JPH01304902A - Method and apparatus for forming ceramic - Google Patents

Method and apparatus for forming ceramic

Info

Publication number
JPH01304902A
JPH01304902A JP13483388A JP13483388A JPH01304902A JP H01304902 A JPH01304902 A JP H01304902A JP 13483388 A JP13483388 A JP 13483388A JP 13483388 A JP13483388 A JP 13483388A JP H01304902 A JPH01304902 A JP H01304902A
Authority
JP
Japan
Prior art keywords
mold
clay
molding
ceramic
holding part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13483388A
Other languages
Japanese (ja)
Other versions
JPH046521B2 (en
Inventor
Tadaaki Matsuhisa
松久 忠彰
Hiroyuki Iwasaki
裕行 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP13483388A priority Critical patent/JPH01304902A/en
Priority to DE1989602279 priority patent/DE68902279T2/en
Priority to DE1989627185 priority patent/DE68927185T2/en
Priority to EP19890305442 priority patent/EP0345022B1/en
Priority to EP91203145A priority patent/EP0487172B1/en
Publication of JPH01304902A publication Critical patent/JPH01304902A/en
Priority to US07/624,540 priority patent/US5238627A/en
Publication of JPH046521B2 publication Critical patent/JPH046521B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To shorten a formation time by a method wherein ceramic body, which is once poured and held in a body holding part, is finally poured in a forming mold, which is non-permeable and a part of the forming surface of which consists of material having the contact angle of 80 deg. or more to water. CONSTITUTION:Ceramic body containing sintering aid and the like is prepared by kneading and pugging. Body 9 is poured from a body holding part pouring port 11 to the body holding part 5 of a forming device of turbine rotor. After that, the body holding part pouring port 11 is tightly closed by lowering a pressurizing piston 8 so as to deaerate the body holding part 5 by vacuum through an exhaust port 7. Next, the pouring of the body through a pouring port 6 under pressure is done by applying pressurizing force to the body in order to produce a formed body. As the forming mold for pouring the ceramic body under pressure, the mold is made non-permeable and a part of its forming surface consists of Teflon, the contact angle of which to water is 80 deg. or more, resulting in improving the shape retention and releasability of an item having complicated shape.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、真空土練工程により調製されたセラミックス
坏土を一旦坏土保持部に注入して保持した後、非透過性
型の成形面の一部を水との接触角が80度以上の材料か
ら構成した成形型に加圧注入することによるセラミック
スの成形方法及び成形装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method of injecting ceramic clay prepared by a vacuum clay kneading process into a clay holding part and holding it therein, and then pouring it into a molding surface of a non-permeable mold. The present invention relates to a method and apparatus for molding ceramics by injecting a portion of the ceramic under pressure into a mold made of a material having a contact angle with water of 80 degrees or more.

[従来の技術] 従来より比較的複雑な形状を有するセラミック成形体の
製造方法として、射出成形法、加圧鋳込成形法及び湿式
加圧成形法が知られている。
[Prior Art] Injection molding, pressure casting, and wet pressure molding are conventionally known methods for manufacturing ceramic molded bodies having relatively complex shapes.

射出成形法は、セラミック粉末とポリエチレン、ポリス
チレン等の樹脂及びワックスから成る有機バインダーを
混合し、この混合原料を射出成形機により成形し、得ら
れた成形体を脱脂することによりセラミック成形体を得
る方法である。
In the injection molding method, a ceramic molded body is obtained by mixing ceramic powder with an organic binder consisting of resin such as polyethylene or polystyrene and wax, molding this mixed raw material with an injection molding machine, and degreasing the resulting molded body. It's a method.

加圧鋳込成形法は、セラミック粉末、水と解膠剤等の成
形助剤を混合して泥漿とし、この泥漿を鋳込型内に注入
し、泥漿を加圧して鋳込成形することによりセラミック
成形体を得る方法である。
The pressure casting method involves mixing ceramic powder, water, and forming aids such as deflocculants to create a slurry, injecting this slurry into a casting mold, and pressurizing the slurry to perform casting. This is a method for obtaining a ceramic molded body.

また湿式加圧成形法は、セラミック粉末、水とバインダ
ー等の成形助剤を混合混練して坏土とし、この坏土を型
内に入れて加圧成形することによりセラミック成形体を
得る方法である。
In addition, the wet pressure molding method is a method in which a ceramic molded body is obtained by mixing and kneading ceramic powder, water, and molding aids such as a binder to form a clay, and placing the clay in a mold and press-molding it. be.

[発明か解決しようとする課題] しかしながら、上記従来の射出成形法にあっては、射出
成形で得られる射出成形体の脱脂工程に長時間を要する
という欠点がある。
[Problems to be Solved by the Invention] However, the conventional injection molding method described above has a drawback in that the degreasing process of the injection molded article obtained by injection molding requires a long time.

また、加圧鋳込成形法では、成形後の保形性が悪く、離
型し難いばかりでなく、複雑な形状品は型合わせの面よ
りスリップ漏れを起しやすく、成形時間に長時間を要す
る等の欠点がある。
In addition, with the pressure casting method, shape retention after molding is poor and it is difficult to release from the mold, and products with complex shapes are more likely to slip and leak than the mating surface, resulting in a long molding time. There are drawbacks such as the need for

さらに、湿式加圧成形法では離型し難く、クラックか発
生しやすいという問題がある。
Furthermore, the wet pressure molding method has problems in that it is difficult to release from the mold and cracks are likely to occur.

[課題を解決するための手段コ そこで本発明者は、上記の問題点に鑑み、鋭意検討を重
ねた結果、本発明に到達した。
[Means for Solving the Problems] In view of the above-mentioned problems, the inventors of the present invention have conducted intensive studies and have arrived at the present invention.

即ち、本発明によれば、真空土練工程により調製された
セラミックス坏土を、一旦坏土保持部に注入して保持し
た後、該セラミックス坏土を、非透過性型、または透過
性型と非透過性型の組合せから成り、該非透過性型の成
形面の一部を水との接触角が80度以上の材料から構成
した成形型に加圧注入することを特徴とするセラミック
スの成形方法、および、真空土練工程により調製された
セラミックス坏土を注入・保持するための注入・保持手
段と、該注入・保持手段からのセラミックス坏土を加圧
・注入するための成形型であって、非透過性型、または
透過性型と非透過性型の組合わせから成り、該非透過性
型の成形面の一部を水との接触角が80度以上の材料か
ら構成した成形型とから成ることを特徴とするセラミッ
クスの成形装置、か提供される。
That is, according to the present invention, after the ceramic clay prepared by the vacuum clay kneading process is once injected into the clay holding part and held, the ceramic clay is made into a non-permeable type or a permeable type. A method for molding ceramics comprising a combination of non-permeable molds, characterized in that a part of the molding surface of the non-permeable molds is injected under pressure into a mold made of a material having a contact angle with water of 80 degrees or more. , and an injection/holding means for injecting and holding the ceramic clay prepared by the vacuum clay kneading process, and a mold for pressurizing and injecting the ceramic clay from the injection/holding means. , a non-permeable mold, or a combination of a permeable mold and a non-permeable mold, and a part of the molding surface of the non-permeable mold is made of a material having a contact angle with water of 80 degrees or more. A ceramic forming apparatus is provided, characterized in that it consists of:

本発明において、セラミックス坏土を加圧注入する成形
型としては、非透過性型の成形面の一部を水との接触角
か80度以上の材料から構成している。すなわち、非透
過性型、または透過性型と非透過性型の組合せから成る
成形型において、非透過性型の成形面の一部を例えば、
ポリテトラフルオルエチレン等のフッ素樹脂など、水と
の接触角が80度以上、好ましくは85度以上、より好
ましくは90度以上の材料によって形成することにより
、成形体との離型性が良くなるのである。
In the present invention, as a mold for pressure-injecting ceramic clay, a part of the molding surface of the non-permeable mold is made of a material having a contact angle with water of 80 degrees or more. That is, in a mold consisting of a non-transparent mold or a combination of a transparent mold and a non-transparent mold, a part of the molding surface of the non-transparent mold is, for example,
By forming it from a material such as a fluororesin such as polytetrafluoroethylene, which has a contact angle with water of 80 degrees or more, preferably 85 degrees or more, and more preferably 90 degrees or more, it has good mold releasability from the molded product. It will become.

水との接触角か80度より小さいと、離型性が悪くなる
。特にセラミックタービンローターの如き複雑な形状物
を成形する場合、水との接触角が90度以上の材料を用
いることは離型による欠損がない点から好ましい。
If the contact angle with water is less than 80 degrees, the mold releasability will be poor. Particularly when molding a complex-shaped object such as a ceramic turbine rotor, it is preferable to use a material having a contact angle with water of 90 degrees or more, since there will be no damage due to mold release.

非透過性型の成形面の一部を構成する、水との接触角か
80度以上の材料としては、ポリテトラフルオルエチレ
ン、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリト
リフルオルクロルエチレン、テトラフルオルエチレン−
バーフルオルアルキルビニールエーテル共重合体等のフ
ッ素樹脂のほか、ポリプロピレン、各種ワックス類、等
が挙げられる。
Materials that form part of the molding surface of non-permeable molds and have a contact angle with water of 80 degrees or more include polytetrafluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, polytrifluorochloroethylene, and tetrafluoroethylene. Orethylene-
Examples include fluororesins such as barfluoroalkyl vinyl ether copolymers, polypropylene, various waxes, and the like.

また、前記材料により非透過性型の成形面の一部を構成
する手段としては、この材料で非透過性型自体を作成し
てもよいか、経済性の面から非透過性型の成形表面に被
覆することにより行うことが好ましい。また、前記材料
としてフッ素樹脂等を用いれば、金属製の非透過製型に
も容易に直接被覆することができる。
In addition, as a means of constructing a part of the molding surface of the non-transparent mold using the above-mentioned material, it is possible to create the non-transparent mold itself using this material, or from the viewpoint of economy, the molding surface of the non-transparent mold It is preferable to carry out this by coating. Furthermore, if a fluororesin or the like is used as the material, it can be easily directly coated on a metal non-transparent mold.

また本発明で用いる透過性型としては、従来公知のもの
が使用できる。透過性型は、空気の除去を良くするため
、通気性が良く、一方、型自体の強度を保障し得るもの
であることが必要で、通常、平均孔径が0.1〜50J
Lmのものが使用される。また、平均孔径か異なる型て
成形面層を0゜1〜50JLmの孔径とし、下面層を5
0〜500gm程度の粗い孔径とした組合せからなる二
層構造の型も使用することができる。透過性型の材質は
限定されず、吸水性のよい石膏の如き材質のほか、樹脂
、セラミックス、金属およびそれらの複合材料等を用い
ることもできる。
Furthermore, as the transparent type used in the present invention, conventionally known types can be used. The permeable mold needs to have good air permeability in order to improve air removal, while also ensuring the strength of the mold itself, and usually has an average pore diameter of 0.1 to 50 J.
Lm is used. In addition, the molding surface layer with a different average pore diameter has a pore diameter of 0°1 to 50 JLm, and the lower surface layer has a pore diameter of 5.
A two-layer mold having a combination of coarse pore diameters of about 0 to 500 gm can also be used. The material for the transparent type is not limited, and in addition to materials with good water absorption such as plaster, resins, ceramics, metals, composite materials thereof, etc. can also be used.

また、本発明に使用する非透過性型としては従来一般に
使用されているものを用いることができ、例えば金型の
ほか合成樹脂型、ゴム型を用いることができる。
Further, as the non-transparent mold used in the present invention, those conventionally and generally used can be used, and for example, in addition to a metal mold, a synthetic resin mold or a rubber mold can be used.

本発明に用いるセラミックス坏土は、焼結助剤を含むセ
ラミック粉末、成形助剤及び水から成るものである。
The ceramic clay used in the present invention consists of ceramic powder containing a sintering aid, a forming aid, and water.

セラミック粉末としては従来より知られているアルミナ
、ジルコニア等の酸化物のほか、いわゆるニューセラミ
ックスとして知られている窒化珪素等の窒化物、炭化珪
素等の炭化物、およびこれらの複合材料等を使用するこ
とができる。
As ceramic powder, in addition to conventionally known oxides such as alumina and zirconia, nitrides such as silicon nitride, carbides such as silicon carbide, which are known as new ceramics, and composite materials of these are used. be able to.

焼結助剤としては特にその種類を限定されるものではな
く、一般に知られているMg、An、Y、Ce、Zr、
Sr、B、Ta等の酸化物、窒化物、炭化物等の焼結助
剤を用いることができ、使用するセラミック粉末により
適宜選ばれる。
The type of sintering aid is not particularly limited, and generally known Mg, An, Y, Ce, Zr,
Sintering aids such as oxides such as Sr, B, and Ta, nitrides, and carbides can be used, and are appropriately selected depending on the ceramic powder used.

セラミックス坏土の調合割合は、セラミック粉末100
重量部、水10〜45重量部、成形助剤0.1〜30重
量部、好ましくはセラミック粉末100重量部、水15
〜35重量部、成形助剤0.6〜15重量部である。ま
た、より好ましい水の配合割合は10〜25重量部であ
る。水の配合割合が10重量部未満の場合は混線性が悪
く、均質な成形用坏土が得られず、45重量部を超える
と得られる成形体の密度か低くなって焼成収縮が大きく
なり、寸法精度の高い製品を得にくくなる。
The blending ratio of ceramic clay is 100% ceramic powder.
parts by weight, 10 to 45 parts by weight of water, 0.1 to 30 parts by weight of molding aid, preferably 100 parts by weight of ceramic powder, 15 parts by weight of water.
~35 parts by weight, and 0.6 to 15 parts by weight of the molding aid. Further, a more preferable blending ratio of water is 10 to 25 parts by weight. When the proportion of water is less than 10 parts by weight, crosstalk is poor and a homogeneous molding clay cannot be obtained, and when it exceeds 45 parts by weight, the density of the obtained molded product becomes low and the firing shrinkage becomes large. It becomes difficult to obtain products with high dimensional accuracy.

一方ハインダー、分散剤等の成形助剤が0. 1重量部
未満であるとその効果がなく、30重量部を超えると成
形助剤の除去に時間かかかると共に製品にクラックが発
生しやすくなり好ましくない。
On the other hand, molding aids such as binder and dispersant are 0. If it is less than 1 part by weight, the effect will not be achieved, and if it exceeds 30 parts by weight, it will take a long time to remove the molding aid and the product will be prone to cracking, which is not preferable.

真空土練工程によってセラミックス坏土を調製する場合
、真空土練機は一般に使用されているバックミルとオー
ガーマシンとを組合わせた装置を使用することかでき、
均質で欠陥のない坏土を得るには、オーガースクリュー
、柱環、口金等の構造及び押出しスピード、坏土の温度
調整等を考慮する必要がある。
When preparing ceramic clay by the vacuum clay kneading process, a commonly used device that combines a back mill and an auger machine can be used as the vacuum clay kneading machine.
In order to obtain homogeneous and defect-free clay, it is necessary to consider the structure of the auger screw, post ring, die, etc., extrusion speed, temperature adjustment of the clay, etc.

真空土練工程の真空度は減圧状態であればよいが、通常
60 cmHg以上が好ましい。減圧状態になることに
よって水の拡散が著しくなり、坏土の水膜の生成が速く
なって均質な坏土か得られる。又、セラミックタービン
ホイールの如く高強度が要求される製品には、坏土中の
気泡が破壊発生の原因となるため、真空度は70 cm
Hg以上であることか好ましい。
The degree of vacuum in the vacuum clay kneading step may be reduced as long as it is under reduced pressure, but it is usually preferably 60 cmHg or more. By being in a reduced pressure state, the diffusion of water becomes remarkable, and the formation of a water film on the clay becomes faster, resulting in a homogeneous clay. In addition, for products that require high strength, such as ceramic turbine wheels, the degree of vacuum is 70 cm because air bubbles in the clay can cause destruction.
It is preferable that it is Hg or higher.

次に本発明においては、真空土練工程により所定に調製
されたセラミックス坏土を、一旦坏土保持部に注入して
保持させている。真空土練工程と成形工程を分けること
により、加圧圧力を高くする、加圧注入スピードを速く
する等の成形条件が成形体にあわせて容易に設定でき、
更に温度分布差のない均質な坏土な準備することができ
、成形欠陥のない成形体を得ることができる。また、坏
土保持部の坏土接触部に水との接触角が80度以上の材
料を用いることにより、坏土保持部と坏土の摩擦が少な
くなり、圧力損失及び摩擦熱を小さくすることかでき好
ましい。
Next, in the present invention, the ceramic clay prepared in a predetermined manner by the vacuum clay kneading process is once injected into the clay holding part and held therein. By separating the vacuum clay kneading process and the molding process, molding conditions such as increasing the pressure and pressure injection speed can be easily set to suit the molded product.
Furthermore, it is possible to prepare a homogeneous clay with no difference in temperature distribution, and it is possible to obtain a molded article without molding defects. In addition, by using a material with a contact angle of 80 degrees or more with water for the clay contacting part of the clay holding part, the friction between the clay holding part and the clay is reduced, reducing pressure loss and frictional heat. It is preferable to make it.

坏土保持部(即ち、注入・保持手段)としては具体的に
はプランジャー式押出機が好ましく用いられるが、その
他通常のシリンダー等も用いることかできる。
Specifically, a plunger type extruder is preferably used as the clay holding part (ie, injection/holding means), but other ordinary cylinders and the like may also be used.

坏土保持部の成形型への注入口の大きさは、成形体の形
状・容積等によってそれぞれ設定する必要があり、坏土
保持部と坏土の摩擦を小さくするため、注入口の大きさ
は大きいほうが好ましい。
The size of the injection port of the clay holding part into the mold needs to be set depending on the shape and volume of the molded object.In order to reduce the friction between the clay holding part and the clay, the size of the injection port The larger the value, the better.

一方、セラミックス坏土の成形型への加圧圧力としては
、好ましくは5 kg/c+*2以上、更に好ましくは
10 kg/cm2以上を用いる。圧力か5 kg/c
m2より小さいと、坏土か充填されなかったり、また成
形体の密度か低くなって変形を起し易い。
On the other hand, the pressure applied to the mold of the ceramic clay is preferably 5 kg/cm2 or more, more preferably 10 kg/cm2 or more. Pressure: 5 kg/c
If it is smaller than m2, the clay may not be filled or the density of the molded body may be low, causing deformation.

又、加圧圧力としては、700 kg/c*2を超える
高圧を用いることも可能であるが、高圧になることによ
り、成形型が大きく且つ重くなること、更に成形機が大
型化すること等から操作性か悪くなる。このため700
 kg/c墓2以下2以下うことか好ましい。
In addition, it is possible to use a high pressure of over 700 kg/c*2 as the pressurizing pressure, but due to the high pressure, the mold becomes larger and heavier, and the molding machine becomes larger, etc. The operability deteriorates. For this reason 700
It is preferable that the weight is less than 2 kg/c.

セラミックス坏土を成形型に注入する時の加圧注入スピ
ードは加圧注入スピード(cm’/5ec)と成形体表
面積(c+++2)との比(加圧注入スピード/成形体
表面積)か0.7以上乃至10以下であることが望まし
い。
The pressure injection speed when injecting the ceramic clay into the mold is the ratio of the pressure injection speed (cm'/5ec) to the surface area of the molded body (c+++2) (pressure injection speed/surface area of the molded body) or 0.7. It is desirable that the value is from 10 to 10.

上記の比か0.7未満では成形体の表面にクラツクやシ
ワ等の欠陥が発生しやすい。一方、上記の比か10を超
えても成形は回走であるが、成形装置が大型化するため
操作性か悪く、また必要以上の経費を要し経済的でない
If the above ratio is less than 0.7, defects such as cracks and wrinkles are likely to occur on the surface of the molded product. On the other hand, if the above ratio exceeds 10, the molding can still be carried out in circular motions, but the molding apparatus becomes larger, resulting in poor operability and unnecessarily high costs, which is not economical.

[実施例] 以下、実施例に基き本発明をさらに詳細に説明するが、
本発明かこれら実施例に限定されないことは明らかであ
ろう。
[Examples] The present invention will be explained in more detail based on Examples below.
It will be clear that the invention is not limited to these examples.

(実施例1) 焼結助剤を含むSiC粉末(平均粒径0.7.pm)1
00重量部に、水25重量部、成形助剤としてバインダ
ー5重量部、分散剤li量部を調合し、加圧ニーダ−に
て混練した。その後表−1に示す真空度で真空土練を行
ない、60■(φ)x100■(長さ)の坏土を揃々押
出した。次に第1図に示すタービンローター(翼径85
mmφ、翼高30■)用の成形装置の坏土保持部5に坏
土保持部注入口11より前記坏土9を注入後、加圧用ピ
ストン8を降下させ、坏土保持部注入口11を密閉後、
排出ロアより坏土保持部5の真空脱気を行なった。
(Example 1) SiC powder containing sintering aid (average particle size 0.7.pm) 1
00 parts by weight, 25 parts by weight of water, 5 parts by weight of a binder as a molding aid, and 1 part by weight of a dispersant were mixed in a pressure kneader. Thereafter, vacuum clay kneading was carried out at the degree of vacuum shown in Table 1, and clay of 60 mm (φ) x 100 mm (length) was extruded. Next, the turbine rotor (blade diameter 85
After injecting the clay 9 into the clay holding part 5 of the molding device for molding apparatus (mmφ, blade height 30cm) from the clay holding part injection port 11, the pressurizing piston 8 is lowered, and the clay holding part injection port 11 is injected. After sealing,
The clay holding part 5 was vacuum degassed from the discharge lower.

その後表−1に示す加圧力により、注入口6(12mm
(φ)〕より加圧注入を行ない、20秒後に離型し、表
−1に示すような成形体を得た。
Thereafter, by applying the pressure shown in Table 1, the injection port 6 (12 mm
(φ)], and the mold was released after 20 seconds to obtain a molded product as shown in Table 1.

なお、比較のため、真空土練を行なわず加圧ニーダ−に
て混練しただけの坏土の成形及び第1図に示す非透過性
型1.3及び非透過性スライドコア2の成形体面には、
テフロン(ポリテトラフルオルエチレン、接触角(θ)
108度)コーティングが施されていない場合の成形も
同時に行い、表−1に示すような成形体を得た。
For comparison, molding of clay only kneaded in a pressure kneader without vacuum kneading and molding of the molded body of the non-permeable mold 1.3 and the non-permeable slide core 2 shown in Fig. 1 were carried out. teeth,
Teflon (polytetrafluoroethylene, contact angle (θ)
Molding without coating (108 degrees) was also performed at the same time to obtain molded products as shown in Table 1.

次に、成形体を恒温恒湿器を用いて5°C/hrの昇温
をしてlOO″Cで5時間、湿度は98%から徐々に低
下させながら乾燥した。
Next, the molded body was heated at 5° C./hr using a constant temperature and humidity chamber and dried at 100° C. for 5 hours while the humidity was gradually lowered from 98%.

表−1から明らかなように、本発明の成形方法及び成形
装置を用いることにより、成形体の離型性がよく、外観
クラックおよび乾燥後のクラックもない良好な成形体か
得られることがわかる。
As is clear from Table 1, by using the molding method and molding apparatus of the present invention, a molded product with good mold releasability and no cracks in appearance or cracks after drying can be obtained. .

(実施例2) 焼結助剤を含むSi、N、粉末(平均粒径lJLm)と
、成形助剤、水を表−2に示すように調合し、加圧ニー
ダ−を用いて混練し、その後真空土練機(真空度75 
cmHg)にて60■(φ) x 70mm (長さ)
の形状をした坏土を揃々押出した。次に第2図に示す4
枚の翼形状(翼径90mm (φ)、翼高40■〕をし
た成形型の翼部10の表面に接触角の異なった材料を固
着させ1表−2に示す成形条件で前記の如く調製された
坏±9を用いて500 kg/C112の圧力で注入口
6(24+l■(φ))より加圧注入し、10秒後に離
型して表−2に示すような成形体を得た。
(Example 2) Si, N, powder (average particle size lJLm) containing a sintering aid, a forming aid, and water were mixed as shown in Table 2, and kneaded using a pressure kneader. After that, vacuum clay kneading machine (vacuum level 75)
cmHg) 60■(φ) x 70mm (length)
We extruded clay having the shape of . Next, 4 shown in Figure 2
Materials with different contact angles were adhered to the surface of the blade part 10 of a mold having a blade shape (blade diameter 90 mm (φ), blade height 40 cm) and prepared as described above under the molding conditions shown in Table 1-2. Pressure injection was carried out from the injection port 6 (24+l (φ)) at a pressure of 500 kg/C112 using the molded molding material ±9, and the mold was released after 10 seconds to obtain a molded product as shown in Table 2. .

表−2から明らかなように、成形型表面に接触角(θ)
80度以上の材料を用いることにより良好な成形体が得
られることが判った。又、さらに複雑形状のタービンロ
ータ等を成形する場合には、より離型が困難となるため
、僅かなカケも発生しない接触角(θ)90度以上の材
料を用いることが必要なことが明らかである。
As is clear from Table 2, the contact angle (θ) on the mold surface
It has been found that a good molded body can be obtained by using a material having a temperature of 80 degrees or higher. Furthermore, when molding turbine rotors with more complex shapes, it becomes more difficult to release the mold, so it is clear that it is necessary to use materials with a contact angle (θ) of 90 degrees or more that will not cause even the slightest chipping. It is.

次に成形体を恒温恒湿器を用いて5°C/Hrの昇温を
して100℃で5時間、湿度は98%から徐々に低下さ
せながら乾燥をした。次に、熱風循環式電気炉を用い、
s o o ’cで10時間脱脂し、その抜水のうに詰
め、3トン/cm2の圧力にてラバープレス成形をし、
その後N2雰囲気中で1730°Cにて1時間の焼結を
行ない、焼結体を得た。
Next, the molded body was heated to 100°C for 5 hours using a constant temperature and humidity chamber at a rate of 5°C/Hr, and then dried while gradually lowering the humidity from 98%. Next, using a hot air circulation electric furnace,
Degreased for 10 hours in SO'C, packed in a container to remove water, and rubber press molded at a pressure of 3 tons/cm2.
Thereafter, sintering was performed at 1730° C. for 1 hour in a N2 atmosphere to obtain a sintered body.

(以下、余白) (実施例3) 焼結助剤を含むSi3N、粉末(平均粒径0.8gm)
100重量部に水24重量部、成形助剤と′してバイン
ダー3重量部、分散剤0.5重量部を調合し、加圧ニー
ダ−にて混練した。その後、真空土練(真空度76 c
mllg)を行ない、60■(φ)×:lOO■(長さ
)の坏土を押出した。次に第3図に示すテストピース型
(60mmX 60mm) 、第4図に示すピストンキ
ャビティー型(外径10ha(φ)×高さ25am)及
びタービンローター型(翼径75mm (φ)、翼高3
5mm)をそれぞれ成形装置にセットし、前記調製され
た坏土な坏土保持部注入口11より坏土保持部5に注入
後、加圧用ピストン8を降下させ、坏土保持部注入口1
1を密閉後、排出ロアより坏土保持部5の真空脱気を行
なった。その後、表−3に示す成形条件で注入口6より
加圧注入を行ない、15秒後に離型し、表−3に示すよ
うな成形条件にて成形し、表−3に示す成形体を得た。
(Hereafter, blank space) (Example 3) Si3N powder containing sintering aid (average particle size 0.8 gm)
100 parts by weight were mixed with 24 parts by weight of water, 3 parts by weight of a binder as molding aids, and 0.5 parts by weight of a dispersant, and kneaded in a pressure kneader. After that, vacuum clay kneading (vacuum degree 76c)
mllg) to extrude a clay having a length of 60 mm (φ)×: lOO× (length). Next, we tested the test piece type (60 mm x 60 mm) shown in Figure 3, the piston cavity type (outside diameter 10 ha (φ) x height 25 am) shown in Figure 4, and the turbine rotor type (blade diameter 75 mm (φ), blade height). 3
5 mm) are respectively set in the molding device, and after injecting the prepared clay into the clay holding part 5 from the clay holding part injection port 11, the pressurizing piston 8 is lowered and the clay holding part injection port 1 is injected.
After sealing 1, the clay holding part 5 was vacuum degassed from the discharge lower. Thereafter, pressurized injection was performed from the injection port 6 under the molding conditions shown in Table 3, the mold was released after 15 seconds, and molded under the molding conditions shown in Table 3 to obtain the molded body shown in Table 3. Ta.

なお、非透過性型l、3及び非透過性スライドコア2の
成形体面には、テフロン〔ポリテトラフルオルエチレン
、接触角(θ)90度〕コーティングが施しである。
The molded surfaces of the non-transparent molds 1 and 3 and the non-transparent slide core 2 are coated with Teflon [polytetrafluoroethylene, contact angle (θ) 90 degrees].

表−3から明らかなように、本発明の成形方法及び成形
装置を用いることにより、成形体の離型性がよく、外観
クラックのない良好な成形体か得られることがわかる。
As is clear from Table 3, by using the molding method and molding apparatus of the present invention, molded products with good mold releasability and no cracks in appearance can be obtained.

また、成形型の空気の抜けが悪い部分には透過性型の設
置のみ、あるいは、透過性型から真空脱気することによ
り、外観上より良好な成形体か得られることがわかる。
It is also seen that a molded product with a better appearance can be obtained by simply installing a transparent mold in areas of the mold where air escape is difficult, or by performing vacuum degassing from the transparent mold.

さらに、加圧注入スピード/成形体表面積が0.7以上
において外観クラック、シワのない成形体が得られるこ
とがわかる。
Furthermore, it can be seen that when the pressure injection speed/molded article surface area is 0.7 or more, a molded article with no cracks or wrinkles in appearance can be obtained.

(以下、余白) [発明の効果] 以上説明したように、本発明のセラミックスの成形方法
及び成形装置によれば、成形時間が短く、成形時に漏れ
が生じず、さらに離型性が良く、外観にクラック、変形
がない良好な成形体を得ることができる。
(Hereinafter, blank space) [Effects of the Invention] As explained above, according to the ceramic molding method and molding apparatus of the present invention, the molding time is short, no leakage occurs during molding, the mold releasability is good, and the appearance is improved. A good molded product without cracks or deformation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はそれぞれ本発明の実施例であるセラミ
ックスの成形装置を示す断面図である。 l・・・非透過性型、2・・・非透過性スライドコア、
3・・・非透過性型、4・・・透過性型、5・・・坏土
保持部、6・・・注入口、7・・・排出口、8・・・加
圧用ピストン、9・・・坏土、10・・・翼部、11・
・・坏土保持部注入0.12・・・排出口。
1 to 4 are cross-sectional views showing a ceramic molding apparatus according to an embodiment of the present invention. l... non-transparent type, 2... non-transparent slide core,
3... Non-permeable type, 4... Transparent type, 5... Clay holding part, 6... Inlet, 7... Outlet, 8... Pressurizing piston, 9... ... Clay, 10 ... Wings, 11.
... Clay holding part injection 0.12 ... outlet.

Claims (2)

【特許請求の範囲】[Claims] (1)真空土練工程により調製されたセラミックス坏土
を、一旦坏土保持部に注入して保持した後、該セラミッ
クス坏土を、非透過性型、または透過性型と非透過性型
の組合せから成り、該非透過性型の成形面の一部を水と
の接触角が80度以上の材料から構成した成形型に加圧
注入することを特徴とするセラミックスの成形方法。
(1) After the ceramic clay prepared by the vacuum clay kneading process is once injected into the clay holding part and held, the ceramic clay is divided into non-permeable type, permeable type and non-permeable type. A method for molding ceramics, comprising: injecting a part of the molding surface of the non-permeable mold under pressure into a mold made of a material having a contact angle with water of 80 degrees or more.
(2)真空土練工程により調製されたセラミックス坏土
を注入・保持するための注入・保持手段と、該注入・保
持手段からのセラミックス坏土を加圧・注入するための
成形型であって、非透過性型、または透過性型と非透過
性型の組合わせから成り、該非透過性型の成形面の一部
を水との接触角が80度以上の材料から構成した成形型
とから成ることを特徴とするセラミックスの成形装置。
(2) An injection/holding means for injecting and holding the ceramic clay prepared by the vacuum clay kneading process, and a mold for pressurizing and injecting the ceramic clay from the injection/holding means. , a non-permeable mold, or a combination of a permeable mold and a non-permeable mold, and a part of the molding surface of the non-permeable mold is made of a material having a contact angle with water of 80 degrees or more. A ceramic molding device characterized by:
JP13483388A 1988-06-01 1988-06-01 Method and apparatus for forming ceramic Granted JPH01304902A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13483388A JPH01304902A (en) 1988-06-01 1988-06-01 Method and apparatus for forming ceramic
DE1989602279 DE68902279T2 (en) 1988-06-01 1989-05-31 METHOD FOR THE PRODUCTION OF SINTERED CERAMIC ITEMS.
DE1989627185 DE68927185T2 (en) 1988-06-01 1989-05-31 Molding process and device for manufacturing ceramic objects
EP19890305442 EP0345022B1 (en) 1988-06-01 1989-05-31 Method for producing ceramics sintered article
EP91203145A EP0487172B1 (en) 1988-06-01 1989-05-31 Molding method and molding apparatus for producing ceramics
US07/624,540 US5238627A (en) 1988-06-01 1990-12-06 Method for producing ceramics sintered article and molding method and molding apparatus to be used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13483388A JPH01304902A (en) 1988-06-01 1988-06-01 Method and apparatus for forming ceramic

Publications (2)

Publication Number Publication Date
JPH01304902A true JPH01304902A (en) 1989-12-08
JPH046521B2 JPH046521B2 (en) 1992-02-06

Family

ID=15137528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13483388A Granted JPH01304902A (en) 1988-06-01 1988-06-01 Method and apparatus for forming ceramic

Country Status (1)

Country Link
JP (1) JPH01304902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017507051A (en) * 2014-02-04 2017-03-16 アップル インコーポレイテッド Method for casting ceramic parts
US9945613B2 (en) 2012-09-20 2018-04-17 Apple Inc. Heat exchangers in sapphire processing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9945613B2 (en) 2012-09-20 2018-04-17 Apple Inc. Heat exchangers in sapphire processing
JP2017507051A (en) * 2014-02-04 2017-03-16 アップル インコーポレイテッド Method for casting ceramic parts
US10328605B2 (en) 2014-02-04 2019-06-25 Apple Inc. Ceramic component casting

Also Published As

Publication number Publication date
JPH046521B2 (en) 1992-02-06

Similar Documents

Publication Publication Date Title
US5238627A (en) Method for producing ceramics sintered article and molding method and molding apparatus to be used therefor
EP0300681B1 (en) Shaping molds and shaping of ceramic bodies by using such shaping molds
US2584110A (en) Mold for pottery ware
RU2006107687A (en) METHOD FOR PRODUCING PRODUCTS FROM SINTERED AMORPHIC SILICA, AS WELL AS THE FORM AND SLIKER USED IN THIS METHOD
EP0345022B1 (en) Method for producing ceramics sintered article
JPH02172852A (en) Production of ceramics
JPH01304902A (en) Method and apparatus for forming ceramic
JPH01210306A (en) Forming mold of slurry-like material and manufacture thereof
EP0140682A1 (en) A method for producing a ceramic article
JPS60253505A (en) Manufacture of ceramics product
JP2863085B2 (en) Casting mold and casting method
JPH02147202A (en) Molding method of nonplastic material
WO2016117688A1 (en) Cast molded body and method for producing same
JP3224645B2 (en) Ceramics molding method
JP3069963B2 (en) Method for producing cylindrical silicon carbide body
JPH0596523A (en) Method of drying inorganic powder compact
JPH06246715A (en) Slip casting method
JPH08108415A (en) Ceramic molding method
JPH05345304A (en) Forming method for ceramic formed body
JPH02223403A (en) Manufacture of ceramics molding
JP2000309008A (en) Manufacture of ceramics plate
JPH05200711A (en) Method for molding powder
JPH0122123B2 (en)
JPH064504B2 (en) Method for manufacturing ceramics sintered body
JPH04280854A (en) Method for centrifugal casting