JPH03138101A - Manufacture of high density ceramic substrate - Google Patents

Manufacture of high density ceramic substrate

Info

Publication number
JPH03138101A
JPH03138101A JP1277437A JP27743789A JPH03138101A JP H03138101 A JPH03138101 A JP H03138101A JP 1277437 A JP1277437 A JP 1277437A JP 27743789 A JP27743789 A JP 27743789A JP H03138101 A JPH03138101 A JP H03138101A
Authority
JP
Japan
Prior art keywords
sheet
molded body
pressurized
pressurizing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1277437A
Other languages
Japanese (ja)
Inventor
Hiroharu Nishimura
西村 弘治
Makoto Ogawa
誠 小川
Hiromitsu Tagi
多木 宏光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1277437A priority Critical patent/JPH03138101A/en
Publication of JPH03138101A publication Critical patent/JPH03138101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To lessen the burning baking contraction rate and manufacture the above high density ceramic substrate by making a material consisting mainly of an inorganic material into a sheet-shaped molding through vacuum extruding method and pressurizing the sheet-shaped molding through cold hydrostatic pressure method and thereafter processing it into a predetermined configuration and then baking it subsequently. CONSTITUTION:A material consisting mainly of an inorganic substance is kneaded and made into a sheet-shaped molding by vacuum extruding method and then baked subsequently. Next, the sheet-shaped molding is pressurized by means of a cold hydrostatic pressure apparatus. The pressurized vessel 1 is filled with water therein and a pressurizing block 2 is so pushed thereinto that water in the pressurizing vessel 1 is pressurized and further a pressurizing object is pressurized via the water. Following this, the sheet-shaped molding is punched out therefrom into a predetermined configuration and subjected to baking for manufacturing a substrate. Whereby a ceramic substrate is formed which has a small baking contraction rate and high density.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子部品を搭載する高密度セラミック基板の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a high-density ceramic substrate on which electronic components are mounted.

従来の技術 従来、高密度セラミック基板の製造方法の一つとして、
ドクターブレード法がある。ドクターブレード法は無機
質材料に溶媒や結合剤等を加え、混合調整したスリップ
をベルト上に流しだし、ドクターブレードで厚さを調整
して、シート状成形体を形成し、その後にシート状成形
体を乾燥させ、所定の形状に加工して焼成する方法であ
る。
Conventional technology Conventionally, one of the methods for manufacturing high-density ceramic substrates is
There is a doctor blade method. In the doctor blade method, a solvent, a binder, etc. are added to an inorganic material, the mixed and adjusted slip is poured onto a belt, and the thickness is adjusted with a doctor blade to form a sheet-like molded body. This method involves drying, processing into a predetermined shape, and firing.

また他の製造方法として押し出し成形法がある。There is also an extrusion molding method as another manufacturing method.

押し出し成形法は無機質原料に水と可塑剤及び結合剤を
適量加え、十分均一に混練しながら原料中の空気を除去
していき、その混練したものを密閉された真空押し出し
機から押し出してシート状成形体を作成し、そのシート
状成形体を乾燥後焼成する方法である。
In the extrusion molding method, an appropriate amount of water, a plasticizer, and a binder are added to an inorganic raw material, and the air in the raw material is removed while thoroughly and uniformly kneaded.The kneaded material is then extruded through a sealed vacuum extruder to form a sheet. This is a method in which a molded body is created, the sheet-like molded body is dried, and then fired.

発明が解決しようとする課題 ドクターブレード法では原料のスリップの調整に有機溶
剤を用いるために防爆設備が必要となり設備投資にコス
トがかかる。また押し出し成形法はドクターブレード法
に比べて無機質材料に有機溶剤を加えず、水を使用する
ために、原料コストは安(、シかも防爆設備が不要であ
る。しかし、押し出し成形性特有の焼成収縮率が17%
〜20%と大きい点や、押し出し成形機の口金からシー
ト状成形体が押し出される時に、押し出し方向に加わる
圧力とシート状成形体の幅方向に加わる圧力に差が生じ
るので、焼成した際に焼成寸法にばらつきが生じるとい
う問題点を有していた。
Problems to be Solved by the Invention In the doctor blade method, explosion-proof equipment is required because an organic solvent is used to adjust the slippage of the raw material, which increases the cost of equipment investment. In addition, compared to the doctor blade method, the extrusion molding method does not add organic solvent to the inorganic material and uses water, so the raw material cost is low (and explosion-proof equipment is not required. Shrinkage rate is 17%
The difference is that when the sheet-like molded body is extruded from the die of the extrusion molding machine, there is a difference between the pressure applied in the extrusion direction and the pressure applied in the width direction of the sheet-like molded body. This had the problem of variations in dimensions.

又シート状成形体の内部気孔が焼成後も基板内に残留す
る為に、ドクターブレード法により成形、焼成された基
板よりも密度が小さくなる等の問題点があった。又シー
ト状成形体を焼成した際に、基板に反りが発生する事も
あった。
Furthermore, since the internal pores of the sheet-like molded body remain in the substrate even after firing, there are problems such as the density is lower than that of a substrate molded and fired by the doctor blade method. Further, when the sheet-shaped molded body was fired, the substrate sometimes warped.

本発明は前記従来の問題点を解決しようとするもので、
高密度な基板を製造する事ができるとともに、焼成収縮
率を小さくする事ができる高密度セラミック基板の製造
方法を提供する事を目的としている。
The present invention aims to solve the above-mentioned conventional problems,
The object of the present invention is to provide a method for manufacturing a high-density ceramic substrate that can manufacture a high-density substrate and reduce the firing shrinkage rate.

課題を解決するための手段 この目的を達成するために、無機質材料を主成分とする
原料を真空押し出し法によってシート状成形体として、
そのシート状成形体を冷間静水圧法によって加圧し、そ
の後に所定の形状に加工し焼成した。
Means for solving the problem In order to achieve this objective, raw materials mainly composed of inorganic materials are made into sheet-like molded products by vacuum extrusion method.
The sheet-like molded body was pressurized by cold isostatic pressing, and then processed into a predetermined shape and fired.

作     用 この方法により、シート状成形体に均一な圧力伝搬が生
じ、成形体の充填密度が上昇する。
Effect: This method causes uniform pressure propagation in the sheet-like compact, increasing the packing density of the compact.

実施例 以下本発明の一実施例における高密度セラミック基板の
製造方法について以下説明する。
EXAMPLE A method for manufacturing a high-density ceramic substrate according to an example of the present invention will be described below.

無機質を主成分とする原料として、酸化アルミニウム粉
末96重量%、焼結助剤として二酸化珪素2重量%、酸
化マグネシウム1重量%、炭酸カルシウム1重量%を予
め混合し、その混合材料に対してメチルセルロース5重
量%、グリセリン6重量%、水15重量%をそれぞれ秤
量し、ニダー混練機によって混練し、押し出し成形原料
とした。この原料を真空押し出し法により1.2mmの
厚さにしたシート状成形体を作成した。そしてそのシー
ト状成形体を1.5重量%の含水率まで乾燥させる。次
に第1図に示す様な冷間静水圧加圧装置によってシート
状成形体を加圧する。第1図において1は加圧容器で、
加圧容器1には貫通孔1aが設けられており、貫通孔1
aには圧力ブロック2が挿入されている。又加圧容器1
の中には水が充填されている。この装置は先ず加圧容器
1の中に加圧対象物を入れ、加圧ブロック2を押し込む
事によって加圧容器1の中の水を加圧し、その水を介し
て加圧対象物を加圧する。本実施例の場合、ゴム等によ
ってできた袋3の中にシート状成形体4を入れ、袋3の
中を真空脱気した後に、水の中に袋3を入れ、加圧した
。この時水の温度は25℃とし、圧力は3000 k 
g / cm2  とした。その後に所定に形状にシー
ト状成形体を打ち抜き、1600℃によって2時間焼成
を行って基板を作成した。
As raw materials mainly composed of inorganic substances, 96% by weight of aluminum oxide powder, 2% by weight of silicon dioxide, 1% by weight of magnesium oxide, and 1% by weight of calcium carbonate as sintering aids are mixed in advance, and methyl cellulose is added to the mixed material. 5% by weight, 6% by weight of glycerin, and 15% by weight of water were each weighed and kneaded using a kneader kneader to obtain an extrusion molding raw material. A sheet-like molded product having a thickness of 1.2 mm was created from this raw material by vacuum extrusion. The sheet-like molded body is then dried to a moisture content of 1.5% by weight. Next, the sheet-shaped molded body is pressurized using a cold isostatic press apparatus as shown in FIG. In Fig. 1, 1 is a pressurized container;
The pressurized container 1 is provided with a through hole 1a.
A pressure block 2 is inserted in a. Also pressurized container 1
is filled with water. This device first puts a pressurized object into a pressurized container 1, pressurizes the water in the pressurized container 1 by pushing a pressurizing block 2, and pressurizes the pressurized object through the water. . In the case of this example, the sheet-like molded body 4 was placed in a bag 3 made of rubber or the like, and after the inside of the bag 3 was vacuum degassed, the bag 3 was placed in water and pressurized. At this time, the water temperature was 25℃ and the pressure was 3000K.
g/cm2. Thereafter, the sheet-like molded body was punched into a predetermined shape and fired at 1600° C. for 2 hours to create a substrate.

以上の様に本実施例によれば、シート状成形体を冷間静
水圧法に、よって加圧し、所定の形状に加工し焼成する
事によって、シート状成形体をち密で低焼成収縮率しか
も高焼結密度の基板を作成する事ができる。この時シ−
ト状成形体の押し出し方向の焼成収縮率は12.5%以
下で、幅方向の焼成収縮率は11.0%以下である。又
焼結密度は3.78g/amう 〜3.82g/am’
  である。
As described above, according to this embodiment, the sheet-like molded body is pressurized using the cold isostatic pressure method, processed into a predetermined shape, and fired, thereby producing a sheet-like molded body that is dense and has a low firing shrinkage rate. It is possible to create a substrate with high sintering density. At this time, the sea
The firing shrinkage rate of the tab-shaped molded body in the extrusion direction is 12.5% or less, and the firing shrinkage rate in the width direction is 11.0% or less. Also, the sintered density is 3.78g/am~3.82g/am'
It is.

次に本実施例の製造方法と、−シート状成形体の厚さと
の関係について説明する。
Next, the relationship between the manufacturing method of this example and the thickness of the sheet-shaped molded body will be explained.

実施例と同一の原料を真空押し出し法により、厚さを異
ならせたシート状成形体のサンプルを作成した。この時
シート状成形体の厚さは0.04mmから3.0mmま
で段階的に変化させた。そしてそれらのシート状成形体
を1.5重量%の含水率まで乾燥させる。次に夫々のサ
ンプルを第1図に示す冷間静水圧加圧装置によって水の
温度を25℃とし、圧力を3000 k g / c 
m”  としてシート状成形体に加工した。シート状成
形体の厚みが2.5mmよりも厚いものを作成しようと
した場合、真空押し出し法によって押し出した時にすで
にシート状成形体の表面部と内部との間に圧力差が生じ
シート状成形体が変形してしてしまった。またシート状
成形体の厚みが0.05mmよりも薄いものを作成しよ
うとした場合、シート状成形体の強度が落ちてしまい、
冷間静水圧加圧装置で加圧する際に、シート状成形体に
亀裂が生じる事が多かった。
Samples of sheet-like molded bodies with different thicknesses were prepared using the same raw materials as in the examples by vacuum extrusion. At this time, the thickness of the sheet-like molded body was changed stepwise from 0.04 mm to 3.0 mm. Then, these sheet-like molded bodies are dried to a moisture content of 1.5% by weight. Next, each sample was heated to a water temperature of 25° C. and a pressure of 3000 kg/c using the cold isostatic press shown in Fig. 1.
If you try to make a sheet-like molded product with a thickness of more than 2.5 mm, the surface and interior of the sheet-like molded product will already be separated when extruded using the vacuum extrusion method. A pressure difference was created between the two, causing the sheet-like molded body to deform.Also, when trying to make a sheet-like molded body with a thickness thinner than 0.05 mm, the strength of the sheet-like molded body decreased. I ended up
When pressurizing with a cold isostatic pressure device, cracks often occurred in the sheet-shaped molded product.

以上の様にシート状成形体の厚みを0.05mm〜2.
5mmする事により、真空押し出し装置等によって押し
出された時にシート状成形0体に変形が生じないととも
に、シート状成形体を冷間性水圧加圧装置等により加圧
する際にシート状成形体に亀裂が入る事を防止する事が
できる。
As mentioned above, the thickness of the sheet-like molded body is set to 0.05 mm to 2.0 mm.
By making it 5 mm, the sheet-like molded body will not be deformed when extruded with a vacuum extrusion device, etc., and will not crack when the sheet-like molded body is pressurized with a cold hydraulic pressure device, etc. can be prevented from entering.

次に本実施例とシート状成形体の含水量の関係について
説明する。
Next, the relationship between this example and the water content of the sheet-like molded body will be explained.

実施例と同一の原料を真空押し出し法によって1.2m
mの厚みを有するシート状成形体を作成する。次にこの
様に形成されたシート状成形体を含水量を異なるように
乾燥させたサンプルを作成した。そしてこれらのサンプ
ルを第1図に示す冷間静水圧加圧装置によって水温25
℃、圧力を3000 k g / c m” として加
圧した。シート状成形体の含水量が0.05.重量%〜
3,0重量%の場合、シート状成形体は、適度な可塑性
を示すので冷間静水圧装置によって加圧してもシート状
成形体には亀裂等が生じず、しかも変形しにくい。
The same raw material as in the example was made into 1.2 m by vacuum extrusion method.
A sheet-like molded body having a thickness of m is prepared. Next, samples were prepared by drying the sheet-like molded bodies formed in this manner to have different moisture contents. These samples were then heated to a water temperature of 25°C using the cold isostatic press shown in Figure 1.
℃ and a pressure of 3000 kg/cm".The water content of the sheet-shaped molded product was 0.05% by weight ~
In the case of 3.0% by weight, the sheet-like molded product exhibits appropriate plasticity, so even if it is pressurized by a cold isostatic pressure device, the sheet-like molded product does not crack or the like and is not easily deformed.

又シート状成形体の含水量が0.05重量%より少ない
場合、シート状成形体の可塑性が小さいために冷間静水
圧装置によってシート状成形体を加圧するとシート状成
形体に亀裂が生じる事があった。又シート状成形体の含
水量が3.0重量%より多い場合、シート状成形体の可
塑性が非常に大きくなり、冷間性水圧装置によって加圧
するとシート状成形体に著しい変形が起こり使用できな
かった。
In addition, if the water content of the sheet-like molded body is less than 0.05% by weight, the plasticity of the sheet-like molded body is small, so that when the sheet-like molded body is pressurized with a cold isostatic pressure device, cracks will occur in the sheet-like molded body. Something happened. In addition, if the water content of the sheet-like molded product is more than 3.0% by weight, the plasticity of the sheet-like molded product becomes extremely large, and when pressurized with a cold hydraulic device, the sheet-like molded product is significantly deformed and cannot be used. There wasn't.

以上の様にシート状成形体の含水量を0.05重量%か
ら3.0重量%にする事により、シート状成形体は適度
な可塑性を持ち冷間静水圧装置による加圧において、変
形や亀裂等が発生する事はない。
As described above, by adjusting the water content of the sheet-like molded product from 0.05% to 3.0% by weight, the sheet-like molded product has appropriate plasticity and does not deform when pressurized by a cold isostatic pressure device. No cracks or the like will occur.

次に本実施例と冷間静水圧加圧装置の加圧圧力及び加圧
容器の中の水温の関係について説明する。
Next, the relationship between this embodiment and the pressurizing pressure of the cold isostatic pressurizing device and the water temperature in the pressurizing container will be explained.

実施例と同じ原料を混合し、ニーダ−混練機によって混
練し、混練された原料を真空押し出し法によって1.2
mmの厚みを有するシート状成形体を作成する。次にこ
のシート状成形体を1.5重量%の含水量まで乾燥させ
た後に第1図に示す冷間静水圧加圧装置によって加圧す
る。この時冷間静水圧加圧装置で加圧する際に、加圧容
器の中の水温を3°Cにし、いろいろな圧力で加圧した
サンプルを作成した。同様に5℃、10℃、25℃、4
5℃、500Cの時のサンプルも作成した。
The same raw materials as in the example were mixed, kneaded by a kneader-kneader, and the kneaded raw materials were mixed by vacuum extrusion to 1.2
A sheet-like molded body having a thickness of mm is created. Next, this sheet-like molded body is dried to a water content of 1.5% by weight, and then pressurized using a cold isostatic pressing apparatus shown in FIG. At this time, when pressurizing with a cold isostatic pressurizing device, the water temperature in the pressurizing container was set to 3°C, and samples were pressurized at various pressures. Similarly, 5℃, 10℃, 25℃, 4
Samples were also prepared at 5°C and 500C.

第2図は加圧圧力とシート状成形体の密、度の関係をお
のおのの水温に置いて測定した結果である。
FIG. 2 shows the results of measuring the relationship between the pressurizing pressure and the density and density of the sheet-shaped molded body at each water temperature.

第2図において横軸は冷間静水圧加圧装置の加圧圧力、
縦軸はシート状成形体の加圧後の密度を取っている。こ
のグラフかられかる様に水温が50℃以上又は3℃以下
では他の温度に比べてシート状成形体の密度が小さい事
が分かる。この理由としてまず水温が50℃以上の場合
には、シート状成形体の中に含まれるメチルセルロース
が硬化し始め、シート状成形体の可塑性が低下、すなわ
ちシート状成形体が固(なり、シート状成形体を加圧し
ても、中の空気等が外に出にく(なる為だと考えられる
。又水温が3℃以下の場合、シート状成形体に可塑性が
低下、すなわち固くなってしまい、やはりシート状成形
体の中の空気等が外に出にくくなる為だと考えられる。
In Figure 2, the horizontal axis is the pressurizing pressure of the cold isostatic pressurizing device,
The vertical axis represents the density of the sheet-like molded body after pressurization. As can be seen from this graph, when the water temperature is 50°C or higher or 3°C or lower, the density of the sheet-shaped molded product is lower than at other temperatures. The reason for this is that, first, when the water temperature is 50°C or higher, the methylcellulose contained in the sheet-like molded product begins to harden, and the plasticity of the sheet-like molded product decreases. This is thought to be due to the fact that even if the molded body is pressurized, the air inside is difficult to escape. Also, if the water temperature is below 3°C, the sheet-like molded body loses its plasticity, that is, becomes hard. It is thought that this is because it becomes difficult for air, etc. inside the sheet-like molded body to escape.

又第2図から分かる様に加圧したシート状成形体はどの
温度でも4000kg/cm&以上に加圧するとシート
状成形体に亀裂が発生し、密度が小さくなってしまう。
Furthermore, as can be seen from FIG. 2, if the pressurized sheet-like molded product is subjected to a pressure of 4000 kg/cm or more at any temperature, cracks will occur in the sheet-like molded product and the density will decrease.

従って加圧圧力を強くすればするほど密度は上がるとい
う訳ではない。加圧圧力が100kg/ c m”  
以上4000kg/am” の時はほぼ密度が一定にな
っている。
Therefore, the density does not necessarily increase as the pressure increases. Pressure is 100kg/cm”
Above 4000 kg/am'', the density is almost constant.

以上の様に、冷間静水圧加圧装置によってシート状成形
体を加圧する時の水温を5℃〜45℃とする事により、
シート状成形体に適度の可塑性が得られ、シート状成形
体に均一な圧力伝搬が生じ、高密度の基板を得る事がで
きる。また冷間静水圧加圧装置によってシート状成形体
を加圧する時の圧力を100kg/cm″″ 以上40
00kg/ c m’ にする事により、亀裂が発生せ
ずち密な基板を得る事ができる。
As mentioned above, by setting the water temperature at 5°C to 45°C when pressurizing the sheet-shaped molded body with the cold isostatic pressurizing device,
Appropriate plasticity is obtained in the sheet-like molded body, uniform pressure propagation occurs in the sheet-like molded body, and a high-density substrate can be obtained. In addition, the pressure when pressurizing the sheet-like molded body using a cold isostatic pressurizing device is 100 kg/cm'' or more.40
By setting the weight to 00 kg/cm', a dense substrate can be obtained without cracking.

これらの関係から判るように、無機質材料を主成分とす
る原料を真空押し出し法によって、0゜05mm〜2.
5mmの厚みを有するシート状成形体とした後に、その
シート状成形体を含水量が0.05重量%〜3.0重量
%になる様に乾燥させ、その後にシート状成形体を冷間
静水圧加圧装置によって水温5℃〜45℃で圧力を10
0kg/cm” 〜4000kg/cm” にて加圧す
る事により、シート状成形体に均一な圧力伝搬が起こり
、シート状成形体がち密化して高密度になるとともに、
シート状成形体の押し出し方向と幅方向の焼成収縮率の
差が小さ(なる事により、寸法精度がよくなる。又焼成
体内の残留気孔も少な(する事ができ良好な基板を作成
する事ができる。
As can be seen from these relationships, raw materials mainly composed of inorganic materials can be processed by vacuum extrusion to a size of 0.05 mm to 2.0 mm.
After forming a sheet-like molded product with a thickness of 5 mm, the sheet-like molded product is dried so that the water content becomes 0.05% by weight to 3.0% by weight, and then the sheet-like molded product is cooled and left still. Pressure is increased to 10°C at a water temperature of 5°C to 45°C using a water pressure device.
By applying pressure between 0kg/cm" and 4000kg/cm", uniform pressure propagation occurs in the sheet-shaped molded body, and the sheet-shaped molded body becomes denser and has a higher density.
The difference in firing shrinkage rate between the extrusion direction and the width direction of the sheet-shaped molded body is small, which improves dimensional accuracy. Also, there are few residual pores in the fired body, making it possible to create a good substrate. .

なお本実施例においてシート状成形体の原料を酸化アル
ミニウム粉末96重量%、焼結助剤として二酸化珪素2
重量%、酸化マグネシウム1重量%、炭酸カルシウム1
9重量%を予め混合し、その混合材料に対してメチルセ
ルロース5重量%。
In this example, 96% by weight of aluminum oxide powder was used as the raw material for the sheet-shaped compact, and 2% silicon dioxide was used as the sintering aid.
% by weight, 1% by weight of magnesium oxide, 1% by weight of calcium carbonate
9% by weight pre-mixed and 5% by weight of methylcellulose based on the mixed material.

グリセリン6重量%、水15重量%とじたが、無機質を
主成分とする原料としてアルカリ土類金属の酸化物であ
る炭酸バリウム60重量%、酸化チタン35重量%、炭
酸カルシウム3重量%、酸化マグネシウム2重量%を予
め混合し、その混合物原料に対してメチルセルロース5
重量%、グリセリン6重量%、水15重量%とじても同
様の効果を得る事ができる。
6% by weight of glycerin and 15% by weight of water, but raw materials mainly composed of inorganic substances include 60% by weight of barium carbonate, which is an oxide of alkaline earth metal, 35% by weight of titanium oxide, 3% by weight of calcium carbonate, and magnesium oxide. 2% by weight of methylcellulose is mixed in advance, and 5% of methylcellulose is added to the raw material of the mixture.
Similar effects can be obtained by combining 6% by weight of glycerin and 15% by weight of water.

発明の効果 本発明は、無機質材料を主成分とする原料を真空押し出
し法によってシート状成形体として、そのシート状成形
体を冷間静水圧法によって加圧し、その後に所定の形状
に加工して焼成する事により、シート状成形体に均一な
圧力伝搬が生じ、成形体の充填密度が上昇するので、焼
成収縮率が減少するとともに、従来生じていたシート状
成形体の押し出し方向と幅方向の焼成収縮率の差を縮め
ることかできるので、寸法精度を向上させる事ができる
。またシート状成形体の中にある空気等の残留気孔を少
なくするする事ができるので、ち密な基板を形成する事
ができる。
Effects of the Invention The present invention produces a sheet-like molded product using a vacuum extrusion method using a raw material mainly composed of an inorganic material, pressurizes the sheet-like molded product using a cold isostatic pressure method, and then processes it into a predetermined shape. By firing, uniform pressure propagation occurs in the sheet-shaped compact and the packing density of the compact increases, which reduces the firing shrinkage rate and improves the extrusion direction and width direction of the sheet-shaped compact, which previously occurred. Since the difference in firing shrinkage rate can be reduced, dimensional accuracy can be improved. Further, since residual pores such as air in the sheet-like molded body can be reduced, a dense substrate can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷間静水圧加圧装置を示す断面図、第2図は冷
間静水圧加圧装置の加圧圧力とシート状成形体の密度の
関係を示すグラフである。 第1区 1・・・・・・加圧容器 1a・・・・・・貫通孔 2・・・・・・加圧ブロック 3・・・・・・袋 4・・・・・・シート状成形体
FIG. 1 is a sectional view showing a cold isostatic pressing device, and FIG. 2 is a graph showing the relationship between the pressurizing pressure of the cold isostatic pressing device and the density of a sheet-like molded body. 1st section 1... Pressure container 1a... Through hole 2... Pressure block 3... Bag 4... Sheet-like molding body

Claims (3)

【特許請求の範囲】[Claims] (1)無機質材料を主成分とする原料を混合し、真空押
し出し法によってシート状成形体を形成し、前記シート
状成形体を乾燥させ、前記シート状成形体を冷間静水圧
法により加圧し、その後に前記シート状成形体を所定の
形状に加工し、焼成する事を特徴とする高密度セラミッ
ク基板の製造方法。
(1) Mixing raw materials mainly composed of inorganic materials, forming a sheet-shaped molded body by vacuum extrusion, drying the sheet-shaped molded body, and pressurizing the sheet-shaped molded body by cold isostatic pressing. . A method for producing a high-density ceramic substrate, characterized in that the sheet-like molded body is then processed into a predetermined shape and fired.
(2)無機質材料に酸化アルミニウムを用いる事を特徴
とする請求項第1項記載の高密度セラミック基板の製造
方法。
(2) The method for manufacturing a high-density ceramic substrate according to claim 1, characterized in that aluminum oxide is used as the inorganic material.
(3)無機質材料にアルカリ土類金属の酸化物を用いる
事を特徴とする請求項第1項記載の高密度セラミック基
板の製造方法。
(3) The method for manufacturing a high-density ceramic substrate according to claim 1, characterized in that an oxide of an alkaline earth metal is used as the inorganic material.
JP1277437A 1989-10-24 1989-10-24 Manufacture of high density ceramic substrate Pending JPH03138101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277437A JPH03138101A (en) 1989-10-24 1989-10-24 Manufacture of high density ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277437A JPH03138101A (en) 1989-10-24 1989-10-24 Manufacture of high density ceramic substrate

Publications (1)

Publication Number Publication Date
JPH03138101A true JPH03138101A (en) 1991-06-12

Family

ID=17583553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277437A Pending JPH03138101A (en) 1989-10-24 1989-10-24 Manufacture of high density ceramic substrate

Country Status (1)

Country Link
JP (1) JPH03138101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097264A1 (en) * 2000-06-16 2001-12-20 Ibiden Co., Ltd. Hot plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097264A1 (en) * 2000-06-16 2001-12-20 Ibiden Co., Ltd. Hot plate
US6825555B2 (en) 2000-06-16 2004-11-30 Ibiden Co., Ltd. Hot plate

Similar Documents

Publication Publication Date Title
JP2604592B2 (en) Molding method of metal, ceramic powder, etc. and composition therefor
DE3942666C2 (en)
JPH03138101A (en) Manufacture of high density ceramic substrate
EP0372351B1 (en) Process for the manufacture of a ceramic filter unit
DE1646655A1 (en) Ceramic products and processes for their manufacture
DE2035045A1 (en) Sintering of hard powders - under pressure isostatically applied via pulverulent packing
JPS5895640A (en) Manufacture of ceramic product
JPS61101447A (en) Manufacture of ceramic formed body
JPH02248358A (en) Production of ceramic base plate
JPH0714606B2 (en) Method for preparing ceramic clay
JPS5884711A (en) Manufacture of porcelain product
JP3175455B2 (en) Ceramics molding method
JP3224645B2 (en) Ceramics molding method
JPH07115942B2 (en) Method for manufacturing thin plate ceramics sintered body
JPH01304902A (en) Method and apparatus for forming ceramic
SU1678527A1 (en) Process for manufacturing hard alloy-based tools
JP3122250B2 (en) Casting method of ceramic powder
JPH01301558A (en) Production of sintered magnesia
JPH07112953B2 (en) Slurry composition for ceramic green sheet
JPS6379756A (en) Manufacture of light transmitting ceramics
JPH05345305A (en) Forming method of ceramic formed body
JPH09202664A (en) Production of green sheet
JPH0376603A (en) Press molding method for ceramics
JPS6054962A (en) Manufacture of minute ceramic green sheet
JPH05170555A (en) Production of ceramics