JPS5864692A - One-layered conductor type current driving magnetic bubble element - Google Patents

One-layered conductor type current driving magnetic bubble element

Info

Publication number
JPS5864692A
JPS5864692A JP56164537A JP16453781A JPS5864692A JP S5864692 A JPS5864692 A JP S5864692A JP 56164537 A JP56164537 A JP 56164537A JP 16453781 A JP16453781 A JP 16453781A JP S5864692 A JPS5864692 A JP S5864692A
Authority
JP
Japan
Prior art keywords
transfer
perforated
pattern
bubble
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56164537A
Other languages
Japanese (ja)
Inventor
Kimihide Matsuyama
公秀 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56164537A priority Critical patent/JPS5864692A/en
Publication of JPS5864692A publication Critical patent/JPS5864692A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • G11C19/0816Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation using a rotating or alternating coplanar magnetic field

Abstract

PURPOSE:To decrease a driving current by providing a condutor layer which has a perforated pattern for transfer on a magnetic film, and also arranging a nonmagnetic thin-film layer, which has a perforated pattern shifting from said perforated transfer pattern slightly, on the opposite surface. CONSTITUTION:On a magnetic film which has a constant of magnetic strain that is not ''0'', a tensile conductor layer 15 having a perforated pattern for transfer is provided, and a nonmagnetic thin-film layer 16 having a perforated pattern is arranged oppositely. When current pulses 12 are applied to the conductor 15 between time points 50 and 51, a bias magnetic field due to the disorder of the current due to the perforated pattern for transfer is produced, and a bubble has a stable point 30. The magnetic field is erased and the bubble moves to a position 31 between time points 51 and 52. Between 52 and 53, it moves to a point 32 again with a magnetic field gradient. Similarly, the bubble is transferred as shown by an arrow 20. Consequently, the simple peripheral circuit transfers bubbles with a fine current.

Description

【発明の詳細な説明】 本発明は電流駆動型磁気バブル素子に関するものである
。磁気バブル(以下単にバブルという)を情報の担体と
して用いる記憶素子においてバブルの転送方式は、パー
マロイの如き軟磁性涙でできたシェブロン型やy3を呈
したパターンを外部より印加する面内回転磁界によって
順次磁化することによって生じる磁極にバブルを引きつ
けて転送させる、いわゆる磁界駆動方式が一般的であっ
た。しかしながらこの磁界駆動方式は、記憶密度を大き
くするためにバブル径を小さくするに従って、バブル転
送に必要な面内回転磁界が急激に大きくなるため、面内
回転磁界発生用コイルに印加する電圧が増大し、高速転
送に遺さなくなるという大きな欠点を有していることは
よく知られている。このような磁界駆動方式の欠点を克
服するためには面内回転磁界発生用コイルを用いないバ
ブルの転送方式を実現しなければならない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current-driven magnetic bubble element. In a storage device that uses magnetic bubbles (hereinafter simply referred to as bubbles) as information carriers, the bubble transfer method is to transfer a chevron-shaped or Y3-shaped pattern made of soft magnetic tears such as permalloy using an in-plane rotating magnetic field applied externally. A so-called magnetic field drive method, in which bubbles are attracted to magnetic poles generated by sequential magnetization and transferred, has been common. However, with this magnetic field drive method, as the bubble diameter is reduced to increase storage density, the in-plane rotating magnetic field required for bubble transfer increases rapidly, so the voltage applied to the in-plane rotating magnetic field generation coil increases. However, it is well known that it has the major drawback of not being able to perform high-speed transfers. In order to overcome these drawbacks of the magnetic field drive system, it is necessary to realize a bubble transfer system that does not use a coil for generating an in-plane rotating magnetic field.

面内回転磁界発生用コイルを用いないバブルの転送方式
としてはすてに%磁性薄膜上に形成された蛇行導体線路
に交流電流を流してバブルを駆動する電流駆動方式(以
下本発明が係わる極く新しい電流駆動方式と区別するた
め、初期電流駆動方式という。)が公知となっている。
As a bubble transfer method that does not use a coil for generating an in-plane rotating magnetic field, there is a current drive method (hereinafter referred to as a pole to which the present invention relates) in which an alternating current is passed through a meandering conductor line formed on a magnetic thin film to drive a bubble. (referred to as the initial current drive method to distinguish it from the newer current drive method) has become publicly known.

この初期電流駆動方式に対してはいくらかの改良がなさ
れたが導体纏絡の形状が複雑すぎることや、バブルの運
動に方向性を持たせるために不可欠なパー!pイの薄片
とバブルとの磁気的相互作用に起因する捕捉力に抗して
バブルを転送しなければならないことなどの原因により
、記憶密度を上げようとすると素子の消費電力が着しく
大きくなり実用的ではなかった。
Although some improvements have been made to this initial current drive method, the shape of the conductor wrap is too complicated, and the shape of the conductor entanglement is too complicated, and it is necessary to use a filter that is essential for giving directionality to the bubble motion. Attempts to increase the storage density result in an increase in the power consumption of the device due to factors such as the fact that the bubble must be transferred against the trapping force caused by the magnetic interaction between the bubble and the P layer. It wasn't practical.

このような磁界駆動方式や初期電流駆動方式では避は得
なかったこれらの欠点を克服するために近年二層導体型
電流駆動方式と呼ばれる新しい電流駆動方式が提案され
た。この二層導体型電流駆動方式では初期電流駆動方式
に比べ非常に単純な開孔パターンを使用すればよいため
、飛躍的に記憶密度を向上させることができる。しかし
ながら二層導体型電流駆動方式においては、二層の導体
層を各々独立に駆動しなければならないため消費電力が
非常に大きくなるうえに周辺回路が著しく複雑になると
いう重大な欠点を有している。
In order to overcome these drawbacks that were inevitable with the magnetic field drive method and the initial current drive method, a new current drive method called a two-layer conductor type current drive method has been proposed in recent years. This two-layer conductor type current drive method requires the use of a much simpler opening pattern than the initial current drive method, so it is possible to dramatically improve storage density. However, the two-layer conductor type current drive system has serious drawbacks in that the two conductor layers must each be driven independently, resulting in very high power consumption and the peripheral circuitry becoming extremely complex. There is.

本発明の目的は非常に簡単な周辺回路を用いてできる限
り微少な電流でバブルを転送し得る一層導体型電流駆動
磁気バプル素子を提供することにある。更に本発明の今
一つの目的は、この様な一層導体型電流駆動方式に適し
た転送方向変換用コーナーパタンを提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide a single-conductor current-driven magnetic bubble element that can transfer bubbles with as little current as possible using a very simple peripheral circuit. Another object of the present invention is to provide a corner pattern for changing the transfer direction that is suitable for such a single-conductor current drive system.

本発明の詳細な説明する前にまず磁性材料の一般性質を
述べておく。たとえば、エル・シェルタ(、t、、 5
ehltz)等によって1979年10月にジャーナル
瞼オブ・アプライド・フイジクス(J ourna l
of Appli@d Physles )誌第50巻
第11号第7862頁〜第7864頁に発表された論文
に記載されているように、磁歪効果を示すバブル材料上
に設けられた張力性の薄膜パターンのエツジ部で社その
逆磁歪効果により磁壁エネルギーは第1図の様に変化す
る。第1図中、横軸1は磁壁の位置を縦軸2は磁壁エネ
ルギーを、3は磁壁エネルギー分布を、4は張力性の薄
膜パターンを示している。
Before explaining the present invention in detail, the general properties of magnetic materials will be described first. For example, El Sherta (,t,,5
In October 1979, the Journal of Applied Physics (Journal of Applied Physics) was published by
of Appli@d Physles, Vol. 50, No. 11, pp. 7862-7864, a tensile thin film pattern on a bubble material exhibiting a magnetostrictive effect is At the edge, the domain wall energy changes as shown in Figure 1 due to the inverse magnetostriction effect. In FIG. 1, the horizontal axis 1 indicates the position of the domain wall, the vertical axis 2 indicates the domain wall energy, 3 indicates the domain wall energy distribution, and 4 indicates the tensile thin film pattern.

本発明は上記の磁性材料の性質を利用した以下の原理に
もとづいて、初期電流駆動方式や2層導体型電流駆動方
式などの従来の電流駆動方式に残されていた重大な欠点
を取り除くと供に新しいコーナーバタンを提供するもの
である。
The present invention is based on the following principle that utilizes the properties of the above-mentioned magnetic materials, and eliminates the serious drawbacks of conventional current drive systems such as the initial current drive system and the two-layer conductor type current drive system. This provides a new corner slam.

第2図は本発明の基本原理を示した図である。FIG. 2 is a diagram showing the basic principle of the present invention.

#!2図において5はバブル、6及び7の矢印はバブル
磁壁が受ける駆動力の方向、8は張力性の薄膜パターン
4の境界14はバイアス磁界の方向である。バブルが第
2図(a)の位置にある場合には薄膜パターン境界の右
側では第1図3に示される磁壁エネルギーが薄膜パター
ン境界に近づくにつれて小さくなるため薄膜パターン境
界の右側のバブル磁壁は矢印7で示される向きに駆動力
を受ける。
#! In FIG. 2, 5 is a bubble, arrows 6 and 7 are directions of driving force applied to the bubble domain wall, and 8 is a boundary 14 of the tensile thin film pattern 4 in the direction of a bias magnetic field. When the bubble is in the position shown in FIG. 2(a), the domain wall energy shown in FIG. 1 and 3 on the right side of the thin film pattern boundary decreases as it approaches the thin film pattern boundary. It receives a driving force in the direction indicated by 7.

薄膜パターン境界の左側では磁壁エネルギーが薄膜パタ
ーン境界から遠ざかるにつれて小さくなるため薄膜パタ
ーン境界の左側のペブル磁壁は矢印6で示される向きに
駆動力を受ける。したがってバブルは全体として薄膜パ
ターンの内側へ向かうような駆動力を受ける。このため
バブルに外力が作用していない場合には、バブルは11
12図(a)で示される位置に停留することはできず、
磁壁エネルギーが最小となる位置すなわち第2図(b)
で示される安定位置まで移動する。
On the left side of the thin film pattern boundary, the domain wall energy decreases as the distance from the thin film pattern boundary increases, so the pebble domain wall on the left side of the thin film pattern boundary receives a driving force in the direction shown by arrow 6. Therefore, the bubble as a whole receives a driving force that directs it toward the inside of the thin film pattern. Therefore, if no external force is acting on the bubble, the bubble will be 11
It is not possible to stop at the position shown in Figure 12 (a),
The position where the domain wall energy is minimum, that is, Fig. 2 (b)
Move to the stable position shown by .

次に上記のような基本原理に基づく本発明の1層導体型
電流駆動磁気バブル素子の動作原理を第3v!Pに示す
実施の1例を用いて具体的に示す。第3[葎)は導体層
に流す電流波形の1例、第3図(b)は本発明のコーナ
ーパターンの1例を示している。
Next, the operating principle of the single-layer conductor type current-driven magnetic bubble element of the present invention based on the above-mentioned basic principle will be explained in the 3rd v! This will be specifically illustrated using an example of implementation shown in P. The third figure shows an example of the waveform of the current flowing through the conductor layer, and FIG. 3(b) shows an example of the corner pattern of the present invention.

第3図(a)において縦軸11は電流値、横軸10は時
刻、12は電流波形、50,51,52゜ss、54,
55,56,57.58−.59.60は横軸lO上の
各時刻を示す。$1!3図(b)’において13の矢印
は電流の正の方向、14のバイアス磁界の方向、15は
張力性の導体層中に設けた転送用あなあきパターン、1
6は導体層と対面して形成した張力性の非磁性薄膜層中
に設けたあなあきパターン、30,31,82,33,
8°4,35゜36.37,38.39はバブルの位置
%20の矢印はバブルの転送方向を表わす。
In FIG. 3(a), the vertical axis 11 is the current value, the horizontal axis 10 is the time, 12 is the current waveform, 50, 51, 52°ss, 54,
55, 56, 57.58-. 59.60 indicates each time on the horizontal axis lO. $1!3 In Figure (b)', the arrow 13 indicates the positive direction of the current, the direction 14 of the bias magnetic field, 15 the perforated pattern for transfer provided in the tensile conductor layer, 1
6 is a perforated pattern provided in a tensile non-magnetic thin film layer formed facing the conductor layer, 30, 31, 82, 33,
8° 4, 35° 36.37, 38.39 indicates the bubble position %20 arrow indicates the bubble transfer direction.

導体層に第3図(a)の12のような両極性の電流パル
スを印加すると第3図(a)の50−51間の時間では
、転送用あなあきパターンによる電流の乱れに起因した
バイアス磁界分布(以下、単に磁界分布という)が生じ
30で示される位置はバブルの安定点となる。次の51
−52間の時間では導体層には電流が流れていす、磁界
分布は消失しているため、第2図を用いて説明した基本
原理に基づいてバブルは31の位置まで移動する。次の
52−53間の時間で拡再び磁界分布が生じるためバブ
ルは磁界勾配による駆動力を受け32で示される位置ま
で移動する。次の53−54間の時間では磁界分布は消
失し、前記の基本原理に基づいてバブルは33の位置ま
で移動する。次の54−55間の時間では、磁界分布に
より33の位置のバブルは34の位置へ向かうバイアス
磁界勾配を受け34の位置まで移動する。次の55−5
6間の時間では磁界分布は消失しているため前記の基本
原理に基づいてバブル紘35の位置まで移動する。
When a bipolar current pulse such as 12 in Figure 3(a) is applied to the conductor layer, at the time between 50 and 51 in Figure 3(a), the bias caused by the current disturbance due to the perforated pattern for transfer occurs. A magnetic field distribution (hereinafter simply referred to as magnetic field distribution) is generated and the position indicated by 30 becomes a stable point of the bubble. next 51
During the period between -52 and 52, current flows through the conductor layer and the magnetic field distribution disappears, so the bubble moves to position 31 based on the basic principle explained using FIG. During the next time period 52-53, the magnetic field distribution expands again and the bubble moves to the position indicated by 32 under the driving force of the magnetic field gradient. In the next time period 53-54, the magnetic field distribution disappears and the bubble moves to position 33 based on the basic principle described above. During the next time period 54-55, the bubble at position 33 is moved to position 34 due to the magnetic field distribution due to the bias magnetic field gradient directed towards position 34. next 55-5
Since the magnetic field distribution has disappeared during the time period of 6, the magnetic field is moved to the position of the bubble 35 based on the above-mentioned basic principle.

次の56−57間の時間では32及び36の位置がとも
にバブルの安定点となるような磁界分布が生じるが、3
5−36間の距離が35−32間の距離よりも小さいた
め35の位置のバブルは36の位置へ向かう磁界勾配を
受けて36の位置まで移動する。次の57−58間の時
間でケよ磁界分布は消失し、前記の基本原理にもとづい
てバブルは37の位置まで移動する。次の58−59間
p時間では磁界分布が生じるためバブルは37の位置か
ら38の位置へ向かう磁界勾配を受けて38の位置まで
移動する。次の59−60間の時間では磁界分布は消失
し、基本原理にもとづいてバブルは39の位置まで移動
する。したがって、5〇−60間の時間でバブ/I/は
30,31,32,33゜34.35,36,37,3
8.39の位置を経て転送され、20の矢印で示される
ようにその転送方向を180°変える。
In the next time between 56 and 57, a magnetic field distribution occurs such that both positions 32 and 36 become stable points for the bubble, but 3
Since the distance between 5 and 36 is smaller than the distance between 35 and 32, the bubble at position 35 receives the magnetic field gradient toward position 36 and moves to position 36. During the next time period 57-58, the magnetic field distribution disappears and the bubble moves to position 37 based on the basic principle described above. During the next time p between 58 and 59, a magnetic field distribution occurs, so the bubble moves to position 38 as it receives a magnetic field gradient from position 37 to position 38. In the next time between 59 and 60, the magnetic field distribution disappears and the bubble moves to position 39 based on the basic principle. Therefore, at the time between 50 and 60, Bab /I/ is 30, 31, 32, 33 degrees 34. 35, 36, 37, 3
8. Transferred through position 39 and changes its transfer direction by 180° as shown by arrow 20.

すなわち本発明の一層導体型電流駆動磁気バプル素子は
磁気バブルを保持し得る0でない磁歪定数を有する磁性
薄膜上に、転送用あなあきバター/電習えた一層の導体
層を形成し、前記導体層と互いに帰着し電気的にも絶縁
するように非磁性薄膜層を対面させて形成し、この非磁
性薄膜層中に前記転送用あなあきパターンに対し若干の
位置ずれを有するようにあなあきパターンもしくは島状
パターンを設け、導体層に流す交流電流によって生じる
時間変調された磁界勾配によってバブルの転送方向を変
えうるコーナーパターンを備えたことを特徴とする。
That is, the single-layer conductor type current-driven magnetic bubble element of the present invention is provided by forming a single layer of a perforated conductor layer for transfer on a magnetic thin film having a non-zero magnetostriction constant capable of retaining magnetic bubbles, and A perforated pattern or perforated pattern is formed in this nonmagnetic thin film layer so as to be slightly misaligned with respect to the perforated pattern for transfer. It is characterized by having an island pattern and a corner pattern that can change the direction of bubble transfer by a time-modulated magnetic field gradient generated by an alternating current flowing through the conductor layer.

次に本発明の別の実施例をいくつか示す。第4図はパタ
ーンの形状を変えた本発明の実施例である。第4図にお
いて5はバブル%13は導体層に流す電流の方向、14
はバイアス磁界の方向、15は張力性の導体層中の転送
用あなあきパターン、16は張力性の非磁性薄膜層中に
設けたあなあきパターン、20はバブルの転送方向であ
る。
Next, some other embodiments of the present invention will be shown. FIG. 4 shows an embodiment of the present invention in which the shape of the pattern is changed. In Figure 4, 5 is the bubble%, 13 is the direction of the current flowing through the conductor layer, and 14
is the direction of the bias magnetic field, 15 is the perforation pattern for transfer in the tensile conductor layer, 16 is the perforation pattern provided in the tensile non-magnetic thin film layer, and 20 is the transfer direction of the bubble.

第5図は圧縮性の非磁性薄膜層中の島状パターン17を
用いた実施の1例である。圧縮性の非磁性薄膜層を用い
た場合パターン境界付近の磁壁エネルギー分布は、第1
図の3の磁檀エネルギー分布を縦軸2に関して折り返し
たような分布になる。
FIG. 5 shows an example of an implementation using an island pattern 17 in a compressible non-magnetic thin film layer. When a compressible nonmagnetic thin film layer is used, the domain wall energy distribution near the pattern boundary is
The distribution becomes like the porcelain energy distribution shown in 3 in the figure folded back about the vertical axis 2.

したがって圧縮性の非磁性薄膜層を用いる場合にはあな
あきパターンと反転対称な島状パターンを設けることに
より第3図を用いて説明した動作原理と同様の動作原理
にもとづいてバブルの転送方向を変えることができる。
Therefore, when using a compressible non-magnetic thin film layer, by providing an island pattern that is inversely symmetrical to the perforated pattern, the bubble transfer direction can be controlled based on the same operating principle as explained using FIG. It can be changed.

第5図において5はバブル、13は導体層に流す電流の
方向、14はバイアス磁界の方向、15は張力性の導体
層中の転送用あなあきパターン、17は圧縮性の非磁性
薄膜層中の島状パターン%20はバブルの転送方向であ
る。
In FIG. 5, 5 is a bubble, 13 is the direction of the current flowing through the conductor layer, 14 is the direction of the bias magnetic field, 15 is a transfer perforation pattern in the tensile conductor layer, and 17 is an island in the compressible non-magnetic thin film layer. The pattern %20 is the bubble transfer direction.

第6図は、バブルの転送方向を90’変えるコーナ一部
に本発明を実施した例である。jI6図において5はバ
ブル、13は導体層に流す電流の方向、14はバイアス
磁界の方向、15は張力性の導体層中の転送用あなあき
パターン、16は張力性の非磁性薄膜中に設けたあなあ
きパターン、20はバブルの転送方向である。
FIG. 6 is an example in which the present invention is applied to a part of a corner where the bubble transfer direction is changed by 90'. jI6 In figure 5, 5 is a bubble, 13 is the direction of the current flowing through the conductor layer, 14 is the direction of the bias magnetic field, 15 is the perforated pattern for transfer in the tensile conductor layer, and 16 is provided in the tensile nonmagnetic thin film. In the Taanaaki pattern, 20 is the bubble transfer direction.

導体層及び非磁性薄膜中のパターン形状としては第3図
、第4図、第5図、第6図に示した実施例以外にも種々
の形状のものが考えられるが83図を用いて説明した如
き動作原理によりバブルを転送しうる形状であればすべ
て本発明に含まれる。
Various shapes of patterns in the conductor layer and nonmagnetic thin film can be considered in addition to the examples shown in FIGS. 3, 4, 5, and 6, but these will be explained using FIG. 83. Any shape that can transfer bubbles based on the operating principle described above is included in the present invention.

導体層中の転送用あなあきノリーン、および非磁性薄膜
中のあなあきパターン形状法としては湿式の化学エイチ
ング、プラズマエツチング、陽極虐化など櫨々のものが
挙げられるが、パターンエツジ部に適当なストレスを生
ぜしめるような形成法であればすべて本発明に含まれる
ことはいうまでもない。
Methods for forming perforated patterns for transfer in conductor layers and perforated patterns in non-magnetic thin films include wet chemical etching, plasma etching, anodic etching, etc.; It goes without saying that any forming method that causes stress is included in the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

181図はエル・シ鼻ルッらの論文に示されている説明
図の11Mである。第2図は本発弱の基本原理を示す図
である。第3図は実施の1例を用いて本発明の動作原理
を具体的に示した図である。第4図、15図、第6図は
本発明の実施例を示す図である。 1は磁壁の位置を示す横軸、2は磁壁エネルギーを表わ
す縦軸、3は磁壁エネルギー分布、4は張力性の薄膜パ
ターン、5社バブル、6.IFIバブル磁壁が受ける駆
動力の方向、8は薄膜パターンの境界、10は時間を表
わす横軸、11は電流値を表わす縦軸、12は電流波形
、13の矢印は導体層に流す電流の方向、50,51,
52,53゜54.55,56,57.5B、59.6
0は横軸10上の各時刻、30,31,32,33,3
4゜35.36,37,38.39はバブルの位W1.
.14はバイアス磁界の方向、15は張力性の導体層中
に設けた転送用あなあきパターン、16は張力性の非磁
性薄膜層中に設けたあなあきノぐターン、17は圧縮性
の非磁性薄膜層中に設けた島状ツクターフ、20はバブ
ルの転送方向、である。 第 1 図 第  3 図
Figure 181 is 11M of the explanatory diagram shown in the paper by El-Shinaru et al. FIG. 2 is a diagram illustrating the basic principle of weak original firing. FIG. 3 is a diagram specifically illustrating the operating principle of the present invention using an example of implementation. FIG. 4, FIG. 15, and FIG. 6 are diagrams showing embodiments of the present invention. 1 is the horizontal axis showing the position of the domain wall, 2 is the vertical axis showing the domain wall energy, 3 is the domain wall energy distribution, 4 is the tensile thin film pattern, 5 is the company bubble, 6. The direction of the driving force received by the IFI bubble magnetic wall, 8 the boundary of the thin film pattern, 10 the horizontal axis representing time, 11 the vertical axis representing the current value, 12 the current waveform, and the arrow 13 the direction of the current flowing through the conductor layer. ,50,51,
52,53°54.55,56,57.5B,59.6
0 is each time on the horizontal axis 10, 30, 31, 32, 33, 3
4°35.36, 37, 38.39 are bubble positions W1.
.. 14 is the direction of the bias magnetic field, 15 is a perforated transfer pattern provided in the tensile conductor layer, 16 is a perforated turn provided in the tensile nonmagnetic thin film layer, and 17 is a compressible nonmagnetic The island-shaped turf provided in the thin film layer, 20 is the bubble transfer direction. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1、磁気バブルを保持し得るOでない磁歪重数を有する
磁性薄膜上に、中心を結ぶ線が少なくとも1t11所で
折れまがりを呈するように配列した転送用あなあきパタ
ーンを備えた一層の導体層を形成し、前記導体層と互い
Kg4離し電気的にも絶縁するように非磁性′N膜層を
対面させて形成し、この非磁性簿膜層中に、前記転送用
あなあきパターンに対して若干の位置ずれを有するよう
にあなあきパターンもしく社島状パターンを設け、前記
導体層に実質的交流電流を印加する手段を持つことを特
徴とする一層導体裁電流駆動磁気バプル素子。 乙 上記転送用あなあきパターンを実質的にV字型に配
列し、非磁性薄膜中のあなあきパターンもしくは島状パ
ターンを、前記V字型の頂点の転送あなあきパターンに
対しては導体層に流す交流電流の向きと平行な向きに、
また、その他の転送用あなあきパターンについては導体
層に流す交流電流の向きと垂直な向きに若干の位置ずれ
を有するように設けたことを特徴とする特許I求の範囲
第1項記載の一層導体型電流駆動磁気バプル素子。 λ 上記転送用あなあきパターンを実質的にL字型に配
列し、非磁性薄膜中のあなあきパターンもしくは島状パ
ターンを、L字型の1辺の転送用あなあきパターンに対
しては導体層に流す交流電流の向きと平行な向きに、ま
た、他の1辺の転送用あなあきパターンに対しては導体
層に流す交流電流の向きと垂直な向きに若干の位置ずれ
を有するように設けたことを特徴とする特許−求の範囲
第1項記載の一層導体型電流駆動磁気バプル素子。
[Claims] 1. On a magnetic thin film having a magnetostrictive gravity other than O capable of holding magnetic bubbles, a perforated pattern for transfer is arranged such that a line connecting the centers exhibits a bend at at least 1t11 points. A single conductor layer is formed, and a non-magnetic N film layer is formed facing the conductor layer so as to be separated from each other by Kg4 and electrically insulated. A single-layer conductor current-driven magnetism, characterized in that a perforated pattern or an island-like pattern is provided with a slight positional shift with respect to the perforated pattern, and has means for applying a substantial alternating current to the conductor layer. bubble element. B Arrange the above perforation patterns for transfer in a substantially V-shape, and apply perforation patterns or island-like patterns in the non-magnetic thin film to the conductor layer for transfer perforation patterns at the apex of the V-shape. In a direction parallel to the direction of the flowing alternating current,
In addition, regarding other perforated transfer patterns, the layer structure described in item 1 of the scope of patent I is characterized in that the perforated pattern for transfer is provided with a slight positional deviation in the direction perpendicular to the direction of the alternating current flowing through the conductor layer. Conductor-type current-driven magnetic bubble element. λ The perforated transfer patterns described above are arranged in a substantially L-shape, and the perforated patterns or island-like patterns in the nonmagnetic thin film are arranged in a conductor layer for the perforated patterns for transfer on one side of the L-shape. The conductor layer is arranged in a direction parallel to the direction of the alternating current flowing through the conductor layer, and with a slight positional shift in the direction perpendicular to the direction of the alternating current flowing through the conductor layer with respect to the perforated pattern for transfer on the other side. A single-layer conductive current-driven magnetic bubble element according to claim 1 of the patent, characterized in that:
JP56164537A 1981-10-15 1981-10-15 One-layered conductor type current driving magnetic bubble element Pending JPS5864692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164537A JPS5864692A (en) 1981-10-15 1981-10-15 One-layered conductor type current driving magnetic bubble element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164537A JPS5864692A (en) 1981-10-15 1981-10-15 One-layered conductor type current driving magnetic bubble element

Publications (1)

Publication Number Publication Date
JPS5864692A true JPS5864692A (en) 1983-04-18

Family

ID=15795036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164537A Pending JPS5864692A (en) 1981-10-15 1981-10-15 One-layered conductor type current driving magnetic bubble element

Country Status (1)

Country Link
JP (1) JPS5864692A (en)

Similar Documents

Publication Publication Date Title
JP4620459B2 (en) Multilevel MRAM with improved memory density
JP2009239135A (en) Magnetic memory cell and magnetic storage device using same, and magnetic storage method
JP2619365B2 (en) Bloch line memory writing method
US3369225A (en) Thin film shift register
US3114898A (en) Magnetic interdomain wall shift register
US3271751A (en) Magnetic thin film transducer
JP5727908B2 (en) Magnetic memory element
EP0011137B1 (en) Manufacture of a magnetic bubble domain chip with enhanced propagation margins
US3982234A (en) Hard-magnetic film overlay apparatus and method for magnetic mobile domain control
JPS5864692A (en) One-layered conductor type current driving magnetic bubble element
US3484756A (en) Coupled film magnetic memory
US3916395A (en) Cylindrical magnetic domain storage device having wave-like magnetic wall
JPH0313674B2 (en)
JPH0232707B2 (en)
US4001792A (en) Drive field for circular magnetic domain devices
US4845671A (en) Bloch line memory device
JP7481930B2 (en) Magnetic domain wall motion type magnetic nanowire device, data writing method therefor, and recording device
US3471836A (en) Rotational mode magnetic film memory
US4974201A (en) Process for transferring bloch lines formed in a magnetic wall of a magnetic domain, and a magnetic memory apparatus for recording and reproduction of information by transferring bloch lines in utilizing said transferring process
US3942165A (en) Device operating with the displacement of magnetic domain wall
US3788897A (en) Process for treating substrates in order to reduce the magnetic angular dispersion of thin ferromagnetic films deposited on such substrates
JP2849724B2 (en) Bloch line memory device
JPH03154283A (en) Magnetic storage element and method for producing the same
O'Dell Hard magnetic bubbles
US4122537A (en) Magnetic bubble crossover circuit