JPH0313674B2 - - Google Patents

Info

Publication number
JPH0313674B2
JPH0313674B2 JP56157321A JP15732181A JPH0313674B2 JP H0313674 B2 JPH0313674 B2 JP H0313674B2 JP 56157321 A JP56157321 A JP 56157321A JP 15732181 A JP15732181 A JP 15732181A JP H0313674 B2 JPH0313674 B2 JP H0313674B2
Authority
JP
Japan
Prior art keywords
pattern
bubble
thin film
conductor layer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56157321A
Other languages
Japanese (ja)
Other versions
JPS5857690A (en
Inventor
Kimihide Matsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56157321A priority Critical patent/JPS5857690A/en
Publication of JPS5857690A publication Critical patent/JPS5857690A/en
Publication of JPH0313674B2 publication Critical patent/JPH0313674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • G11C19/0841Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation using electric current

Description

【発明の詳細な説明】 本発明は電流駆動型磁気バブル素子に関するも
のである。磁気バブル(以下単にバブルという)
を情報の担体として用いる記憶素子においてバブ
ルの転送方式は、パーマロイの如き軟磁性膜でで
きたシエブロン型やY型を呈したパターンを外部
より印加する面内回転磁界によつて順次磁化する
ことによつて生じる磁極にバブルを引きつけて転
送させる。いわゆる磁界駆動方式が一般的であつ
た。しかしながらこの磁界駆動方式は記憶密度を
大きくするためにバブル径を小さくするに従つて
バブル転送に必要な面内回転磁界が急激に大きく
なるため面内回転磁界発生用コイルに印加する電
圧が増大し、高速転送に適さなくなるという大き
な欠点を有していることはよく知られている。こ
のような磁界駆動方式の欠点を克服するためには
面内回転磁界発生用コイルを用いないバブルの転
送方式を実現しなければならない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current-driven magnetic bubble element. Magnetic bubble (hereinafter simply referred to as bubble)
The bubble transfer method for a memory element that uses a soft magnetic film such as permalloy in a memory element as an information carrier is to sequentially magnetize a chevron-shaped or Y-shaped pattern made of a soft magnetic film such as permalloy using an in-plane rotating magnetic field applied from the outside. The bubbles are attracted to the resulting magnetic poles and transferred. The so-called magnetic field drive method was common. However, with this magnetic field drive method, as the bubble diameter is made smaller to increase storage density, the in-plane rotating magnetic field required for bubble transfer increases rapidly, so the voltage applied to the in-plane rotating magnetic field generation coil increases. It is well known that this method has a major drawback in that it is not suitable for high-speed transfer. In order to overcome these drawbacks of the magnetic field drive system, it is necessary to realize a bubble transfer system that does not use a coil for generating an in-plane rotating magnetic field.

面内回転磁界発生用コイルを用いないバブルの
転送方式としては、すでに、磁性薄膜上に形成さ
れた蛇行状導体線路に交流電流を流してバブルを
駆動する電流駆動方式(以下、本発明が係わる極
く新しい電流駆動方式と区別するため初期電流駆
動方式という。)が公知となつている。この初期
電流駆動方式に対してはいくらかの改良がなされ
たが、導体線路の形状が複雑すぎることや、バブ
ルの運動に方向性を持たせるために不可欠なパー
マロイなどの磁性薄片とバブルとの磁気的相互作
用に起因する捕捉力に抗してバブルを転送しなけ
ればならないことなどの原因により、記憶密度を
上げようとすると素子の消費電力が著しく大きく
なり実用的ではなかつた。
As a bubble transfer method that does not use a coil for generating an in-plane rotating magnetic field, there is already a current drive method (hereinafter referred to as the present invention) in which a bubble is driven by passing an alternating current through a meandering conductor line formed on a magnetic thin film. (referred to as the initial current drive method to distinguish it from the extremely new current drive method) has become publicly known. Although some improvements have been made to this initial current drive system, the shape of the conductor line is too complex, and the bubble's magnetism with magnetic thin pieces such as permalloy, which is essential for giving directionality to the bubble's motion, has been improved. Attempts to increase the memory density would significantly increase the power consumption of the device, making it impractical due to factors such as the need to transfer the bubble against the trapping force caused by the interaction.

このような磁界駆動方式や初期電流駆動方式で
は避け得なかつたこれらの欠点を克服するために
近年二層導体型電流駆動方式と呼ばれる新しい電
流駆動方式が提案された。この二層導体型電流駆
動方式では初期電流駆動方式に比べ非常に単純な
開孔パターンを使用すればよいため、飛躍的に記
憶密度を向上させることができる。しかしなが
ら、二層導体型電流駆動方式においては二層の導
体層を各々独立に駆動しなければならないため消
費電力が非常に大きくなるうえに周辺回路が著し
く複雑になるという重大な欠点を有している。
In order to overcome these drawbacks that cannot be avoided with the magnetic field drive method and the initial current drive method, a new current drive method called a two-layer conductor type current drive method has recently been proposed. This two-layer conductor type current drive method requires the use of a much simpler opening pattern than the initial current drive method, so it is possible to dramatically improve storage density. However, the two-layer conductor type current drive system has serious drawbacks in that each of the two conductor layers must be driven independently, which increases power consumption and makes the peripheral circuit extremely complex. There is.

本発明の目的は非常に簡単な周辺回路を用い
て、できる限り微小な電流でバブルを転送し得る
一層導体型電流駆動磁気バブル素子を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a single-conductor current-driven magnetic bubble element that can transfer bubbles with as small a current as possible using a very simple peripheral circuit.

本発明の原理を説明する前にまず磁性材料の一
般性質を述べておく。たとえば、エル・シユルツ
(L.Schltz)等によつて1979年10月にジヤーナ
ル・オブ・アプライド・フイジクス(Jounal of
Applied Physics)誌第50巻第11号第7862〜第
7864頁に発表された論文に記載されているよう
に、磁歪を有するバブル材料上に設けられた張力
性の薄膜パターンのエツジ部では磁壁エネルギー
は第1図の様に変化する。第1図中、横軸1は磁
壁の位置を縦軸2は磁壁エネルギーを、3は磁壁
エネルギー分布を、4は張力性の薄膜パターンを
示している。
Before explaining the principle of the present invention, the general properties of magnetic materials will be described first. For example, the Journal of Applied Physics was published in October 1979 by L. Schltz et al.
Applied Physics) Vol. 50 No. 11 No. 7862-No.
As described in the paper published on page 7864, the domain wall energy changes as shown in Figure 1 at the edge of a tensile thin film pattern provided on a magnetostrictive bubble material. In FIG. 1, the horizontal axis 1 indicates the position of the domain wall, the vertical axis 2 indicates the domain wall energy, 3 indicates the domain wall energy distribution, and 4 indicates the tensile thin film pattern.

本発明は上記の磁性材料の性質を利用した以下
の原理にもとずいて、初期電流駆動方式や二層導
体型電流駆動方式などの従来の電流駆動方式に残
されていた重大な欠点を取り除くものである。
The present invention is based on the following principle that utilizes the properties of the above-mentioned magnetic materials, and eliminates the serious drawbacks of conventional current drive systems such as the initial current drive system and the two-layer conductor type current drive system. It is something.

第2図は本発明の基本原理を示した図である。
第2図において5はバブル、6及び7の矢印はバ
ブル磁壁が受ける駆動力の方向、8は張力性の薄
膜パターン4の境界、14の矢印はバイアス磁界
の方向である。バブルが第2図aの位置にある場
合には、薄膜パターン境界の右側では第1図3に
示される磁壁エネルギーが薄膜パターン境界に近
づくにつれて小さくなるため薄膜パターン境界の
右側のバブル磁壁は矢印7で示される向きに駆動
力を受ける。薄膜パターン境界の左側では磁壁エ
ネルギーが薄膜パターン境界から遠ざかるにつれ
て小さくなるため薄膜パターン境界の左側のバブ
ル磁壁は矢印6で示される向きに駆動力を受け
る。したがつてバブルは全体として薄膜パターン
の内側へ向かうような駆動力を受ける。このため
バブルに外力が作用していない場合には、バブル
は第2図aで示される位置に停留することはでき
ず、磁壁エネルギーが最小となる位置すなわち第
2図bで示される安定位置まで移動する。
FIG. 2 is a diagram showing the basic principle of the present invention.
In FIG. 2, 5 is a bubble, arrows 6 and 7 are the direction of the driving force applied to the bubble domain wall, 8 is the boundary of the tensile thin film pattern 4, and arrow 14 is the direction of the bias magnetic field. When the bubble is at the position shown in FIG. 2a, on the right side of the thin film pattern boundary, the domain wall energy shown in FIG. 1, FIG. 3, decreases as it approaches the thin film pattern boundary. Receives driving force in the direction shown by . On the left side of the thin film pattern boundary, the domain wall energy decreases as the distance from the thin film pattern boundary increases, so the bubble domain wall on the left side of the thin film pattern boundary receives a driving force in the direction shown by arrow 6. Therefore, the bubble as a whole receives a driving force that directs it toward the inside of the thin film pattern. Therefore, if no external force is acting on the bubble, the bubble will not be able to stay at the position shown in Figure 2a, but will reach the stable position shown in Figure 2b, where the domain wall energy is minimum. Moving.

次に、上記のような基本原理にもとづく本発明
の動作原理を第3図に示す実施の1例を用いて具
体的に示す。第3図aは導体層に流す電流波形の
1例、第3図bは本発明の転送パターンの1例を
示している。第3図aにおいて縦軸11は電流
値、横軸10は時刻、12は電流波形、50,5
1,52,53,54,55,56,57,5
8、は横軸10上の各時刻を表わす。第3図bに
おいて13の矢印は電流の正の方向、14の矢印
はバイアス磁界の方向、15は張力性の導体層中
に設けた転送用あなあきパターン、16は導体層
と対面して形成した張力性の非磁性薄膜層中に設
けたあなあきパターン、30,31,32,3
3,34,35,36,37、はバブルの位置を
表わす。
Next, the operating principle of the present invention based on the above-mentioned basic principle will be specifically explained using an example of implementation shown in FIG. FIG. 3a shows an example of the waveform of the current flowing through the conductor layer, and FIG. 3b shows an example of the transfer pattern of the present invention. In Figure 3a, the vertical axis 11 is the current value, the horizontal axis 10 is the time, 12 is the current waveform, 50,5
1, 52, 53, 54, 55, 56, 57, 5
8 represents each time on the horizontal axis 10. In Fig. 3b, the arrow 13 indicates the positive direction of the current, the arrow 14 indicates the direction of the bias magnetic field, 15 indicates the perforated transfer pattern provided in the tensile conductor layer, and 16 is formed facing the conductor layer. perforation pattern provided in a tensile non-magnetic thin film layer, 30, 31, 32, 3
3, 34, 35, 36, 37 represent the positions of bubbles.

導体層に第3図aに示されるような両極性の電
流パルスを印加すると第3図aの50−51間の
時間では、転送用あなあきパターンによる電流の
乱れに起因したバイアス磁界分布(以下、単に磁
界分布という)が生じ30で示される位置は静磁
気的なバブル安定点となる(今、30の位置をバ
ブル転送の出発点と考える)。次の51−52間
の時間では導体層には電流が流れていず、前記の
磁界分布は消失しているため、第2図を用いて説
明した基本原理にもとづいてバブルは31の位置
まで移動する。次の52−53間の時間では再び
磁界分布が生じるためバブルは磁界勾配からの駆
動力を受け32で示される位置まで移動する。次
の53−54間の時間では磁界分布は消失し、前
記の基本原理にもとづいてバブルは33の位置ま
で移動する。次の54−55間の時間では磁界分
布により30及び34の位置はともに静磁気的な
安定点となるが、33−34間の距離が33−3
0間の距離よりも小さいため33の位置のバブル
は34の位置へ向かう磁界勾配を受けて34の位
置まで移動する。次の55−56間の時間では磁
界分布は消失するため前記の基本原理にもとづい
てバブル35の位置まで移動する。以下、同様の
動作原理にもとづいてバブルは56−57間、5
7−58間の時間で36,37の位置へと移動す
る。したがつてバブルは、50−58間の時間で
30の位置から37の位置まで転送される。
When a bipolar current pulse as shown in Figure 3a is applied to the conductor layer, the bias magnetic field distribution (hereinafter referred to as , simply referred to as magnetic field distribution), and the position indicated by 30 becomes a magnetostatic bubble stable point (now, consider the position 30 to be the starting point of bubble transfer). During the next time between 51 and 52, no current flows through the conductor layer and the above magnetic field distribution disappears, so the bubble moves to position 31 based on the basic principle explained using Figure 2. do. During the next time period 52-53, the magnetic field distribution occurs again, so the bubble receives a driving force from the magnetic field gradient and moves to the position indicated by 32. During the next time period 53-54, the magnetic field distribution disappears and the bubble moves to position 33 based on the basic principle described above. In the next time between 54 and 55, both positions 30 and 34 become static magnetically stable points due to the magnetic field distribution, but the distance between 33 and 34 becomes 33 and 34.
Since it is smaller than the distance between 0 and 0, the bubble at position 33 receives a magnetic field gradient toward position 34 and moves to position 34. During the next time period 55-56, the magnetic field distribution disappears, so the bubble moves to the position of the bubble 35 based on the above-mentioned basic principle. Below, based on the same principle of operation, the bubbles are between 56-57 and 5.
It moves to positions 36 and 37 in the time between 7 and 58. The bubble is thus transferred from position 30 to position 37 in a time between 50-58.

すなわち、本発明の1層導体型電流駆動磁気バ
ブル素子は、磁気バブルを保持し得る0でない磁
歪定数を有する磁性薄膜上に転送用あなあきパタ
ーンを備えた1層の導体層を形成し、前記導体層
と互いに隔離し、電気的にも絶縁するように張力
性あるいは圧縮性の非磁性薄膜層を対面させて形
成し、この張力性あるいは圧縮性の非磁性薄膜層
中に前記転送用あなあきパターンに対し、導体層
に流す交流電流の向きに若干の位置ずれを有する
ようにあなあきパターンもしくは島状パターンを
設け、前記の交流電流によつて生じる時間変調さ
れた磁界勾配によつて磁気バブルを転送すること
を特徴とする。
That is, the single-layer conductor type current-driven magnetic bubble element of the present invention includes forming a single conductor layer having a perforated transfer pattern on a magnetic thin film having a non-zero magnetostriction constant capable of holding magnetic bubbles; A tensile or compressible non-magnetic thin film layer is formed facing the conductor layer so as to be isolated from each other and electrically insulated, and the transfer hole is formed in this tensile or compressible non-magnetic thin film layer. A perforated pattern or an island pattern is provided with respect to the pattern so that it has a slight positional shift in the direction of the alternating current flowing through the conductor layer, and magnetic bubbles are generated by the time-modulated magnetic field gradient generated by the alternating current. It is characterized by transferring.

次に本発明の別の実施例をいくつか示す。第4
図は、第3図の実施例にみられるようなバブルの
ジグザグ状転送を避け、できるかぎり直線的な転
送が行なえるようにパターンの形状を鍵型にした
実施例である。第4図において5はバブル、13
は導体層に流す電流の方向、14はバイアス磁界
の方向、15は張力性の導体層中の転送用あなあ
きパターン、16は張力性の非磁性薄膜層中に設
けたあなあきパターン、20の矢印はバブルの転
送方向である。
Next, some other embodiments of the present invention will be shown. Fourth
The figure shows an embodiment in which the pattern is shaped like a key so that the zigzag transfer of bubbles as seen in the embodiment of FIG. 3 is avoided and the transfer is as straight as possible. In Figure 4, 5 is a bubble, 13
14 is the direction of the current flowing through the conductor layer, 14 is the direction of the bias magnetic field, 15 is the perforation pattern for transfer in the tensile conductor layer, 16 is the perforation pattern provided in the tensile nonmagnetic thin film layer, and 20 is the perforation pattern provided in the tensile nonmagnetic thin film layer. The arrow indicates the bubble transfer direction.

第5図は、圧縮性の非磁性薄膜層を用いた実施
の1例である。圧縮性の非磁性薄膜層におけるパ
ターン境界付近の磁壁エネルギー分布は第1図3
の磁壁エネルギー分布を縦軸2に関して折り返し
たような分布になる。したがつて圧縮性の非磁性
薄膜層を用いる場合には、あなあきパターンと反
転対称な島状パターンを設けることにより第3図
を用いて説明した動作原理と同様の動作原理にも
とづいてバブルの転送を行なうことができる。第
5図において5はバブル、13は導体層に流す電
流の方向、14はバイアス磁界の方向、15は張
力性の導体層中の転送用あなあきパターン、17
は圧縮性の非磁性薄膜層中の島状パターン、20
はバブルの転送方向である。
FIG. 5 is an example of an implementation using a compressible non-magnetic thin film layer. The domain wall energy distribution near the pattern boundary in a compressible nonmagnetic thin film layer is shown in Figure 1.3.
The distribution is like folding the domain wall energy distribution about the vertical axis 2. Therefore, when using a compressible non-magnetic thin film layer, by providing an island pattern that is inversely symmetrical to the perforated pattern, bubble formation can be achieved based on the same operating principle as explained using Fig. 3. transfer can be performed. In FIG. 5, 5 is a bubble, 13 is the direction of the current flowing through the conductor layer, 14 is the direction of the bias magnetic field, 15 is the perforated pattern for transfer in the tensile conductor layer, and 17
is an island pattern in a compressible non-magnetic thin film layer, 20
is the bubble transfer direction.

導体層及び非磁性薄膜層中のパターン形状とし
ては第3図、第4図、第5図に示した実施例以外
にも種々の形状のものが考えられるが、第3図を
用いて説明した如き動作原理によりバブルを転送
しうる形状であれば、すべて本発明に含まれる。
導体層中の転送用あなあきパターンおよび非磁性
薄膜層中のあなあきパターン形成法としては湿式
の化学エツチング、プラズマエツチング、陽極酸
化など種々のものが挙げられるが、パターンエツ
ジ部に適当なストレスを生ぜしめるような形成法
であれば、すべて本発明に含まれることはいうま
でもない。
Various shapes of patterns in the conductor layer and non-magnetic thin film layer are conceivable in addition to the embodiments shown in FIGS. 3, 4, and 5, but the shapes explained using FIG. Any shape that can transfer bubbles according to the principle of operation is included in the present invention.
Various methods can be used to form the perforated pattern for transfer in the conductor layer and the perforated pattern in the nonmagnetic thin film layer, such as wet chemical etching, plasma etching, and anodic oxidation. It goes without saying that any method of formation that produces the same effect is included in the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエル・シユルツらの論文に示されてい
る説明図の1部である。第2図は本発明の基本原
理を示す図である。第3図は実施の1例を用いて
本発明の動作原理を具体的に示した図である。第
4図、第5図は本発明の実施例を示す図である。 図において、1は磁壁の位置を示す横軸、2は
磁壁エネルギーを示す縦軸、3は磁壁エネルギー
分布、4は張力性の薄膜パターン、5はバブル、
6,7はバブル磁壁が受ける駆動力の方向、8は
薄膜パターンの境界、10は時間を示す横軸、1
1は電流値を表わす縦軸、12は電流波形、13
の矢印は導体層に流す電流の方向、14はバイア
ス磁界の方向、50,51,52,53,54,
55,56,57,58は横軸10上の各時刻、
30,31,32,33,34,35,36,3
7はバブルの位置、15は張力性の導体層中に設
けた転送用あなあきパターン、16は張力性の非
磁性薄膜層中に設けたあなあきパターン、17は
圧縮性の非磁性薄膜層中に設けた島状パターンで
ある。
FIG. 1 is part of the explanatory diagram shown in the paper by El Schulz et al. FIG. 2 is a diagram showing the basic principle of the present invention. FIG. 3 is a diagram specifically illustrating the operating principle of the present invention using an example of implementation. FIGS. 4 and 5 are diagrams showing embodiments of the present invention. In the figure, 1 is the horizontal axis showing the position of the domain wall, 2 is the vertical axis showing the domain wall energy, 3 is the domain wall energy distribution, 4 is the tensile thin film pattern, 5 is the bubble,
6 and 7 are the directions of the driving force applied to the bubble domain wall, 8 is the boundary of the thin film pattern, 10 is the horizontal axis indicating time, 1
1 is the vertical axis representing the current value, 12 is the current waveform, 13
The arrow indicates the direction of the current flowing through the conductor layer, 14 indicates the direction of the bias magnetic field, 50, 51, 52, 53, 54,
55, 56, 57, 58 are each time on the horizontal axis 10,
30, 31, 32, 33, 34, 35, 36, 3
7 is the position of the bubble, 15 is the perforation pattern for transfer provided in the tensile conductor layer, 16 is the perforation pattern provided in the tensile non-magnetic thin film layer, and 17 is the perforated pattern in the compressible non-magnetic thin film layer. This is an island-like pattern.

Claims (1)

【特許請求の範囲】[Claims] 1 磁気バブルを保持し得る0でない磁歪定数を
有する磁性薄膜上に、転送用あなあきパターンを
備えた一層の導体層を形成し、該導体層に交流電
流を印加する手段を有し、更に前記導体層と互い
に隔離し電気的にも絶縁するように張力性あるい
は圧縮性の非磁性薄膜層を対面させて形成し、こ
の張力性あるいは圧縮性の非磁性薄膜層中に、前
記転送用あなあきパターンに対し前記導体層の交
流電流の印加方向と平行に若干の位置ずれを有す
るようにあなあきパターンもしくは島状パターン
を設けたことを特徴とした一層導体型電流駆動磁
気バブル素子。
1. Forming a conductor layer with a transfer perforation pattern on a magnetic thin film having a non-zero magnetostriction constant capable of holding magnetic bubbles, and further comprising means for applying an alternating current to the conductor layer, and further comprising means for applying an alternating current to the conductor layer. A tensile or compressible non-magnetic thin film layer is formed facing the conductor layer so as to be mutually isolated and electrically insulated, and the transfer hole is formed in this tensile or compressible non-magnetic thin film layer. 1. A single-layer conductive current-driven magnetic bubble element, characterized in that a perforated pattern or an island-like pattern is provided with a slight positional shift in parallel to the direction of application of alternating current to the conductor layer with respect to the pattern.
JP56157321A 1981-10-02 1981-10-02 Current driven magnetic bubble element of single layer conductor type Granted JPS5857690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56157321A JPS5857690A (en) 1981-10-02 1981-10-02 Current driven magnetic bubble element of single layer conductor type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56157321A JPS5857690A (en) 1981-10-02 1981-10-02 Current driven magnetic bubble element of single layer conductor type

Publications (2)

Publication Number Publication Date
JPS5857690A JPS5857690A (en) 1983-04-05
JPH0313674B2 true JPH0313674B2 (en) 1991-02-25

Family

ID=15647133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56157321A Granted JPS5857690A (en) 1981-10-02 1981-10-02 Current driven magnetic bubble element of single layer conductor type

Country Status (1)

Country Link
JP (1) JPS5857690A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028917A (en) * 1983-07-26 1985-02-14 Nitto Electric Ind Co Ltd Pharmaceutical preparation for transcutaneous administration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567180A (en) * 1979-06-28 1981-01-24 Fujitsu Ltd Character recognizing method for optical character reader
JPS5693171A (en) * 1979-12-26 1981-07-28 Nec Corp Current access bubble magnetic domain element
JPS5693172A (en) * 1979-12-26 1981-07-28 Nec Corp Bubble magnetic domain element of current access type
JPS5694570A (en) * 1979-12-27 1981-07-31 Nec Corp Bubble magnetic domain element of current access type

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567180A (en) * 1979-06-28 1981-01-24 Fujitsu Ltd Character recognizing method for optical character reader
JPS5693171A (en) * 1979-12-26 1981-07-28 Nec Corp Current access bubble magnetic domain element
JPS5693172A (en) * 1979-12-26 1981-07-28 Nec Corp Bubble magnetic domain element of current access type
JPS5694570A (en) * 1979-12-27 1981-07-31 Nec Corp Bubble magnetic domain element of current access type

Also Published As

Publication number Publication date
JPS5857690A (en) 1983-04-05

Similar Documents

Publication Publication Date Title
JP2619365B2 (en) Bloch line memory writing method
US4192012A (en) Crosstie memory bit stretcher detector
US4162537A (en) Magnetic bubble memory
JPH0313674B2 (en)
US4231107A (en) Serriform strip crosstie memory
JPH0232707B2 (en)
JPS5864692A (en) One-layered conductor type current driving magnetic bubble element
JPS6244355B2 (en)
JPS5810792B2 (en) Bubble domain nuclear generator
US3656126A (en) Bi-directional shift register
CA1118097A (en) Conductor access bubble memory
US3702994A (en) Domain propagation arrangement
JPS58105479A (en) Magnetic bubble memory element
JPS5819787A (en) Magnetic bubble element
JPS5855594B2 (en) magnetic bubble element
US4476544A (en) Current-controlled magnetic domain memory
JPH0232708B2 (en)
JPH03154283A (en) Magnetic storage element and method for producing the same
US4122539A (en) Magnetic bubble element
JPS5812672B2 (en) Actuating device for magnetic field access type SLM bubble device
JPS6252395B2 (en)
JPS5824867B2 (en) Conductor-driven bubble memory
JPS592115B2 (en) magnetic bubble memory element
JPH01317299A (en) Bloch line memory element
JPS6038794B2 (en) Contiguous disk type magnetic bubble element