JPH02223403A - Manufacture of ceramics molding - Google Patents

Manufacture of ceramics molding

Info

Publication number
JPH02223403A
JPH02223403A JP4324589A JP4324589A JPH02223403A JP H02223403 A JPH02223403 A JP H02223403A JP 4324589 A JP4324589 A JP 4324589A JP 4324589 A JP4324589 A JP 4324589A JP H02223403 A JPH02223403 A JP H02223403A
Authority
JP
Japan
Prior art keywords
mold
clay
molding
solvent
plasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4324589A
Other languages
Japanese (ja)
Inventor
Hisashi Takei
武井 久
Hideyuki Masaki
英之 正木
Shigetaka Wada
重孝 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Central R&D Labs Inc
Original Assignee
Cataler Industrial Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd, Toyota Central R&D Labs Inc filed Critical Cataler Industrial Co Ltd
Priority to JP4324589A priority Critical patent/JPH02223403A/en
Publication of JPH02223403A publication Critical patent/JPH02223403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)

Abstract

PURPOSE:To improve the property of a sintered body by putting, and then press-molding, plasticity body being mixed and kneaded with non-plasticity, non-oxide ceramics powder, and solvent and organic binder into a mold having three dimensional net-shaped air holes, and then removing the organic binder through a calcining process. CONSTITUTION:Plasticity body consisting of ceramics powder, solvent, deflocculant and organic binder is kneaded by a kneader, after that, it is further kneaded by a vacuum kneader. On the other hand, a gas permeable tube made by knitting glass wool or the like is buried into a gypsum mold so as to mold a working mold, and next, air is supplied thereinto from the glass wool, and mold-release is carried out then. Then body is cut in a required quantity, and mounted on the lower gypsum mold 8 of a wet compression apparatus in order to perform compression mold therefor. The molded body released from a upper mold 5 is subjected to a calcining process at approximate 550 deg.C in order to remove the binder, after that, it is sintered in N2 of approximate 1700 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、セラミックス成形体の製造方法に関するもの
である。更に詳しくは、吸水効率および脱型効率を改善
した成形型で湿式圧縮成形方法を用いたセラミックス成
形体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic molded body. More specifically, the present invention relates to a method for manufacturing a ceramic molded body using a wet compression molding method using a mold with improved water absorption efficiency and demolding efficiency.

[従来の技術] 陶磁器製品の成形方法の1つとして、石膏型を使用する
湿式圧縮成形方法がある。これは、陶磁器原料に水を入
れ、真空土練機で混練し、押し出して、必要量切り取り
、石膏からなる型に挟み込んで、皿、茶碗等を成形する
方法である。陶磁器原料の場合、原料中に粘土、カオリ
ン等の可塑性成分を多量に含んでいるため、この方法が
適用できる。
[Prior Art] One method of molding ceramic products is a wet compression molding method using a plaster mold. This is a method of adding water to ceramic raw materials, kneading them in a vacuum clay kneading machine, extruding them, cutting out the required amount, and inserting them into molds made of plaster to form dishes, bowls, etc. This method is applicable to ceramic raw materials because they contain large amounts of plastic components such as clay and kaolin.

窒化珪素をはじめとするいわゆるニューセラミック原料
の場合、原料中に可塑性成分を含まないので、このよう
な方法で成形することは困難とされ、射出成形法やスリ
ップキャスト法でセラミックス成形体を形成している。
In the case of so-called new ceramic raw materials such as silicon nitride, it is difficult to mold them using such methods because they do not contain plastic components, so ceramic molded bodies are formed using injection molding or slip casting. ing.

[解決しようとする課題] 湿式圧縮成形による窒化珪素等のニューセラミックスの
成形は、可塑性成分いわゆる坏土及び成形型に問題があ
り、従来成功していなかった。
[Problems to be Solved] Molding of new ceramics such as silicon nitride by wet compression molding has not been successful in the past due to problems with the plastic component, so-called clay, and the mold.

このうち、可塑性坏土を得るには、陶磁器の場合、カオ
リン等を混合しているため、カオリンの可塑性により可
塑性のある坏土が得られていたが、窒化珪素等のニュー
セラミックスでは適当な可塑性物質が無く、成形は困難
であった。
Among these, in order to obtain plastic clay, in the case of ceramics, kaolin etc. are mixed, and a clay with plasticity is obtained due to the plasticity of kaolin, but with new ceramics such as silicon nitride, appropriate plasticity is obtained. There was no substance and molding was difficult.

また、成形型には石膏型を用いるのが通常であリ、成形
後の脱型が困難な場合が多かった。
Furthermore, a plaster mold is usually used as the mold, and it is often difficult to remove the mold after molding.

本発明は、上記のような問題点を解消できるようにした
窒化珪素質等ニューセラミックス粉末を湿式圧縮成形方
法を用いて成形するセラミックス成形体の製造方法を提
供することを目的とするものである。
An object of the present invention is to provide a method for manufacturing a ceramic molded body by molding a new ceramic powder such as silicon nitride using a wet compression molding method, which can solve the above-mentioned problems. .

[課題を解決するための手段] 本発明のセラミックス成形体の製造方法は、非可塑性、
非酸化物セラミックス粉末と溶媒および溶媒に可溶な有
機バインダーとを混合、混練して得られる可塑性坏土を
3次元網状通気孔を有する型内に入れ、圧縮成形するも
のである。そして、成形後、上記通気孔から気体を送給
して脱型し、成形体を乾燥、脱脂、焼成してセラミック
ス焼結体を得る。
[Means for Solving the Problems] The method for manufacturing a ceramic molded body of the present invention provides a non-plastic,
A plastic clay obtained by mixing and kneading non-oxide ceramic powder, a solvent, and an organic binder soluble in the solvent is placed in a mold having a three-dimensional network of ventilation holes, and compression molded. After molding, gas is supplied through the vent hole to remove the mold, and the molded body is dried, degreased, and fired to obtain a ceramic sintered body.

そして、溶媒に可溶な有機バインダーとしては、結合性
、脱型性および可塑性を有するワックス系結合剤、トラ
ガントゴム、MC(メチルセルロス)、PVA及びPV
B等が使用できる。
Examples of organic binders soluble in solvents include wax-based binders having binding properties, demolding properties, and plasticity, tragacanth rubber, MC (methyl cellulose), PVA, and PV
B etc. can be used.

[作 用コ 窒化珪素質の坏土の作成については、可塑性を得るため
にカオリン等を用いると、5i02、Na20等の無機
物が窒化珪素中に混入して焼結体特性が悪くなるが、有
機バインダーを用いることにより、仮焼段階で有機バイ
ンダーを除去し、焼結体特性に悪影響を及ぼすことなく
、坏土に関する問題を解消できる。
[Function] Regarding the production of silicon nitride clay, if kaolin or the like is used to obtain plasticity, inorganic substances such as 5i02 and Na20 will be mixed into the silicon nitride and the properties of the sintered body will deteriorate; By using a binder, the organic binder can be removed during the calcination stage, and problems related to clay can be solved without adversely affecting the properties of the sintered body.

また、石膏型からの脱型に関しては、石膏型の表面のC
aが微少量素地側に溶出して、いわば石膏型がはがれる
ようにして脱型するといわれている。しかし、坏土のよ
うな粘性が高く、水分が少ないものでは、このような溶
出による脱型はうまくいかないが、石膏内に3次元網状
通気孔を有する型を用いて成形したのち、この通気孔か
ら気体を送給して素地を浮き上がらせることにより、容
易に脱型することができる。
In addition, regarding demolding from the plaster mold, the C of the surface of the plaster mold
It is said that a small amount of a is eluted into the base material, and the plaster mold is removed, so to speak, as if it were to be peeled off. However, for materials with high viscosity and low moisture content, such as clay, demolding by elution is not successful. By supplying gas to lift the base material, it can be easily demolded.

[実施例] 予備試験 1)窒化珪素質坏土について 窒化珪素に焼結助剤を混合した粉末に水とワックス系結
合剤を入れ、ニーダで混練し、真空混線機で混練した。
[Example] Preliminary test 1) Regarding silicon nitride clay, water and a wax binder were added to a powder of silicon nitride mixed with a sintering aid, and the mixture was kneaded in a kneader and then kneaded in a vacuum mixer.

混線物を適当に切り、第1図に示す半球四部1aを有す
る石膏型1に挾み、球形物を成形した。これを550℃
で仮焼したところ、結合剤は除去できた。
The mixed wire was appropriately cut and placed in a plaster mold 1 having four hemisphere parts 1a shown in FIG. 1 to form a spherical object. This is 550℃
After calcining, the binder could be removed.

その後、1700℃、N2中で焼結したところ理論密度
の98%の焼結体を得ることができた。
Thereafter, when the material was sintered at 1700° C. in N2, a sintered body having a theoretical density of 98% could be obtained.

2)石膏型について 石膏型内にガラスウールを編んで作った通気性のあるチ
ューブ(以下、ガラスウールパイプという)を埋め込ん
だ。これは、特開昭61−127301号公報に開示さ
れているものと同じである。
2) About the plaster mold A breathable tube made of woven glass wool (hereinafter referred to as a glass wool pipe) was embedded inside the plaster mold. This is the same as that disclosed in Japanese Patent Application Laid-Open No. 61-127301.

即ち、石膏製のケース型に金網に固定したガラスウール
パイプを入れ、そこに石膏を流し、凝固後ケース型から
取り出し、使用型とした。これを充分に乾燥した後、坏
土が触れる部分以外は空気漏れを防止する処理を施した
。そして、この使用型を用い成形後、ガラスウールから
空気を送給することにより、容易に脱型することができ
た。
That is, a glass wool pipe fixed to a wire mesh was placed in a case mold made of plaster, and plaster was poured therein. After solidification, the pipe was removed from the case mold and used. After thoroughly drying this, a treatment was applied to prevent air leakage except for the parts that were in contact with the clay. After molding using this mold, the mold could be easily removed by supplying air through glass wool.

石膏以外の型としては、10〜30μm程度のセラミッ
クスまたはステンレス鋼のような水または有機溶媒に犯
されない粒子を有機または無機接着剤を数%入れ圧縮成
形し粒子間を接着させた型、又は、微粉末ガラスを粒子
に混合させ、高温で焼成し粒子間を接着させた型、即ち
、粒子間に空孔が3次元的に網目状に形成されている型
であれば利用できる。
Examples of molds other than plaster include molds made by compression molding particles such as ceramics or stainless steel with a diameter of about 10 to 30 μm, which are not affected by water or organic solvents, and adding a few percent of an organic or inorganic adhesive to bond the particles. Any mold in which finely powdered glass is mixed with particles and baked at a high temperature to adhere the particles, that is, a mold in which holes are formed in a three-dimensional network between the particles, can be used.

また、脱型時の空気の送給には、流量のコントロールが
重要で、始めは徐々に空気を送給し、成形面全体に脱型
空気が回るようにし、徐々に空気圧力を高めて脱型させ
る。急激な空気流量、圧力とすると、成形体の1部分の
み脱型し、成形体が変形する。空気流量、圧力は、成形
体の表面積、肉厚、成形体内の溶媒の量、成形圧力によ
り最適値をテストして決定する必要がある。
In addition, controlling the flow rate is important when supplying air during demolding.At first, air is supplied gradually so that the demolding air circulates over the entire molding surface, and then the air pressure is gradually increased to remove the mold. Make a mold. If the air flow rate and pressure are rapid, only one part of the molded body will be demolded and the molded body will be deformed. The air flow rate and pressure must be determined by testing the optimum values based on the surface area and wall thickness of the molded body, the amount of solvent in the molded body, and the molding pressure.

可塑性坏土の配合割合は、セラミック粉末等の粒径等に
よって変動するが、可塑性坏土全体を100重量%とし
た時、セラミックス粉末が45〜65重量%、溶媒が1
0〜30重毒%、解こう剤が0.1〜1.0重量%、有
機バインダーが15〜30重量%である。
The blending ratio of the plastic clay varies depending on the particle size of the ceramic powder, etc., but when the entire plastic clay is taken as 100% by weight, the proportion of the ceramic powder is 45 to 65% by weight, and the solvent is 1% by weight.
0 to 30% by weight of heavy poison, 0.1 to 1.0% by weight of peptizer, and 15 to 30% by weight of organic binder.

セラミックス粉末の配合割合が少なくなると、得られる
セラミックス成形体の収縮が大きくなり、寸法精度の高
いセラミックス成形体が得にくい。
When the blending ratio of ceramic powder decreases, the shrinkage of the obtained ceramic molded body increases, making it difficult to obtain a ceramic molded body with high dimensional accuracy.

逆に配合割合が多すぎると、可塑性坏土の粘度が大きく
なりすぎて成形性が悪くなる。
On the other hand, if the blending ratio is too high, the viscosity of the plastic clay will become too high, resulting in poor moldability.

有機バインダーの配合割合に関しては、30重量%より
多くなりすぎると、セラミック粉末との混合性が悪くな
り均質な可塑性坏土が得にくい傾向にある。逆に、15
重量%より少ないと可塑性坏土が得にくい。
Regarding the blending ratio of the organic binder, if it exceeds 30% by weight, the mixability with the ceramic powder tends to deteriorate, making it difficult to obtain a homogeneous plastic clay. On the contrary, 15
If it is less than % by weight, it is difficult to obtain a plastic clay.

溶媒の配合割合に関しては、多すぎると乾燥時にクラッ
クが入る傾向にあり、逆に少なすぎると可塑性坏土の粘
度が高くなり、成形性が悪くなる。
Regarding the blending ratio of the solvent, if it is too large, cracks will tend to appear during drying, while if it is too small, the viscosity of the plastic clay will become high and the moldability will deteriorate.

また、射口う剤に関しては、0.1重量%より少なくな
ると、可塑性坏土の粘度が高くなって成形性が悪くなり
、逆に1.0重量%より多くなると、解こう剤による粘
結効果が著しく高くなって、可塑性坏土粘度が上がり、
成形性が悪くなる。
Regarding the injection mouthwash, if the amount is less than 0.1% by weight, the viscosity of the plastic clay will increase and the moldability will deteriorate; The effect becomes significantly higher, the viscosity of the plastic clay increases,
Formability deteriorates.

また、3次元通気孔の孔径としては、可塑性坏土が接触
する表面部分で0.5〜10μmの範囲内とするのがよ
い。
Further, the pore diameter of the three-dimensional ventilation hole is preferably within the range of 0.5 to 10 μm at the surface portion in contact with the plastic clay.

孔径が10μmより大きいと、使用するセラミックス粉
末の粒径が小さいため、成形時の圧力で粉末が型の孔の
内部まで入り、成形体中の溶媒の抜けが悪くなり、孔を
詰らせ、脱型時の空気による脱型が困難となる。また、
0.5μmの孔径以下では、溶媒の型への移行が悪くな
り成形時間が長くかかる。
If the pore size is larger than 10 μm, the particle size of the ceramic powder used is small, and the powder will enter the pores of the mold due to the pressure during molding, making it difficult for the solvent in the molded body to escape, clogging the pores. It becomes difficult to remove the mold using air during demolding. Also,
If the pore diameter is less than 0.5 μm, the transfer of the solvent to the mold becomes difficult and the molding time becomes long.

実施例1 第2図に示す焼結用匣鉢蓋2(110φ、10t)を成
形した。
Example 1 A sintering pot lid 2 (110φ, 10t) shown in FIG. 2 was molded.

第3図に使用したケース型を示す。下ケース型4はベー
ス4a上に上記蓋2に相当する凸部4bが形成されてい
る。上ケース型3は上記ベース4a上に載せられる円筒
状の型である。このケース型内に金網で固定したガラス
ウールバイブロを入れ、空気導入、排気用の口金7を取
り付けた。
Figure 3 shows the case type used. The lower case mold 4 has a convex portion 4b corresponding to the lid 2 formed on a base 4a. The upper case mold 3 is a cylindrical mold placed on the base 4a. A glass wool vibro fixed with a wire mesh was placed inside this case mold, and a cap 7 for air introduction and exhaust was attached.

そして、石膏を水で混合して流し込み第4図に示す上使
用型5を得た。その後、口金7から0. 3kg / 
cdの圧力の空気を流し、型を充分に乾燥した。
Then, gypsum was mixed with water and poured to obtain an upper mold 5 shown in FIG. After that, from base 7 to 0. 3kg/
The mold was thoroughly dried by flowing air at a pressure of CD.

そして、使用型5の坏土に触れない部分はエポキシ樹脂
を溶媒で薄めて塗付し、空気漏れを防止した。
Epoxy resin was diluted with a solvent and applied to the parts of Use Type 5 that did not touch the clay to prevent air leakage.

この石膏製上型5と、この上型と同様にガラスウールバ
イブを埋め込んだ石膏製下型8を第5図に示す湿式圧縮
装置に組み込んだ。
This upper mold made of plaster 5 and the lower mold made of plaster 8 in which a glass wool vibe was embedded in the same manner as the upper mold were assembled into a wet compression apparatus shown in FIG.

窒化珪素質坏土は、窒化珪素(平均粒径1μm)を92
重量部、スピネル(平均粒径1μm)を8重量部、解こ
う剤(中東油脂セルナD735)を0.3重量部、ワッ
クス質結合剤(中東油脂セルナWD601)を29.7
重量部、水を20重量部を計り、小型ニーダで混練後、
真空土練機で押し出して得た。
Silicon nitride clay contains 92% silicon nitride (average particle size 1 μm).
Parts by weight, 8 parts by weight of spinel (average particle size 1 μm), 0.3 parts by weight of peptizer (Middle East Cerna D735), 29.7 parts by weight of waxy binder (Middle East Cerna WD601)
After measuring 20 parts by weight of water and kneading it in a small kneader,
It was obtained by extrusion using a vacuum clay kneader.

この坏土を必要量切り取り、第5図に示す湿式圧縮装置
の下石膏型8に載せ、20kg/c4の圧力で圧縮成形
した(なお、圧力はハンドル9の軸に設けられたトルク
メータから換算して設定した)。
The required amount of this clay was cut out, placed on the lower plaster mold 8 of the wet compression device shown in Fig. 5, and compression molded at a pressure of 20 kg/c4 (the pressure was calculated from the torque meter installed on the shaft of the handle 9). ).

上、下型は真空引きし、10分後後下8の真空引きを止
め、下型に空気を0.7kg/cシの圧力で流して坏土
を上型5に付け、上型を持ち上げたのち、上型5の真空
引きも止めた。
The upper and lower molds were evacuated, and after 10 minutes, the vacuum in the lower mold 8 was stopped, air was flowed through the lower mold at a pressure of 0.7 kg/c, the clay was attached to the upper mold 5, and the upper mold was lifted. Afterwards, the vacuuming of the upper mold 5 was also stopped.

次に、上型5の下に支え柱を入れ、上型5に0.7kg
/c−の空気を流して脱型した。これを乾燥し、110
φ、10tの成形体を得た。成形体を得る歩留りは90
%であった。成形体を、550℃で結合剤を除去した後
、1 ’700℃、N2中で焼結した。密度は理論密度
の98%であった。
Next, put a support pillar under the upper mold 5, and put 0.7 kg into the upper mold 5.
The mold was demolded by flowing air of /c-. Dry this, 110
A molded body having a diameter of 10t was obtained. The yield to obtain a molded body is 90
%Met. The compacts were sintered at 1'700°C in N2 after removing the binder at 550°C. The density was 98% of the theoretical density.

実施例2 実施例1の場合と同様に、第2図に示す焼結用匣鉢蓋2
を成形した。
Example 2 As in Example 1, the sintering pot lid 2 shown in FIG.
was molded.

この場合の使用型を第6図に示す。上型15は、蓋2と
同じ寸法の凹部12aを形成した、ムライトからなる、
無機質連続多孔体12をアルミニウム製容器11内に装
着して構成されている。そして、多孔体12と容器11
との間はエポキシ樹脂13によりシールされ、また多孔
体12に孔7aが開けられ、空気導入ロアから空気を導
入、排気するようになっている。一方、下型18は、四
部が形成されていない点を除いては、上型15と同様の
構成となっている。
The usage type in this case is shown in FIG. The upper mold 15 is made of mullite and has a recess 12a having the same dimensions as the lid 2.
It is constructed by mounting an inorganic continuous porous body 12 inside an aluminum container 11. Then, the porous body 12 and the container 11
The space between the two is sealed with an epoxy resin 13, and holes 7a are formed in the porous body 12, so that air is introduced and exhausted from the air introduction lower. On the other hand, the lower mold 18 has the same structure as the upper mold 15 except that the four parts are not formed.

そして、成形体の材料及び成形方法は実施例1と同様で
ある。成形結果は、90%以上の歩留りで、完全な成形
体を得ることができた。また焼結後の密度も理論密度の
98%であった。
The material and molding method for the molded body are the same as in Example 1. As a result of the molding, a complete molded body could be obtained with a yield of 90% or more. The density after sintering was also 98% of the theoretical density.

実施例3 実施例1と同様のセラミックス粉末を用い、解こう剤(
中東油脂セルナE 503)を0,5重量部、ブチラー
ル樹脂系バインダー(中東油脂5E604)を24.5
重量部、エタノールを25重量部を用いて、真空土練機
で坏土を作り、実施例2と同様の型を用いて成形した。
Example 3 Using the same ceramic powder as in Example 1, deflocculating agent (
0.5 parts by weight of Middle East Serna E 503) and 24.5 parts of butyral resin binder (Middle East Oil 5E604).
A clay was made using a vacuum clay kneading machine using 25 parts by weight of ethanol, and molded using the same mold as in Example 2.

成形結果の歩留りは85%で、完全な成形体を得ること
ができ、焼結体の密度は理論値の98%であった。
The molding yield was 85%, a complete molded body could be obtained, and the density of the sintered body was 98% of the theoretical value.

実施例4 炭化珪素坏土は、炭化珪素(平均粒径0.9μm)を9
7.5重量部、炭化ホウ素(84C。
Example 4 Silicon carbide clay contains 9 silicon carbide (average particle size 0.9 μm)
7.5 parts by weight of boron carbide (84C.

平均粒径1.5μm)を0,5重量部、カーボンブラッ
クを2重量部、解こう剤(花王デモールAS)0.3重
量部、メチルセルロース結合剤(第一工業製薬セロゲン
)を16.7重量部、水を20重量部計り、実施例1と
同様の方法、装置でSiC系成形体を得た。成形性、脱
型性共に良好で歩留り93%であった。成形体を500
℃でN2雰囲気中で脱脂し、結合剤を除去後、2160
℃で1時間、アルゴン中で焼結した。密度は、理論値の
98%であった。
0.5 parts by weight of average particle size 1.5 μm), 2 parts by weight of carbon black, 0.3 parts by weight of peptizer (Kao Demol AS), and 16.7 parts by weight of methyl cellulose binder (Daiichi Kogyo Seiyaku Celogen). 20 parts by weight of water were measured, and a SiC molded body was obtained using the same method and apparatus as in Example 1. Both moldability and demoldability were good, and the yield was 93%. 500 molded bodies
After degreasing and removing binder in N2 atmosphere at 2160 °C
Sintered in argon for 1 hour at °C. The density was 98% of the theoretical value.

比較例 実施例1に示した形状の蓋をガラスウールパイプの無い
石膏型を用いて成形した。石膏型は、ケス型に石膏を水
で混合して流し込んで作成した。
Comparative Example A lid having the shape shown in Example 1 was molded using a plaster mold without a glass wool pipe. The plaster mold was created by mixing plaster with water and pouring it into a case mold.

坏土は実施例1と同じものを用いた。The same clay as in Example 1 was used.

上記実施例及び比較例に於ける可塑性坏土の配合割合及
び可塑性坏土の取り扱い性、成形体の脱型性等をまとめ
て第1表に示す。
Table 1 summarizes the blending ratio of the plastic clay, the handleability of the plastic clay, the demoldability of the molded body, etc. in the above Examples and Comparative Examples.

比較例について、10回テストしたが、欠陥なく脱型で
きたものは4個、他の6個は割れたり、クラックが成形
体に入り良好でなかった。脱型できた2個も表面粗れが
ひどく、実施例1のような良好な表面状態ではなかった
Comparative examples were tested 10 times, but only 4 could be removed from the mold without any defects, and the other 6 were unsatisfactory as they were broken or had cracks. The two pieces that could be demolded also had severe surface roughness, and did not have the good surface condition as in Example 1.

[発明の効果] 本発明は、セラミックスの可塑性坏土を形成し、3次元
網状通気孔を有する型で湿式圧縮成形方法を用いて成形
体を成形し、成形型の3次元網上通気孔を介して気体を
送給することにより容易に脱型することができ、また脱
脂時に除去される有機バインダーの使用により製品に悪
影響を及ぼすことなく成形を容易にすることができる。
[Effects of the Invention] The present invention forms a ceramic plastic clay, molds a molded body using a wet compression molding method in a mold having three-dimensional network ventilation holes, and The mold can be easily demolded by supplying gas through the mold, and the use of an organic binder that is removed during degreasing facilitates molding without adversely affecting the product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は予備試験用の石膏型の説明図、第2図は実施例
での成形品の説明図、第3図(a)、(b)は上ケース
型と下ケース型の斜視図、第4図は上使用型の斜視図、
第5図は湿式圧縮成形装置の説明図、第6図(a)、(
b)は他の実施例の上使用型と下側用型の断面図である
。 第 図 第 図 a 第 図
Fig. 1 is an explanatory diagram of a plaster mold for preliminary testing, Fig. 2 is an explanatory diagram of a molded product in an example, and Figs. 3 (a) and (b) are perspective views of an upper case mold and a lower case mold. Figure 4 is a perspective view of the top-use type.
Figure 5 is an explanatory diagram of the wet compression molding apparatus, Figures 6 (a), (
b) is a sectional view of the upper mold and the lower mold of another embodiment. Figure Figure a Figure

Claims (1)

【特許請求の範囲】[Claims] 非可塑性、非酸化物セラミックス粉末と溶媒および溶媒
に可溶な有機バインダーとを混合、混練して得られる可
塑性坏土を3次元網状通気孔を有する型内に入れ、圧縮
成形することを特徴とするセラミックス成形体の製造方
法。
A plastic clay obtained by mixing and kneading a non-plastic, non-oxide ceramic powder with a solvent and an organic binder soluble in the solvent is placed in a mold having three-dimensional network ventilation holes and compression molded. A method for manufacturing a ceramic molded body.
JP4324589A 1989-02-27 1989-02-27 Manufacture of ceramics molding Pending JPH02223403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4324589A JPH02223403A (en) 1989-02-27 1989-02-27 Manufacture of ceramics molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4324589A JPH02223403A (en) 1989-02-27 1989-02-27 Manufacture of ceramics molding

Publications (1)

Publication Number Publication Date
JPH02223403A true JPH02223403A (en) 1990-09-05

Family

ID=12658501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4324589A Pending JPH02223403A (en) 1989-02-27 1989-02-27 Manufacture of ceramics molding

Country Status (1)

Country Link
JP (1) JPH02223403A (en)

Similar Documents

Publication Publication Date Title
CN107200599B (en) Porous alumina ceramic and preparation method and application thereof
JP6622134B2 (en) Honeycomb structure and method for manufacturing honeycomb structure
CN101322919B (en) Method for preparing micropore ceramic separation film
US11220466B2 (en) Skinning of ceramic honeycomb bodies
EP0300681B1 (en) Shaping molds and shaping of ceramic bodies by using such shaping molds
CN105294111A (en) Gelcasting forming method of Si3N4 porous ceramic
EP0487172A2 (en) Molding method and molding apparatus for producing ceramics
JPH02172852A (en) Production of ceramics
JP6496268B2 (en) Method for manufacturing ceramic fired body
JPH02223403A (en) Manufacture of ceramics molding
US4883621A (en) Method for forming cast article by slip casting
JP2612878B2 (en) Method for producing silicon carbide honeycomb structure
KR20200040339A (en) Ceramic filter manufacturing method by mixed ceramic slurry injection molding
JPS61101447A (en) Manufacture of ceramic formed body
JPH0445205A (en) Manufacture of powder molded body
JP2000272980A (en) Porous material having continuous pore and its production
JPS63221010A (en) Molding die, molding method of article by using said die and pressure casting molding method
JPH01304902A (en) Method and apparatus for forming ceramic
JPS6213303A (en) Slip casting molding method
JP2919857B2 (en) Method for producing dense ceramic membrane
JP3224645B2 (en) Ceramics molding method
JPH05345305A (en) Forming method of ceramic formed body
JPH06246715A (en) Slip casting method
JPH06285825A (en) Mold material and manufacture of mold
JPH0712606B2 (en) Molding method for prototype for sintering