JPH05240791A - Method and device for emission spectral analysis - Google Patents
Method and device for emission spectral analysisInfo
- Publication number
- JPH05240791A JPH05240791A JP4113192A JP4113192A JPH05240791A JP H05240791 A JPH05240791 A JP H05240791A JP 4113192 A JP4113192 A JP 4113192A JP 4113192 A JP4113192 A JP 4113192A JP H05240791 A JPH05240791 A JP H05240791A
- Authority
- JP
- Japan
- Prior art keywords
- emission
- sample
- light intensity
- line light
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、放電やレーザ光を用い
て行う発光分光分析方法およびその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an emission spectroscopic analysis method and apparatus using discharge or laser light.
【0002】[0002]
【従来の技術】例えば、火花放電発光分光分析は、放電
電極と試料との間でスパーク放電させ、その放電光をス
ペクトル分析するのであるが、放電光の輝度は放電毎に
異なるために、数千回の放電を行い、その間の各元素輝
線光の光量を積分する。そして、定量分析のために試料
内に均一に且つ一定量含まれている一つの元素を内標準
元素とし、内標準元素輝線光強度を積分し、その積分値
が一定値に達した時における被測定元素の輝線光強度の
積分値を分析定量値として用いている。2. Description of the Related Art For example, in spark discharge optical emission spectroscopy, a spark discharge is made between a discharge electrode and a sample, and the spectrum of the discharge light is spectrally analyzed. The discharge is performed 1,000 times, and the light amounts of the respective element emission line lights during that period are integrated. Then, for quantitative analysis, one element uniformly and in a fixed amount contained in the sample is used as the internal standard element, and the internal standard element emission line light intensity is integrated. The integrated value of the emission line light intensity of the measurement element is used as the analytical quantitative value.
【0003】しかしながら、スパーク放電の光量はばら
ついており、そのばらつき範囲から外れた光量の放電で
は、被測定元素の輝線光強度が内標準元素の輝線光強度
と比例的に変化していない場合が多く、多数回の放電の
測定データを単に積分するのでは、高精度の分析はでき
ないと云う問題があった。However, the light quantity of the spark discharge varies, and in the case of the discharge whose light quantity deviates from the variation range, the bright line light intensity of the element to be measured may not change in proportion to the bright line light intensity of the internal standard element. There has been a problem that a highly accurate analysis cannot be performed simply by integrating the measured data of many discharges.
【0004】[0004]
【発明が解決しようする課題】従来は、この問題を解決
する方法として、各放電内に内標準元素の輝線光強度が
一定範囲にある時の内標準元素及び被測定元素の輝線光
強度だけを選別して積分するようにしていた。しかし、
内標準元素の輝線光強度は、その含有量によって異なる
から、この方法では内標準元素輝線光強度の選択範囲を
予め決めてある場合、内標準元素含有量の変動範囲が限
定され、かつ品種既知の試料の分析に限られてしまう欠
点がある。また、一つの内標準元素のモニターだけで
は、適正と見られる放電でも、介在物とかピンホール等
の試料欠陥部にスパークが飛んだ場合等の影響の除去に
は不充分であると云う問題もあった。Conventionally, as a method for solving this problem, only the emission line intensity of the internal standard element and the element to be measured when the emission line intensity of the internal standard element is within a certain range in each discharge is determined. It was selected and integrated. But,
Since the bright line light intensity of the internal standard element varies depending on its content, in this method, when the selection range of the internal standard element bright line light intensity is predetermined, the variation range of the internal standard element content is limited, and the variety is known. There is a drawback that it is limited to the analysis of the sample. In addition, there is a problem that even if the discharge seems to be proper, it is not enough to remove the influence of sparks on sample defects such as inclusions and pinholes, etc., by monitoring only one internal standard element. there were.
【0005】発光分光分析方法としては、上記のような
スパーク放電によりより試料を励起して発光させる他
に、フレームやレーザー光を用いて試料を励起発光する
ことも行われているが、そのような場合においても、モ
ニター元素を一つとする場合の問題は上記と同様に発生
するものである。As an emission spectroscopic analysis method, in addition to exciting the sample by the above spark discharge to cause the sample to emit light, exciting the sample by a frame or laser light is also performed. Even in such cases, the problem of using only one monitor element occurs in the same manner as above.
【0006】本発明は、上記の事情に鑑みて行ったもの
で、それぞれの励起による発光において常に有効なるも
のを確実に選択できるようにして、発光分光分析におけ
る分析精度を向上させることを目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the analysis accuracy in emission spectroscopic analysis by surely selecting the one that is always effective in light emission by each excitation. To do.
【0007】[0007]
【課題を解決するための手段】本発明は上記の目的を達
成するために、試料中の複数の元素をモニター元素とし
て指定するステップ、前記試料を多数回において励起さ
せるステップ、前記励起毎の前記試料の発光に際し、前
記各モニター元素及び被測定元素の輝線光強度を検出す
るステップ、前記検出される輝線光強度データを記憶す
るステップ、前記記憶データに基づいて、前記各モニタ
ー元素の輝線光強度の分布を求め、前記分布から、前記
各モニター元素の輝線光強度の有効範囲を決めるステッ
プ、及び前記記憶データに基づいて、前記各モニター元
素の輝線光強度が前記有効範囲内にある前記各励起にお
ける被測定元素の輝線光強度を積分するステップを順次
行うことにおいて発光分光分析を行うもので、さらにそ
の分析方法を実現する装置を提供するものである。In order to achieve the above object, the present invention provides a step of designating a plurality of elements in a sample as monitor elements, a step of exciting the sample in a large number of times, Upon the emission of the sample, the step of detecting the bright line light intensity of each monitor element and the element to be measured, the step of storing the detected bright line light intensity data, the bright line light intensity of each monitor element based on the stored data The step of determining the effective range of the emission line light intensity of each monitor element from the distribution, and based on the stored data, the excitation of the emission line light intensity of each monitor element is within the effective range Emission spectroscopic analysis is performed by sequentially performing the step of integrating the emission line light intensity of the measured element in There is provided a that device.
【0008】[0008]
【作用】本発明によれば、複数のモニター元素を用い、
それら複数のモニター元素の各輝線光強度が有効範囲内
にある励起時の被測定元素のデータを有効データとして
用いることにより、試料の持つ欠陥、励起不良等によっ
て発生する不良データを確実に除去できるようになっ
た。According to the present invention, a plurality of monitor elements are used,
By using the data of the element to be measured at the time of excitation in which the emission line light intensities of the plurality of monitor elements are within the effective range as the effective data, it is possible to reliably remove the defective data generated due to the defects of the sample, the excitation failure, etc. It became so.
【0009】また、上記有効範囲の決定を、励起を千回
から数千回繰り返し、各励起毎の各モニター元素の輝線
強度の分布を求めることで行っているので、有効範囲が
試料の実状に沿って容易に決定される。Since the effective range is determined by repeating the excitation 1,000 to several thousand times and obtaining the distribution of the emission line intensities of the monitor elements for each excitation, the effective range is determined by the actual condition of the sample. Easily determined along.
【0010】[0010]
【実施例】図1に本発明の一実施例を示す。FIG. 1 shows an embodiment of the present invention.
【0011】1は試料3をスパーク放電させる放電室
で、内部にアルゴンガスを充満させている。2はスパー
ク放電用パルス電圧を発生する放電回路である。4は対
電極で、試料3との間に放電回路2から高電圧パルスが
印加され、試料3との間にスパーク放電を行う。5は分
光器で、内部は真空状態にしてある。6は入口スリット
で対電極4と試料3との間で発生したスパーク光から一
定方向に向かう平行光束を取り出す。7は回折格子で、
スパーク光を分光する。8〜11は出口スリットで、回
折格子7によるスペクトル像画上で、各元素の輝線位置
に導かれており、各出口スリット8〜11を通過したス
パーク光だけをホトマルチプライヤー12〜15に入射
するようにする。Reference numeral 1 denotes a discharge chamber for spark-discharging the sample 3, which is filled with argon gas. Reference numeral 2 is a discharge circuit that generates a pulse voltage for spark discharge. Reference numeral 4 denotes a counter electrode, which is applied with a high-voltage pulse from the discharge circuit 2 with respect to the sample 3 to perform spark discharge with the sample 3. A spectroscope 5 has a vacuum inside. Reference numeral 6 is an entrance slit for extracting a parallel light beam traveling in a fixed direction from the spark light generated between the counter electrode 4 and the sample 3. 7 is a diffraction grating,
Disperse the spark light. Numerals 8 to 11 are exit slits, which are guided to the emission line positions of the respective elements on the spectrum image by the diffraction grating 7, and only the spark light passing through the exit slits 8 to 11 is incident on the photomultipliers 12 to 15. To do it.
【0012】16〜19は単一パルス積分器で、ホトマ
ルチプライヤー12〜15で検出した輝線光強度信号
を、各放電単位で積分する。20は積分器16〜19で
積分された値(単データ)を、A/D変換器21に順次
個別に送信する切替器である。A/D変換器21は、送
られて来た単データをデジタル信号に変換する。22は
メモリで、各元素毎に単データを時系列的に記憶し、ま
た、他のデータも記憶せしめられる。マイクロコンピュ
ータ23は、上記各部を制御したり、上記メモリ内のデ
ータから測定値を演算する。Reference numerals 16 to 19 denote single pulse integrators, which integrate the bright line light intensity signals detected by the photomultipliers 12 to 15 for each discharge unit. Reference numeral 20 is a switch that sequentially and individually transmits the values (single data) integrated by the integrators 16 to 19 to the A / D converter 21. The A / D converter 21 converts the sent single data into a digital signal. A memory 22 stores single data in time series for each element, and can also store other data. The microcomputer 23 controls each of the above parts and calculates a measured value from the data in the memory.
【0013】試料3と対電極4間でスパーク放電を千回
から数千回繰り返し行い、図2A〜Cのように、各放電
毎の各元素の発光強度を測定する。この図で各元素の時
間軸上を同一位置にある縦棒の高さが、一回の放電にお
ける各輝線光強度を表す。この縦棒によって表される輝
線光強度が上記の積分値(単データ)に相当する。Spark discharge is repeatedly performed between the sample 3 and the counter electrode 1,000 to several thousand times, and the emission intensity of each element for each discharge is measured as shown in FIGS. In this figure, the height of the vertical bar at the same position on the time axis of each element represents the intensity of each bright line light in one discharge. The bright line light intensity represented by this vertical bar corresponds to the above integrated value (single data).
【0014】そして、得られた各元素の輝線強度データ
は時系列にメモリ22に記憶させる。このメモリ内のデ
ータからモニター各元素(内標準元素,O,H等)の単
データから平均値及び分散値σ等を求め、そのデータの
分散状態から有効範囲を決定する。例えば、内標準元素
の有効範囲は平均値に対して±2σ位の範囲に決定し、
他のモニター元素は平均値±2σ以下を有効範囲に決定
する。O,Hについて、発光強度が過大なものだけ除去
するのは、これらの元素は酸化物、水素化物を作って試
料内介在物とか、結晶粒界析出物となっている分が多い
ので、これからの元素の発光強度が強いのは、放電が介
在物とか結晶粒界に飛んだものとみなされるからであ
る。Then, the obtained emission line intensity data of each element is stored in the memory 22 in time series. From the data in this memory, the average value and the dispersion value σ are obtained from single data of each monitor element (internal standard element, O, H, etc.), and the effective range is determined from the dispersion state of the data. For example, the effective range of internal standard elements is determined to be within ± 2σ of the average value,
For other monitor elements, the average value ± 2σ or less is determined as an effective range. For O and H, only those with an excessive emission intensity are removed. Since these elements often form oxides and hydrides and become inclusions in the sample or precipitates at grain boundaries, The emission intensity of the element is strong because it is considered that the discharge has flown to inclusions or grain boundaries.
【0015】このように決定されたモニター各元素の有
効範囲内に、夫々のモニター元素の単データが全部入っ
ているときの同一放電による内標準元素および被測定元
素の輝線光強度を有効単データとしてメモリ22内のデ
ータから抽出する。即ち、モニター元素の各単データが
一つでも有効範囲内から外れたとき(図2において、
4,5,6,10の放電)には、同一放電によるデータ
は測定データとして用いないようにする。抽出した被測
定元素及び内標準元素の有効データを積分し、内標準元
素の積分値が一定になった時の被測定元素の積分値を測
定値として出力する。或は、図2Eに示したように、有
効単データの同一放電における被測定元素と内標準元素
との比を求め、その比の平均値を測定値として用いる方
法もある。When the single data of each monitor element are all within the effective range of each monitor element determined in this way, the effective line data of the bright line light intensity of the internal standard element and the element to be measured by the same discharge is calculated. Is extracted from the data in the memory 22. That is, when even one single data of the monitor element is out of the effective range (in FIG. 2,
For the discharges of 4, 5, 6, and 10), the data of the same discharge is not used as the measurement data. The extracted effective data of the element to be measured and the internal standard element are integrated, and the integrated value of the element to be measured when the integrated value of the internal standard element becomes constant is output as a measured value. Alternatively, as shown in FIG. 2E, there is also a method of obtaining the ratio of the element to be measured and the internal standard element in the same discharge of effective single data and using the average value of the ratio as the measurement value.
【0016】上記における各モニター元素における有効
範囲の決定、有効範囲に基づく有効データの抽出、抽出
データの積分演算等の処理は、全てマイクロコンピュー
タ23により行われる。The above-mentioned processing such as determination of the effective range of each monitor element, extraction of effective data based on the effective range, and integration calculation of the extracted data are all performed by the microcomputer 23.
【0017】図3は他の実施例を示し、この実施例で
は、上記実施例の対電極4に代えてレーザー銃30を、
放電回路2に代えてレーザー銃駆動回路31を使用し、
試料3の励起励をレーザー光により行っている。他の部
分の構成、及び、データの処理動作等は、上記実施例と
同様である。FIG. 3 shows another embodiment. In this embodiment, a laser gun 30 is used instead of the counter electrode 4 of the above embodiment.
A laser gun drive circuit 31 is used in place of the discharge circuit 2,
Excitation and excitation of the sample 3 are performed by laser light. The configuration of the other parts, the data processing operation, and the like are the same as those in the above embodiment.
【0018】レーザー光としては、例えば、パルス幅が
短く高い出力のN2レーザー光を用いる。そして、この
N2レーザー光を数Toll以下の減圧環境下で金属試
料に照射すると、小さな径で白色の第1プラズマ(pr
imary plasma)と、それを取り囲むように
半球状に広がる第2プラズマ(secondarypl
asma)とが発生するもので、この第2プラズマの発
光を分析に用いる。この第2プラズマの発光を用いる
と、バックグラウンドの影響等が少なく高い分析精度が
期待できる。As the laser light, for example, N 2 laser light having a short pulse width and a high output is used. When the metal sample is irradiated with this N 2 laser light in a reduced pressure environment of several Toll or less, the white first plasma (pr
and the secondary plasma (secondarypl) that spreads in a hemisphere so as to surround it.
and asma), and the emission of this second plasma is used for analysis. When the emission of the second plasma is used, the influence of the background is small and high analysis accuracy can be expected.
【0019】また、レーザー光の照射は試料3面の全面
に及ぶように、スキャニングしながら行う。上記の火花
放電による実施例では、試料3面の放電位置がランダム
になり、仮に放電位置が一つの位置に偏った場合には試
料3全体における平均的な分析結果が得られなくなる
が、この実施例ではレーザー光の照射を試料3全面にス
キャニングして行うことにより、常に試料3全体におけ
る平均的な分析結果が得られる。Irradiation with laser light is performed while scanning so as to cover the entire surface of the sample 3. In the above-described embodiment using spark discharge, the discharge positions on the surface of the sample 3 are random, and if the discharge positions are biased to one position, an average analysis result for the entire sample 3 cannot be obtained. In the example, by irradiating the laser beam on the entire surface of the sample 3, the average analysis result of the entire sample 3 can always be obtained.
【0020】[0020]
【発明の効果】本発明によれば、複数のモニター元素を
用い、それら複数のモニター元素の各輝線光強度が有効
範囲内にある励起時の被測定元素のデータを有効データ
として用いるので、これにより、試料の持つ欠陥、励起
不良等によって発生する不良データを確実に除去でき、
分析精度が向上できるようになった。According to the present invention, a plurality of monitor elements are used, and the data of the element to be measured at the time of excitation in which the respective emission line light intensities of the plurality of monitor elements are within the effective range are used as the effective data. By this, it is possible to reliably remove defective data generated by defects, excitation defects, etc. of the sample,
Analysis accuracy can be improved.
【0021】とくに、上記有効範囲の決定を、励起を千
回から数千回繰り返し、各励起毎の各モニター元素の輝
線強度の分布を求めることで行っているので、有効範囲
が試料の実状に沿って容易に決定され、これによって、
試料毎にモニター元素の含有率が異なる場合にも、容易
に高精度の分析が行えるようになった。In particular, the effective range is determined by repeating the excitation 1,000 to several thousand times and obtaining the distribution of the emission line intensities of the respective monitor elements for each excitation, so that the effective range is the actual condition of the sample. Easily determined along with this,
Even if the content of the monitor element is different for each sample, high-precision analysis can be easily performed.
【図1】本発明の一実施例のブロック図FIG. 1 is a block diagram of an embodiment of the present invention.
【図2】上記実施例のデータ説明図FIG. 2 is an explanatory diagram of data in the above embodiment.
【図3】他実施例のブロック図FIG. 3 is a block diagram of another embodiment.
1 放電室 2 放電回路 3 試料 4 対電極 5 分光器 6 入口スリット 7 回折格子 8〜11 出口スリット 12〜15 ホトマルチプライヤー 16〜19 単一パルス積分器 20 切替器 21 A/D変換器 22 メモリ 23 マイクロコンピュータ DESCRIPTION OF SYMBOLS 1 discharge chamber 2 discharge circuit 3 sample 4 counter electrode 5 spectroscope 6 entrance slit 7 diffraction grating 8-11 exit slit 12-15 photomultiplier 16-19 single pulse integrator 20 switcher 21 A / D converter 22 memory 23 Microcomputer
Claims (8)
て指定するステップ、 前記試料を多数回において励起させるステップ、 前記励起毎の前記試料の発光に際し、前記各モニター元
素及び被測定元素の輝線光強度を検出するステップ、 前記検出される輝線光強度データを記憶するステップ、 前記記憶データに基づいて、前記各モニター元素の輝線
光強度の分布を求め、前記分布から、前記各モニター元
素の輝線光強度の有効範囲を決めるステップ、及び前記
記憶データに基づいて、前記各モニター元素の輝線光強
度が前記有効範囲内にある前記各励起における被測定元
素の輝線光強度を積分するステップ、よりなる発光分光
分析方法。1. A step of designating a plurality of elements in a sample as monitor elements, a step of exciting the sample in a large number of times, a bright line light of each of the monitor element and the element to be measured upon emission of the sample for each excitation. Step of detecting the intensity, a step of storing the detected bright line light intensity data, based on the stored data, obtain the distribution of the bright line light intensity of each monitor element, from the distribution, the bright line light of each monitor element The step of determining the effective range of the intensity, and the step of integrating, based on the stored data, the emission line light intensity of the measured element in each of the excitations in which the emission line light intensity of each monitor element is within the effective range Spectroscopic method.
て、前記各モニター元素の輝線光強度の平均値及び分散
値を求めることにより前記各モニター元素の輝線光強度
の分布を求める請求項1記載の発光分光分析方法。2. The emission spectrum according to claim 1, wherein in the step of determining the effective range, the distribution of the emission line light intensity of each monitor element is obtained by obtaining the average value and the dispersion value of the emission line light intensity of each monitor element. Analysis method.
発光分光分析方法。3. The emission spectroscopic analysis method according to claim 1, wherein the excitation is performed by discharge.
1の発光分光分析方法。4. The emission spectroscopic analysis method according to claim 1, wherein the excitation is performed by laser light.
の分光それぞれの輝線光強度を検出する検出手段、 前記輝線光強度を記憶する記憶手段、 前記記憶手段における記憶データから指定される複数の
モニター元素の輝線光強度の分布を求めるとともに、前
記分布から前記各モニター元素の輝線光強度の有効範囲
を決める有効範囲決定手段、 前記各モニター元素の輝線光強度が前記有効範囲内にあ
る前記各励起にける被測定元素の輝線光強度を積分する
輝線光強度積分手段、 よりなる発光分光分析装置。5. Excitation means for emitting light to a sample, spectroscopic means for spectrally separating the emitted light from the sample, and emission line intensity of each spectroscopic light from the spectroscopic means upon emission of the sample for each excitation. Detecting means for detecting, storage means for storing the bright line light intensity, obtaining a distribution of the bright line light intensity of a plurality of monitor elements specified from the storage data in the storage means, and from the distribution the bright line light intensity of each monitor element Emission spectrum comprising: an effective range determining means for determining an effective range of, an emission line intensity integrating means for integrating the emission line intensities of the elements to be measured in the respective excitations in which the emission line intensity of each monitor element is within the effective range. Analysis equipment.
ター元素の輝線光強度の平均値及び分散値を求めること
により前記各モニター元素の輝線光強度の分布を求める
請求項5記載の発光分光分析装置。6. The emission spectrum according to claim 5, wherein the effective range determining means obtains the distribution of the emission line light intensity of each monitor element by obtaining the average value and the dispersion value of the emission line light intensity of each monitor element. Analysis equipment.
光分光分析装置。7. The emission spectroscopic analyzer according to claim 5, wherein the excitation source is a discharge.
5の発光分光分析装置。8. The emission spectroscopic analyzer according to claim 5, wherein the excitation source is laser light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4113192A JPH05240791A (en) | 1992-02-27 | 1992-02-27 | Method and device for emission spectral analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4113192A JPH05240791A (en) | 1992-02-27 | 1992-02-27 | Method and device for emission spectral analysis |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05240791A true JPH05240791A (en) | 1993-09-17 |
Family
ID=12599889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4113192A Pending JPH05240791A (en) | 1992-02-27 | 1992-02-27 | Method and device for emission spectral analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05240791A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010071271A (en) * | 2008-09-22 | 2010-04-02 | Imagineering Inc | Fuel concentration measuring device, fuel concentration measuring method, and method of preparing calibration curve therefor |
KR101027260B1 (en) * | 2008-12-23 | 2011-04-06 | 주식회사 포스코 | System and method for obtaining inclusion map of discontinuous spark type for slab cross section area |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5056994A (en) * | 1973-09-14 | 1975-05-19 | ||
JPS62103541A (en) * | 1985-06-30 | 1987-05-14 | Shimadzu Corp | Method of emission analysis |
JPH03138548A (en) * | 1989-10-24 | 1991-06-12 | Shimadzu Corp | Emission spectrochemical analysis |
-
1992
- 1992-02-27 JP JP4113192A patent/JPH05240791A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5056994A (en) * | 1973-09-14 | 1975-05-19 | ||
JPS62103541A (en) * | 1985-06-30 | 1987-05-14 | Shimadzu Corp | Method of emission analysis |
JPH03138548A (en) * | 1989-10-24 | 1991-06-12 | Shimadzu Corp | Emission spectrochemical analysis |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010071271A (en) * | 2008-09-22 | 2010-04-02 | Imagineering Inc | Fuel concentration measuring device, fuel concentration measuring method, and method of preparing calibration curve therefor |
KR101027260B1 (en) * | 2008-12-23 | 2011-04-06 | 주식회사 포스코 | System and method for obtaining inclusion map of discontinuous spark type for slab cross section area |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6337224A (en) | Fluorescent spectrophotometer | |
EP0798559B1 (en) | Method of detecting sample substances and fluorescence spectrometer using the method | |
AU617449B2 (en) | Atomic emission spectrometer with background compensation | |
JP2019095206A (en) | Sample analysis system, display method and sample analysis method | |
JPS5941534B2 (en) | Emission spectrometer | |
US20190041336A1 (en) | Isotopic measuring device | |
JP5204655B2 (en) | Methods for qualitative and quantitative analysis by emission spectroscopy | |
JPH04294258A (en) | Emission spectrochemical analysis method | |
US5428656A (en) | Apparatus and method for fluorescent x-ray analysis of light and heavy elements | |
JPH05240791A (en) | Method and device for emission spectral analysis | |
JP2522216B2 (en) | Emission spectroscopy | |
JP3324186B2 (en) | Emission spectrometer | |
JP2705673B2 (en) | Emission spectroscopy method | |
JP2000009645A (en) | Emission spectroscopic analyzer | |
JPH0711486B2 (en) | Emission spectroscopy | |
JPS5961759A (en) | Emission spectral analytical apparatus | |
JPH07128260A (en) | Fluorescent x-ray analyzing device | |
JP2532941B2 (en) | Emission spectroscopy | |
JPH08145891A (en) | Emission spectrophotometer | |
JP3972307B2 (en) | Ni emission spectroscopic analysis method and steel making method using this method | |
JPH05273128A (en) | Luminescence spectral analysis method and its device | |
JP2001083096A (en) | Fluorescence spectrochemical analyzer | |
GB1591202A (en) | Absorption spectrometry | |
JPH02242140A (en) | Breakdown spectral analysis method and apparatus | |
JPH0862139A (en) | Emission spectral analysis |