JPH03138548A - Emission spectrochemical analysis - Google Patents

Emission spectrochemical analysis

Info

Publication number
JPH03138548A
JPH03138548A JP27809589A JP27809589A JPH03138548A JP H03138548 A JPH03138548 A JP H03138548A JP 27809589 A JP27809589 A JP 27809589A JP 27809589 A JP27809589 A JP 27809589A JP H03138548 A JPH03138548 A JP H03138548A
Authority
JP
Japan
Prior art keywords
emission intensity
emission
intensity
discharge
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27809589A
Other languages
Japanese (ja)
Other versions
JPH0660877B2 (en
Inventor
Isao Fukui
福井 勲
Shuji Yuasa
湯浅 周治
Yoshihisa Omori
敬久 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP27809589A priority Critical patent/JPH0660877B2/en
Publication of JPH03138548A publication Critical patent/JPH03138548A/en
Publication of JPH0660877B2 publication Critical patent/JPH0660877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To allow the analysis by the forms of metal-contg. nonmetallic elements by seeking the discharge indicating the emission intensity deviated from a normal distribution from the distribution of the emission intensity in many times of the discharge of the element com bined with the element to be determined in a sample. CONSTITUTION:The emission intensity of Al and O is measured for each of the discharges. Sequential numbers are put on the respective emitted light rays and the light emissions are stored into a memory. The variance of the emission intensity is calculated for the emission intensity of the O and the level for screening the emission intensity is calculated upon ending of the prescribed times of the discharge. Then, the emission number of the emission intensity above the above-mentioned level is seeked from the data on the emission intensity for the O. The emission intensity of the above-mentioned number is read out of the data on the emission intensity for the Al and the intensity thereof is integrated. This integrated value is divided by the total number of emission times and is compared with a previously formed calibration curve to determine Al2O3. The integration of the emission intensity of the Al exclusive of the above is executed and the result thereof is divided by the total number of the emission times. The value determined in such a manner and the previously formed calibration curve are compared and the quantitative value of the Al in the uniform variance state is determined.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は発光分光分析による化合物の分析方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for analyzing compounds by emission spectrometry.

(従来の技術〉 金属中に含有されるAeとかC或はTi等の元状態とで
金属中に含まれている。これらの金属中に含有されてい
る元素は金属の性能低下の原因となり、特に化合物とし
て析出している分は一般に悪影響が大きい。従ってこれ
ら金属含有元素を均一分布形態と化合物形態とに分けて
分析することが品質管理土留まれる。上述したような金
属含有金属元素の形態別分析は種々な装置および方法を
利用して可能であるが、装置および操作が簡単で結果が
速かに得られる分析法である所の発光分光分析法によっ
ては従来上述したような分析は行われていなかった。
(Prior art) Ae, C, Ti, etc. contained in metals are contained in the original state.These elements contained in metals cause performance deterioration of the metals, In particular, the components precipitated as compounds generally have a large negative effect.Therefore, it is best to analyze these metal-containing elements separately into uniform distribution form and compound form.The above-mentioned forms of metal-containing metal elements Separate analysis is possible using various devices and methods, but the above-mentioned analysis has not traditionally been possible depending on the method of emission spectroscopy, which is an analysis method that is easy to use and operate and can quickly obtain results. It wasn't.

(発明が解決しようとする課題) 発光分光分析は簡単さ、迅速性等の特徴により、金属材
料の生産過程で抜き取り試料の分析に用いられているの
で、そのような日常分析に加えて同じ装置で上述した金
属含有非金属元素の形態別分析を可能にすることはきわ
めて有益であり、本発明はこの目的を達成しようとする
ものである。
(Problem to be Solved by the Invention) Due to its simplicity and rapidity, emission spectrometry is used to analyze sample samples in the production process of metal materials. It would be extremely useful to be able to analyze the morphological types of metal-containing nonmetallic elements mentioned above, and the present invention seeks to achieve this objective.

(課題を解決するための手段) 火花放電発光分析法により、試料中の定量しようとする
と結合する元素の多数回の放電における発光強度の分布
から、正規分布より外れている発光強度を現した放電を
索出し、その放電における定量しようとする元素の発光
強度を積算し、その積算データから予め作成してある検
量線により定量しようとする元素の化合物態の存在量を
定量するようにした。
(Means for Solving the Problem) When attempting to quantify an element in a sample using spark discharge optical emission spectrometry, a discharge exhibiting an emission intensity that deviates from the normal distribution is determined from the distribution of emission intensity in multiple discharges of a bonding element. The luminescence intensity of the element to be quantified in the discharge is integrated, and the abundance of the compound state of the element to be quantified is determined using a calibration curve prepared in advance from the integrated data.

(作用) 火花放電を用いる発光分析は多数回の放電発光を行わせ
、毎回の発光を分光して各元素毎の発光強度を積算して
定量分析を行うものである。この場合、放電電極から試
料面に向って飛ぶ放電火花は毎回試料面上の同一点に飛
ぶのではなく、放電点は試料面の成る面積内に分布るす
。そこで定量しようとする元素例えば鉄中のAe等で試
料中に均一分布している存在状態の分については毎回の
放電で略同じ強さの発光を行い、多数回の放電において
、その元素の均一分散状態にあるものの発光に対応する
0の発光強度の出現頻度のヒストグラムは正規分布の形
となる。他方A+!209のように化合物状態で存在し
ている分は試料面の結晶粒界等に析出しているので、多
数回の放電中たまたまその析出物に放電が飛んだ場合に
は、そこには酸素が集積しているわけであるから、その
Oの強い発光が見られる。従って多数回の放電における
目的元素と結合する元素、今の例では0の発光強度の分
布を調べて、正規分布から外れている強い発光の強度積
算は目的元素と結合する元素の化合物状態の存在量を示
しその発光に対応するAeの発光強度積算は化合物態の
Aeの存在量を示す。Oの発光の正規分布に対応するA
eの発光強度の積算はAeの均−分散前の存在量を示す
(Function) In optical emission analysis using spark discharge, discharge light emission is performed many times, the light emission is spectrally analyzed each time, and the light emission intensity of each element is integrated to perform quantitative analysis. In this case, the discharge sparks that fly from the discharge electrode toward the sample surface do not fly to the same point on the sample surface every time, but the discharge points are distributed within the area of the sample surface. Therefore, for the element to be quantified, such as Ae in iron, which is uniformly distributed in the sample, light is emitted with approximately the same intensity in each discharge. A histogram of the frequency of appearance of 0 light emission intensity corresponding to light emission of things in a dispersed state has the form of a normal distribution. On the other hand, A+! 209 that exists in a compound state is precipitated at grain boundaries on the sample surface, so if the discharge happens to hit the precipitates during multiple discharges, oxygen will be present there. Since it is accumulated, the strong emission of O can be seen. Therefore, by examining the distribution of the luminescence intensity of the element that combines with the target element during multiple discharges, in this example 0, the integrated intensity of strong luminescence that deviates from the normal distribution indicates the existence of a compound state of the element that combines with the target element. The luminescence intensity integration of Ae corresponding to the luminescence indicates the amount of Ae in the compound state. A corresponding to the normal distribution of the emission of O
The integration of the emission intensity of e indicates the amount of Ae before uniform dispersion.

従って予め上述方法と他の方法による分別定量との結果
から夫々の検量線を作っておくことで、発光分析により
均−分散前と化合物態とを分別して定量することができ
る。
Therefore, by preparing calibration curves in advance from the results of fractional quantification by the above-mentioned method and other methods, it is possible to separate and quantify the compound state before homogenization and dispersion by luminescence analysis.

(実施例) 本発明を実施する装置および操作は従来の火花放電発光
分光分析装置およびその操作法がそのま\用いられる。
(Example) As the apparatus and operation for carrying out the present invention, a conventional spark discharge optical emission spectrometer and its operating method can be used as is.

第1図は本発明方法の一実施例のデータ処理のフローチ
ャートである。この実施例は鉄中におけるAeを定量す
るもので、Aeは鉄中に溶解した均−分散前とAe20
sの形で結晶粒界に析出している化合物体とあり、均−
分散前AeとAezO3とを分別して定量しようとする
ものである。
FIG. 1 is a flowchart of data processing in one embodiment of the method of the present invention. This example is for quantifying Ae in iron.
It is a compound substance precipitated at grain boundaries in the form of s, and is uniformly
The purpose is to separate and quantify Ae and AezO3 before dispersion.

まず各放電毎にAeとOの発光強度の測定し、各発光に
順位番号をつけてメモリに取込む(イ)。所定回数の放
電を終った後、0の発光強度について、発光強度の分散
を計算し、発光強度選別レベルを算定する(口)。0の
発光強度のデータから上記選別レベル以上の発光強度の
発光番号を索出する(ハ)。Aeの発光強度のデータか
ら、(ハ)のステップで索出された番号の発光強度を読
出し、その強度を積算する(二)。この発光はAe20
3によるΔe発光とみなされるので、(ニ)で求まった
積算値を全発光回数で割算し、その値を予め作成してあ
る検量線と比較して、Ae203を定量する(ホ)。上
記以外のAeの発光強度の積算を行い、全発光回数で割
算する(へ)。(へ)で求まった値と予め作成してある
検量線と比較して、均−分散前Aeの定量値を求める(
ト)。以上で分析動作は終る。
First, the luminescence intensity of Ae and O is measured for each discharge, and each luminescence is assigned a rank number and stored in the memory (a). After completing a predetermined number of discharges, the dispersion of the luminescence intensity is calculated for the luminescence intensity of 0, and the luminescence intensity selection level is calculated (example). A light emission number having a light emission intensity equal to or higher than the above-mentioned selection level is searched from the light emission intensity data of 0 (c). From the data on the luminescence intensity of Ae, the luminescence intensity of the number found in step (c) is read out, and the intensities are integrated (2). This luminescence is Ae20
Since Ae203 is considered to be Δe luminescence due to 3, the integrated value obtained in (d) is divided by the total number of luminescence, and the value is compared with a calibration curve prepared in advance to quantify Ae203 (e). The luminescence intensity of Ae other than the above is integrated and divided by the total number of luminescence (step). Compare the value found in (v) with the calibration curve created in advance to determine the quantitative value of Ae before uniform dispersion (
to). This completes the analysis operation.

第2図は鉄材料についてのAeおよび0の発光強度の実
測例である。上がAe下が0の発光強度で、eが選別レ
ベルである。この結果を見ると、Ae203の析出して
いる所に火花が飛んだ場合のAeの発光強度が試料の地
の部分に火花が飛んだときのAeの発光強度より著るし
く強い場合が多いが、これはAe単体で分散しているも
のよりAe20aの析出部でAeの集積度が高いことに
よるものである。またOの発光が選別レベル以上であっ
てもAeの発光強度が地の部分の発光強度と殆んど変ら
ない場合も多数ある。これはAe以外にもOと結合し易
い元素例えばMg等があって火花がMgOの析出部に飛
んだような場合と考えられるが、多数回の放電により、
色々な場合がAeとAe20sの比率により決まる一定
確率で起るため、上述した定量が可能となるのである。
FIG. 2 is an example of actual measurement of the emission intensity of Ae and 0 for iron materials. The upper one is A, the lower one is the emission intensity of 0, and e is the selection level. Looking at these results, the Ae emission intensity when a spark hits the area where Ae203 is precipitated is often significantly stronger than the Ae emission intensity when the spark hits the ground part of the sample. This is because the degree of accumulation of Ae is higher in the Ae20a precipitate than in the case where Ae is dispersed alone. Furthermore, even if the O emission is above the selection level, there are many cases where the Ae emission intensity is almost the same as the emission intensity of the ground part. This is thought to be due to the fact that there are elements other than Ae that easily combine with O, such as Mg, and a spark flew to the MgO precipitate, but due to multiple discharges,
The above-mentioned quantification is possible because various cases occur with a fixed probability determined by the ratio of Ae and Ae20s.

本発明はlXe中のA+!203の定量だけでなく、窒
化物を作る元素とかTiのように炭化物を作る元素等の
定量等にも応用できるのである。
The present invention relates to A+ in lXe! It can be applied not only to the quantification of 203, but also to the quantification of elements that form nitrides and elements that form carbides, such as Ti.

〈発明の効果〉 本発明方法は、従来用いられていた発光分析装置および
、その操作法を用いて、他の装置とか操作を要せずして
、金属中に含有される他元素の形態別定量分析が可能と
なり、−船釣にこれら金属介在物は金属にとって有害な
場合が多いので、特別な装置や操作を要しない本発明方
法の特性によって、金属材料の生産課程での品質管理等
に大いに寄与し得るものである。
<Effects of the Invention> The method of the present invention uses a conventionally used optical emission spectrometer and its operation method to analyze the different forms of other elements contained in metals without requiring any other equipment or operation. Quantitative analysis becomes possible, and since these metal inclusions are often harmful to metals, the characteristics of the method of the present invention, which does not require special equipment or operations, can be used for quality control during the production process of metal materials. This can contribute greatly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例の70−チヤー!−、第
2図は発光強度分布の実測例のグラフである。
FIG. 1 shows a 70-ch. -, FIG. 2 is a graph of an actual measurement example of the emission intensity distribution.

Claims (1)

【特許請求の範囲】[Claims] 火花放電発光分析法により、試料中の定量しようとする
元素と結合する元素の多数回の放電における発光強度の
分布から、正規分布より外れている発光強度を現した放
電を索出し、その放電における定量しようとする元素の
発光強度を積算し、その積算データから予め作成してあ
る検量線により定量しようとする元素の化合物態の存在
量を定量することを特徴とする発光分光分析法。
Using spark discharge optical emission spectrometry, the distribution of luminescence intensity in multiple discharges of elements that combine with the element to be quantified in a sample is used to find discharges that exhibit luminescence intensities that deviate from the normal distribution. An emission spectroscopic analysis method characterized by integrating the luminescence intensity of an element to be quantified and quantifying the amount of a compound of the element to be quantified using a calibration curve prepared in advance from the integrated data.
JP27809589A 1989-10-24 1989-10-24 Emission spectroscopy Expired - Fee Related JPH0660877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27809589A JPH0660877B2 (en) 1989-10-24 1989-10-24 Emission spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27809589A JPH0660877B2 (en) 1989-10-24 1989-10-24 Emission spectroscopy

Publications (2)

Publication Number Publication Date
JPH03138548A true JPH03138548A (en) 1991-06-12
JPH0660877B2 JPH0660877B2 (en) 1994-08-10

Family

ID=17592566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27809589A Expired - Fee Related JPH0660877B2 (en) 1989-10-24 1989-10-24 Emission spectroscopy

Country Status (1)

Country Link
JP (1) JPH0660877B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240791A (en) * 1992-02-27 1993-09-17 Shimadzu Corp Method and device for emission spectral analysis
US5303025A (en) * 1991-03-22 1994-04-12 Shimadzu Corporation Emission spectrochemical quantitative analysis method and apparatus
US5363189A (en) * 1991-02-28 1994-11-08 Shimadzu Corporation Spectroscopic analysis method and analyzing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363189A (en) * 1991-02-28 1994-11-08 Shimadzu Corporation Spectroscopic analysis method and analyzing system
US5303025A (en) * 1991-03-22 1994-04-12 Shimadzu Corporation Emission spectrochemical quantitative analysis method and apparatus
JPH05240791A (en) * 1992-02-27 1993-09-17 Shimadzu Corp Method and device for emission spectral analysis

Also Published As

Publication number Publication date
JPH0660877B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US9606101B2 (en) Deep MALDI TOF mass spectrometry of complex biological samples, e.g., serum, and uses thereof
US7329852B2 (en) Automatic background removal for input data having consecutive input points identification
Wang et al. Recommendations for quantitative analysis of small molecules by matrix-assisted laser desorption ionization mass spectrometry
DE112006000617T5 (en) Optimization of Maldi mass spectrometer operation by sample plate image analysis
Beach et al. Laser ablation electrospray ionization high‐resolution mass spectrometry for regulatory screening of domoic acid in shellfish
US10886115B2 (en) Mass spectrometric determination of particular tissue states
JPH03138548A (en) Emission spectrochemical analysis
JP2001028252A (en) Mass spectrometry
JP2008008801A5 (en)
Lee Imaging modes
KR101841369B1 (en) Image based quantitative analysys method
JPS58143254A (en) Substance identifying device
JPH11160239A (en) Quantitative determination method for very small inclusion in iron and steel
JPH03165445A (en) Mass spectrum display method
JPH10300659A (en) Method for measuring grain size distribution of oxide based inclusion in metal
RU2002127845A (en) METHOD FOR X-RAY FLUORESCENT ANALYSIS OF ELEMENT COMPOSITION OF SUBSTANCE
US20040137635A1 (en) Assay procedures and apparatus
JPS6375659A (en) Quantitative analysis using gas chromatography mass spectrometer
JP4185001B2 (en) Time-resolved evaluation method for inclusions in metal samples
JP2508604B2 (en) X-ray fluorescence analyzer
JPH0943151A (en) Particle size distribution measuring method for metal inclusion
JP3968055B2 (en) Method for quantifying specific components contained in base metal by form by emission spectroscopic analysis, computer program, and computer-readable storage medium
JPH08145891A (en) Emission spectrophotometer
JPH04238250A (en) Quick evaluation method for intra-metal inclusion by emission spectral analysis method
JP2000310602A (en) Fluorescent x-ray analyzer and recording medium used therein

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees