank 3 is irradiated with a laser beam locally (or the entire area is fine) from the laser device 7, the composite metal material 6 is
The oxide film formed on the surface of the metal is heated and melted, and an oxide is formed on the metal surface. The laser device 7 may be one of various laser devices, such as a gas laser such as a carbon dioxide laser, or a solid laser such as a YAG laser or ruby laser.
このシーlf装置からのレーザ光により複合金属材料の
表面溶融が生じるようにレーザ出力が調節される。The laser output is adjusted so that the surface of the composite metal material is melted by the laser light from this seal lf device.
次に、材料の表面処理方法について説明する。Next, a method for surface treatment of materials will be explained.
初めに、ステンレス鋼、ステライ1〜等のコバルト基合
金またはインコネル等のニッケル基合金などを基材とし
、この基材に防食性効果のあるクロ゛ム、モリブデン等
の金属をコーティングさせて複合金属材料6を形成する
。次に、この複合金属材料6を反応槽3内に収容し、酸
素を含む雰囲気4中に晒すと、複合金属材料6と酸素が
反応して金属表面に酸化皮膜が生成される。First, stainless steel, a cobalt-based alloy such as Stellai 1, or a nickel-based alloy such as Inconel is used as a base material, and this base material is coated with a metal such as chromium or molybdenum that has an anticorrosion effect to form a composite metal. Form material 6. Next, when this composite metal material 6 is placed in a reaction tank 3 and exposed to an atmosphere 4 containing oxygen, the composite metal material 6 and oxygen react to form an oxide film on the metal surface.
一方、反応槽3に収納された複合金属材料6にレーザ装
置7からレーザ光を照射して金属表面に形成された酸化
皮膜を例えば局所的に加熱溶解し、金属表面上に酸化物
(粒径の小さな酸化皮膜)を生成させ、その後自然冷却
あるいは強制冷却にJ:り冷却され、被合金属材料の金
属表面が酸化物で覆われた表面処理材料が得られる。On the other hand, the composite metal material 6 housed in the reaction tank 3 is irradiated with laser light from the laser device 7 to locally heat and melt the oxide film formed on the metal surface. A small oxide film) is formed and then cooled by natural cooling or forced cooling to obtain a surface-treated material in which the metal surface of the metal material to be joined is covered with oxide.
また、複合金属材料6の金属表面に生成された酸化皮膜
に、レーザ光を照射させることにより、次のメリットを
有する。Furthermore, by irradiating the oxide film formed on the metal surface of the composite metal material 6 with laser light, the following advantages are obtained.
1、レーザ光は複合金属材料表面に局所的に照射される
ため、レーザ光照射による熱影響が金属表面に限定され
、内部まで届かない。このため、複合金属材料の機械的
・物理化学的特性を変化させることがほとんどない。1. Since the laser beam is locally irradiated onto the surface of the composite metal material, the thermal effect of the laser beam irradiation is limited to the metal surface and does not reach the inside. Therefore, the mechanical and physicochemical properties of the composite metal material are hardly changed.
2、レーザ光照射による温度上昇が早く、酸化皮膜が急
速に溶解されるため、防食性を損う水酸基(= 011
)や不純物を少なくできる。2. The temperature rises rapidly due to laser beam irradiation, and the oxide film is rapidly dissolved, so hydroxyl groups (= 011
) and impurities can be reduced.
3、冷却が速いため、酸化皮膜の溶解急冷によって生成
される酸化物は結晶が小さく、緻密になる。3. Because the cooling is rapid, the oxide produced by dissolving and rapidly cooling the oxide film has small crystals and becomes dense.
4、反応槽内を真空等の特殊な雰囲気にする必要がなく
、複合金属材料の金属表面から溶融金属の蒸発を少なく
でき、材料組成金属の組織変化を少なくできる。4. There is no need to create a special atmosphere such as a vacuum in the reaction tank, and evaporation of molten metal from the metal surface of the composite metal material can be reduced, and changes in the structure of the metal composition of the material can be reduced.
次に、ステンレス鋼を基材にした本発明による表面処理
材料を、従来の前酸化処理をしないステンレス鋼材料や
、沸騰水型原子炉(BWR)の炉水温度条件(285℃
程度)下で前酸化処理した(炉水に500時間浸漬させ
た)ステンレス鋼材料と比較した結果を第2図に示す。Next, the surface-treated material according to the present invention, which is based on stainless steel, was applied to a stainless steel material that does not undergo conventional pre-oxidation treatment, and under the reactor water temperature condition (285°C) of a boiling water reactor (BWR).
Figure 2 shows the results of a comparison with a stainless steel material pre-oxidized (soaked in reactor water for 500 hours) under conditions of
この図から、本発明のようにステンレス鋼の表面にクロ
ムをコーティングした複合金属材料を、水蒸気、空気の
雰囲気下でレーザ光を照射してレーザ処理することによ
り表面処理材料を得ると、17られた表面処理材料は、
レーザ処理をしないステンレス鋼材料や、単にレーザ処
理だけを行なったステンレス鋼材料に比べて、放射性物
質の付着7Bを相対的に大幅低下させることができる。From this figure, it can be seen that if a composite metal material in which the surface of stainless steel is coated with chromium is laser-treated by irradiating a laser beam in an atmosphere of water vapor and air to obtain a surface-treated material as in the present invention, 17. The surface treatment material is
Compared to a stainless steel material that is not subjected to laser treatment or a stainless steel material that is simply subjected to laser treatment, the adhesion 7B of radioactive substances can be relatively significantly reduced.
また、複合金属材料の金属表面に形成される酸化皮膜の
粒径はレーザ光照射により溶融され、第3図に示すよう
に微粒化され、酸化皮膜の物性を改善することができる
。In addition, the particle size of the oxide film formed on the metal surface of the composite metal material is melted by laser beam irradiation and becomes fine as shown in FIG. 3, so that the physical properties of the oxide film can be improved.
具体的には、BWRの炉水温度条件(約285℃)下で
通常の溶存酸素濃度200ppbで酸化させたステンレ
ス鋼試料と、この酸化処理後、ざらにレーザ光照射によ
りステンレス鋼表面の酸化皮膜の物性を改善させた場合
との間の酸化皮膜(酸化物)の粒径を第3図に示す。第
3図から、ステンレス鋼試料の酸化処理後、ざらにレー
ザ処理を行なうと、酸化皮膜(M化物)の平均粒径が約
0.3ミクロンとなり、レーザ処理前の約1/3となり
、酸化物の粒径が細かくなり、酸化皮膜は緻密化される
。Specifically, a stainless steel sample was oxidized under BWR reactor water temperature conditions (approximately 285°C) with a normal dissolved oxygen concentration of 200 ppb, and after this oxidation treatment, the oxide film on the stainless steel surface was irradiated with laser light. Figure 3 shows the particle size of the oxide film (oxide) between the case where the physical properties of the sample were improved and the case where the physical properties of the sample were improved. From Figure 3, when the stainless steel sample is subjected to rough laser treatment after oxidation treatment, the average particle size of the oxide film (M compound) becomes approximately 0.3 microns, which is approximately 1/3 of that before laser treatment, and the oxidation The particle size of the material becomes finer and the oxide film becomes denser.
そして、[3WRの炉水温度条件下で通常の溶存酸素濃
度20Qpobで酸化処理したステンレス鋼試料と、こ
のステンレス鋼試料をさらにレーザ処理してステンレス
鋼表面の酸化皮膜の物性を改善させた処理済ステンレス
鋼試料の酸化皮膜の生成の経時変化を第4図に示す。こ
の図から、レーザ処理した処理済ステンレス鋼試料は、
未処理のステンレス鋼試料に較べて酸化皮膜の生成が1
/2以下に低減されており、腐食抑制効果があることが
わかる。また、処理済ステンレス鋼試料の酸化皮膜の生
成量が少ないから、放射性物質の付着耐の抑11i1を
図ることができる。Then, [a stainless steel sample oxidized under 3WR reactor water temperature conditions with a normal dissolved oxygen concentration of 20Qpob, and a treated stainless steel sample that was further laser treated to improve the physical properties of the oxide film on the stainless steel surface. Figure 4 shows the change over time in the formation of an oxide film on a stainless steel sample. From this figure, it can be seen that the laser treated treated stainless steel sample is
The formation of oxide film is 1% compared to untreated stainless steel sample.
/2 or less, which shows that there is a corrosion inhibiting effect. Furthermore, since the amount of oxide film formed on the treated stainless steel sample is small, resistance to adhesion of radioactive substances can be suppressed11i1.
以上に述べたように本発明においては、コバルl−基合
金やニッケル基合金等の基材に、防食性を有する金属を
表面にコーティングして複合金属材料を形成し、この複
合金属材料の表面に防食性の高い酸化物を生成したので
、基材の機械的・物理化学的特性を損うことなく、金属
材料表面に防食性の高い酸化物を生成して材料表面の物
性改善を図ることができる。As described above, in the present invention, a composite metal material is formed by coating the surface of a base material such as a cobal l-based alloy or a nickel-based alloy with a metal having anticorrosion properties, and the surface of this composite metal material is Since we have generated highly corrosion-resistant oxides on the surface of metal materials, we aim to improve the physical properties of the material surface by generating highly corrosion-resistant oxides on the surface of metal materials without damaging the mechanical and physicochemical properties of the base material. Can be done.
また、基材に防食性を有するクロム等の金属を表面にコ
ーティングした複合金属材料の表面を酸化させて酸化皮
膜を形成し、この酸化皮膜をレーザ光照射により加熱溶
解することにより、被合金属材料の表面に粒径の小さな
緻密な酸化物を簡単に形成することができ、材料の腐食
を抑制して放射性物質の付着Mを抑えることができる。In addition, by oxidizing the surface of a composite metal material whose surface is coated with a metal such as chromium that has anticorrosive properties to form an oxide film, and melting this oxide film by heating with laser light irradiation, A dense oxide with a small particle size can be easily formed on the surface of the material, and corrosion of the material can be suppressed and adhesion M of radioactive substances can be suppressed.
第1図は本発明に係る材料の表面処理装置の一実施例を
示す原理図、第2図は本発明による表面li!!理材料
金材料のステンレス鋼材料等と比較した図、第3図はレ
ーザ処理によりステンレス鋼試料に形成される酸化皮膜
の粒径変化を示す図、第4図はレーザ処理したステンレ
ス鋼試料と未処理のステンレス鋼試料の酸化皮膜の生成
を示す図である。
1・・・給気口、2・・・排気口、3・・・反応槽、4
・・・雰囲気、5・・・材料支持台、6・・・複合金属
材料、7・・・レーザ装置。
出願人代理人 波 多 野 久第1図
レーサー表面6デ4ヒ処理!;よ5蚊針能肘着挿制書6
金#2g
第3 図
o tooo
2oc。
腐喰磨間 Jzr
某4 区FIG. 1 is a principle diagram showing an embodiment of the material surface treatment apparatus according to the present invention, and FIG. 2 is a diagram showing the principle of the surface treatment apparatus according to the present invention. ! Fig. 3 shows the change in grain size of the oxide film formed on stainless steel samples by laser treatment, and Fig. 4 shows the comparison between laser-treated stainless steel samples and untreated stainless steel samples. FIG. 3 is a diagram showing the formation of an oxide film on a treated stainless steel sample. 1... Air supply port, 2... Exhaust port, 3... Reaction tank, 4
... Atmosphere, 5... Material support stand, 6... Composite metal material, 7... Laser device. Applicant's agent Hisashi Hatano Figure 1 Racer surface 6 de 4 heat treatment! ;yo 5 Mosquito needle function armrest insertion book 6
Gold #2g Figure 3 o tooo
2oc. Fukuimama Jzr certain 4th ward
Claims (1)
ンコネル等のニッケル基合金などの基材に、クロム等の
防食性を有する金属を表面にコーティングして複合金属
材料を形成し、この複合金属材料の金属表面に防食性の
高い酸化物を生成したことを特徴とする表面処理材料。 2、ステンレス鋼、ステライト等のコバルト基合金やイ
ンコネル等のニッケル基合金などの基材に、クロム等の
防食性を有する金属をコーティングして複合金属材料を
形成し、この複合金属材料の金属表面上に、酸素を含む
雰囲気中でレーザ光を照射した上記金属表面に防食性の
高い酸化物を生成することを特徴とる材料の表面処理方
法。 3、水蒸気や酸素を含むガスが充填された反応槽と、コ
バルト基合金やニッケル基合金等の基材にクロム等の防
食性を有する金属がコーティングされた複合金属材料と
、前記反応槽内に収容された複合金属材料の金属表面に
レーザ光を照射させるレーザ装置とを備え、上記レーザ
装置から出力されるレーザ光により前記複合金属材料の
金属表面に防食性の高い酸化物を生成したことを特徴と
する材料の表面処理装置。[Claims] 1. A composite metal material is formed by coating the surface of a base material such as stainless steel, a cobalt-based alloy such as Stellite, or a nickel-based alloy such as Inconel with a metal having anticorrosion properties such as chromium. , a surface treatment material characterized in that a highly anticorrosive oxide is produced on the metal surface of this composite metal material. 2. A composite metal material is formed by coating a base material such as a cobalt-based alloy such as stainless steel or stellite or a nickel-based alloy such as Inconel with a metal that has corrosion resistance such as chromium, and the metal surface of this composite metal material is A method for surface treatment of a material, characterized in that an oxide with high anticorrosion properties is generated on the metal surface irradiated with laser light in an oxygen-containing atmosphere. 3. A reaction tank filled with gas containing water vapor and oxygen, a composite metal material in which a base material such as a cobalt-based alloy or a nickel-based alloy is coated with a corrosion-resistant metal such as chromium, and a and a laser device that irradiates the metal surface of the housed composite metal material with a laser beam, and the laser beam output from the laser device generates an oxide with high anticorrosion properties on the metal surface of the composite metal material. Characteristic surface treatment equipment for materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63069771A JP2788246B2 (en) | 1988-03-25 | 1988-03-25 | Material surface treatment method and its surface treatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63069771A JP2788246B2 (en) | 1988-03-25 | 1988-03-25 | Material surface treatment method and its surface treatment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01242787A true JPH01242787A (en) | 1989-09-27 |
JP2788246B2 JP2788246B2 (en) | 1998-08-20 |
Family
ID=13412388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63069771A Expired - Fee Related JP2788246B2 (en) | 1988-03-25 | 1988-03-25 | Material surface treatment method and its surface treatment device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2788246B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010229463A (en) * | 2009-03-26 | 2010-10-14 | Dowa Thermotech Kk | Member coated with hard film and method for manufacturing the same |
DE102016213023A1 (en) | 2016-07-15 | 2018-01-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Substrate with corrosion protection system |
CN117564446A (en) * | 2023-12-08 | 2024-02-20 | 大连理工大学 | Method for improving pitting corrosion resistance of stainless steel by heat-assisted laser treatment |
DE102022121925A1 (en) | 2022-08-30 | 2024-02-29 | Glatt Gesellschaft Mit Beschränkter Haftung | Method for the controlled improvement of a passivation layer arranged on a steel surface by means of laser oxidation and use of a laser system suitable for carrying out the method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61104063A (en) * | 1984-10-24 | 1986-05-22 | Agency Of Ind Science & Technol | Surface treatment by laser |
JPS61113756A (en) * | 1984-11-09 | 1986-05-31 | Yoshikawa Kogyo Kk | Manufacture of seawater-resistant al-coated steel material |
JPS61296973A (en) * | 1985-06-24 | 1986-12-27 | Toyota Motor Corp | Formation of ceramic particle dispersed composite metallic layer |
JPH01136958A (en) * | 1987-11-19 | 1989-05-30 | Mitsui Eng & Shipbuild Co Ltd | Method for coloring member surface |
-
1988
- 1988-03-25 JP JP63069771A patent/JP2788246B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61104063A (en) * | 1984-10-24 | 1986-05-22 | Agency Of Ind Science & Technol | Surface treatment by laser |
JPS61113756A (en) * | 1984-11-09 | 1986-05-31 | Yoshikawa Kogyo Kk | Manufacture of seawater-resistant al-coated steel material |
JPS61296973A (en) * | 1985-06-24 | 1986-12-27 | Toyota Motor Corp | Formation of ceramic particle dispersed composite metallic layer |
JPH01136958A (en) * | 1987-11-19 | 1989-05-30 | Mitsui Eng & Shipbuild Co Ltd | Method for coloring member surface |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010229463A (en) * | 2009-03-26 | 2010-10-14 | Dowa Thermotech Kk | Member coated with hard film and method for manufacturing the same |
DE102016213023A1 (en) | 2016-07-15 | 2018-01-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Substrate with corrosion protection system |
WO2018010987A1 (en) | 2016-07-15 | 2018-01-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Substrate with anti-corrosion system |
DE102022121925A1 (en) | 2022-08-30 | 2024-02-29 | Glatt Gesellschaft Mit Beschränkter Haftung | Method for the controlled improvement of a passivation layer arranged on a steel surface by means of laser oxidation and use of a laser system suitable for carrying out the method |
CN117564446A (en) * | 2023-12-08 | 2024-02-20 | 大连理工大学 | Method for improving pitting corrosion resistance of stainless steel by heat-assisted laser treatment |
Also Published As
Publication number | Publication date |
---|---|
JP2788246B2 (en) | 1998-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4532191A (en) | MCrAlY cladding layers and method for making same | |
US4820473A (en) | Method of reducing radioactivity in nuclear plant | |
JPH01242787A (en) | Surface treating material, surface treatment of material and surface treating device thereof | |
JP3428175B2 (en) | Structure having surface treatment layer and method for forming surface treatment layer | |
US4233086A (en) | Method for providing a diffusion barrier | |
JP2657437B2 (en) | Stress corrosion cracking resistant austenitic material and method for producing the same | |
Pacquentin et al. | Laser surface melting of nickel-based alloy reduces nickel release in the primary cooling system of a nuclear power plant | |
JPH0247249A (en) | Heat treatment of stainless steel for heater tube | |
JP6450387B2 (en) | Internal contour passivation method for steel surface of nuclear reactor | |
JP3709623B2 (en) | Anticorrosion method for internal structure of nuclear power plant | |
JPH0480357B2 (en) | ||
JPH06256979A (en) | High-temperature argon purifying of metal or alloy made member and protective film layer | |
Golubets et al. | Principles of the creation and features of the formation of eutectic coatings from a liquid phase | |
JPH0280552A (en) | Heat treatment for stainless steel for heater tube | |
JPS6124470B2 (en) | ||
Bennett et al. | Some aspects of the effects of fission fragment irradiation upon the oxidation of austenitic stainless steels by oxygen at 650° and 800° C | |
EP0488165A2 (en) | A metallic member with an improved surface layer | |
JPH0553400B2 (en) | ||
Votinov et al. | Vanadium alloys as structural materials for fusion reactor blanket | |
JP2001079663A (en) | Surface treatment method for welded structure in nuclear reactor | |
Yamanaka et al. | Relationship between pre-oxidized film structures and corrosion resistance of ferritic stainless steels in high temperature pure water | |
JPH0545664B2 (en) | ||
Dai et al. | Study on the processing parameter window for laser cleaning thermal barrier coating | |
Nagarathnam | Processing and characterization of laser-synthesized overcoats for surface engineering | |
Hashimoto | Welding of zirconium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |