JPH03136111A - Constant-current circuit - Google Patents

Constant-current circuit

Info

Publication number
JPH03136111A
JPH03136111A JP27564189A JP27564189A JPH03136111A JP H03136111 A JPH03136111 A JP H03136111A JP 27564189 A JP27564189 A JP 27564189A JP 27564189 A JP27564189 A JP 27564189A JP H03136111 A JPH03136111 A JP H03136111A
Authority
JP
Japan
Prior art keywords
current
circuit
junction
resistance
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27564189A
Other languages
Japanese (ja)
Other versions
JP2599304B2 (en
Inventor
Yasunobu Inabe
井鍋 泰宣
Yoshifumi Ogata
緒方 吉文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1275641A priority Critical patent/JP2599304B2/en
Publication of JPH03136111A publication Critical patent/JPH03136111A/en
Application granted granted Critical
Publication of JP2599304B2 publication Critical patent/JP2599304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To constitute the circuit so that an output current is not varied even in the case there is a temperature fluctuation by connecting a circuit for connecting in series a second PN junction element and a second resistance in parallel to a first resistance. CONSTITUTION:Between a positive voltage source V1 and a ground point, a series circuit of a resistance R1 and diodes D1, D2 is inserted, and to a connecting point (a) of the resistance R1 and the diode D1, a base of an NPN transistor Q1 is connected. Also, its collector is connected to a current output terminal T1, its emitter is grounded through a resistance R2, and also, between the emitter and a ground, a series circuit of a diode D3 and a resistance R3 is inserted. In such a way, to an output current, a current component having a positive temperature coefficient is added, in addition to a current component having a negative temperature coefficient. Accordingly, the circuit can be formed as a constant-current circuit which is not influenced by a variation of an ambient temperature even in a place in which a temperature is varied remarkably.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電源電圧変動に影響されずに、一定な電流を出
力することのできる定電流回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a constant current circuit that can output a constant current without being affected by power supply voltage fluctuations.

(従来技術) 電源電圧の値に依らない定電流を得る回路として、従来
より第3図又は第4図に示した回路がよく用いられてい
る。第3図と第4図で■1は正電圧源、Q、とQ2はN
PN)ランジスタ、DlとDtはダイオード、R8とR
2は抵抗、T1は電流出力端子である。
(Prior Art) The circuit shown in FIG. 3 or 4 has been commonly used as a circuit for obtaining a constant current that does not depend on the value of the power supply voltage. In Figures 3 and 4, ■1 is a positive voltage source, Q, and Q2 are N
PN) transistor, Dl and Dt are diodes, R8 and R
2 is a resistor, and T1 is a current output terminal.

(発明が解決しようとする課題) この従来例はNPN)ランジスタを用いて構成した場合
のものであり、出力電流(図中、■oLI7で表示した
)の向きは、外部から引き込む方向となる。出力電流の
向きを外部へ流出する方向としたいのであれば、PNP
 )ランジスタを用いて、第3図、第4図と相補な関係
にある回路を構成すればよい。これは、第1図と第2図
で示した本発明の実施例の場合も同じである。
(Problems to be Solved by the Invention) This conventional example is constructed using NPN transistors, and the direction of the output current (indicated by ■oLI7 in the figure) is the direction drawn from the outside. If you want the output current to flow out to the outside, use PNP.
) A circuit complementary to that shown in FIGS. 3 and 4 may be constructed using transistors. This also applies to the embodiments of the invention shown in FIGS. 1 and 2.

第3図と第4図において、トランジスタQ、の電流増幅
率が充分大きければ、出力電流l。ulはトランジスタ
Q、のエミッタ電流とほぼ等しい。
In FIGS. 3 and 4, if the current amplification factor of transistor Q is sufficiently large, the output current l. ul is approximately equal to the emitter current of transistor Q.

この場合トランジスタQ1のエミッタ電流■□は次式で
与えられる。
In this case, the emitter current of the transistor Q1 is given by the following equation.

2 R2 VIIl+ V112  ・・・Dl、D2の導通電圧
VBEl+VB!□・・・Q、、Q2のベース・エミッ
タ電圧そして、V D l + V D 2 + V 
B E l + V B E ZはPN接合の導通電圧
であり、この電圧値は該PN接合を流れる電流には影響
されず、はぼ一定値(通常、常温で800mV程度)を
維持する。つまり、電源電圧■1が変動することにより
抵抗R1,ダイオードD、、D、、)ランジスタQ2を
流れる電流が変化しても出力電流I。utにIE)は、
はぼ−定な値を維持できるのである。
2 R2 VIIl+ V112 ... Conduction voltage VBEl+VB of Dl and D2! □...Q,, base-emitter voltage of Q2 and V D l + V D 2 + V
B E l + V B E Z is the conduction voltage of the PN junction, and this voltage value is not affected by the current flowing through the PN junction and maintains an almost constant value (usually about 800 mV at room temperature). In other words, even if the current flowing through the resistor R1, the diodes D, , D, . ut to IE)
It is possible to maintain a vague value.

しかしながら、ここで温度が変化した場合には10LI
7が大きく変動してしまうという欠点がある。
However, if the temperature changes here, 10LI
The disadvantage is that the number 7 fluctuates greatly.

上述したように、第3図、第4回とも、出力電流10L
ITはPN接合1段分の電圧を抵抗R2の値で割ったも
のとなるが、公知のように該PN接合電圧は、−1〜−
3mV/”C(温度が1度上昇するごとにPN接合電圧
は1〜3mV程度減少する。)の温度係数〔この温度係
数の大きさは、PN接合の電流密度(単位接合面積当た
りの電流値)が小さいほど大きい。〕を有するので、温
度上昇にともなってI。LITが減少してしまうのであ
る。(たとえば、温度が50°C上昇したときのI。L
ITの減少分 00mV なる。) このように、従来の定電流回路では電源電圧変動に対し
ては、出力電流の変化が小さいが温度変化に対しては出
力電流の変化が大きいという欠点があった。
As mentioned above, in both Figures 3 and 4, the output current is 10L.
IT is the voltage for one stage of PN junction divided by the value of resistor R2, but as is well known, the PN junction voltage ranges from -1 to -
Temperature coefficient of 3 mV/''C (the PN junction voltage decreases by about 1 to 3 mV every time the temperature rises by 1 degree) [The size of this temperature coefficient is determined by the current density of the PN junction (current value per unit junction area) ) is larger.], so as the temperature rises, I.LIT decreases. (For example, when the temperature rises by 50°C, I.LIT
The decrease in IT becomes 00mV. ) As described above, conventional constant current circuits have the disadvantage that the change in output current is small in response to power supply voltage fluctuations, but the change in output current is large in response to temperature changes.

本発明は上記の欠点を改善するために提案されたもので
、その目的は、温度変動がある場合にも、出力電流が変
化しない定電流回路を提供することにある。
The present invention was proposed in order to improve the above-mentioned drawbacks, and its purpose is to provide a constant current circuit whose output current does not change even when there is a temperature change.

(課題を解決するための手段) 上記の目的を達成するため、本発明は第1のPN接合素
子の両端に住する電圧を検出し、第1の抵抗を用いて該
電圧を電流に変換して電流を作成し、トランジスタを介
して該電流を出力する定電波回路において、第2のPN
接合素子と第2の抵抗とを直列的に接続した回路を前記
第1の抵抗に並列接続したことを特徴とする定電流回路
を発明の要旨とするものである。
(Means for Solving the Problems) To achieve the above object, the present invention detects the voltage present across a first PN junction element and converts the voltage into a current using a first resistor. In a constant radio wave circuit that creates a current through a transistor and outputs the current through a transistor, a second PN
The gist of the invention is a constant current circuit characterized in that a circuit in which a junction element and a second resistor are connected in series is connected in parallel to the first resistor.

(作用) 本発明は、出力電流に対して従来のような負の温度係数
を有する電流成分に加え、正の温度係数を有する電流成
分を付加することにある。これによって本発明の回路は
温度変化の激しい場所においても、周囲の温度変化の影
響のない定電流回路とすることができる。
(Function) The present invention is to add a current component having a positive temperature coefficient to the output current in addition to the conventional current component having a negative temperature coefficient. As a result, the circuit of the present invention can be a constant current circuit that is not affected by ambient temperature changes even in places where temperature changes are severe.

本発明が従来技術と異なる点は、電圧→電流変換を行う
抵抗(R2)に対して、PN接合と抵抗とを直列接続し
たものを並列追加接続した点にある。
The present invention differs from the prior art in that a series connection of a PN junction and a resistor is additionally connected in parallel to the resistor (R2) that performs voltage to current conversion.

(実施例) 次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲で
、種々の変更あるいは改良を行い得ることは言うまでも
ない。
(Example) Next, an example of the present invention will be described. Note that the embodiments are merely illustrative, and it goes without saying that various changes and improvements can be made without departing from the spirit of the present invention.

第1図は本発明の第1の実施例を示す。FIG. 1 shows a first embodiment of the invention.

正電圧源■1と接地点との間に、抵抗R1,ダイオード
D、、Dzの直列回路を挿入し、抵抗RとダイオードD
1との接続点aにNPNトランジスタQ1のベースを接
続すると共に、コレクタを電流出力端子T1に接続し、
エミッタを抵抗R2を介して接地し、さらにエミッタと
接地との間にダイオードD3.抵抗R3の直列回路を挿
入する。
Insert a series circuit of resistor R1 and diodes D, Dz between positive voltage source ■1 and the ground point, and connect resistor R and diode D.
The base of the NPN transistor Q1 is connected to the connection point a with the current output terminal T1, and the collector is connected to the current output terminal T1.
The emitter is grounded through a resistor R2, and a diode D3. Insert a series circuit of resistor R3.

第2図は本発明の第2の実施例を示すもので、この実施
例が、第1の実施例と異なる点は、第1の実施例のダイ
オードD3及び抵抗R3の代わりにNPN I−ランジ
スタQ3を用い、このトランジスタのベースを、トラン
ジスタQ、のエミッタに接続し、このエミッタにトラン
ジスタQ3のコレクタを接続し、さらにトランジスタQ
3のエミッタを抵抗R3を介して接地した点である。
FIG. 2 shows a second embodiment of the present invention, and this embodiment differs from the first embodiment in that an NPN I-transistor is used instead of the diode D3 and resistor R3 of the first embodiment. Using Q3, connect the base of this transistor to the emitter of transistor Q, connect the collector of transistor Q3 to this emitter, and connect the collector of transistor Q
This is the point where the emitter of No. 3 is grounded via the resistor R3.

本発明では、出力電流にQ、のエミッタ電流)として、
抵抗R2を流れる電流11の他に、ダイオードD3.ト
ランジスタQ3を流れる電流I2が追加されている。
In the present invention, the output current is Q, as the emitter current).
In addition to the current 11 flowing through resistor R2, diode D3. There is an additional current I2 flowing through transistor Q3.

本発明では、PN接合電圧とPN接合電流との関係、お
よびPN接合電圧と温度との関係に関する。以下の2点
の公知の性質■及び■を利用している。
The present invention relates to the relationship between PN junction voltage and PN junction current, and the relationship between PN junction voltage and temperature. The following two well-known properties (1) and (2) are utilized.

■ PN接合電圧はPN接合電流に依らずにほぼ一定で
はあるが、詳細に見ると、PN接合電流(あるいはPN
接合電流密度)が大きいほど、PN接合電圧は大きい。
■ The PN junction voltage is almost constant regardless of the PN junction current, but if we look at it in detail, we can see that the PN junction current (or
The larger the junction current density), the larger the PN junction voltage.

■ PN接合電圧の負の温度係数の大きさは、PN接合
電流密度が小さいほど大きい。
(2) The magnitude of the negative temperature coefficient of the PN junction voltage increases as the PN junction current density decreases.

すなわち、ここに同じ値の電流が流れるPNN接合、B
があり、しかもAの接合面積がBの接合面積よりも大き
い場合、Aの接合電圧■。
In other words, there is a PNN junction, B, in which current of the same value flows.
If there is, and the junction area of A is larger than the junction area of B, then the junction voltage of A is ■.

はBの接合電圧■8よりも小さく、しかも温度上昇によ
る■、の減り方は■、の減り方よりも大きい。
is smaller than the junction voltage (1) of B, and the decrease in (2) due to temperature rise is greater than the decrease in (2).

という事実である。This is a fact.

(第1の実施例)・・・第1図の場合ではトランジスタ
Q1のエミッタ接地電流増幅率が充分大きいとすると、
出力電流I。U、はトランジスタQ1のエミッタ電流と
ほぼ等しい。さらに該エミッタ電流は、抵抗R2を流れ
る電流■1と、ダイオードD3.抵抗R3を流れる電流
I2の和である。これらは夫々次式で与えられる。
(First embodiment)...In the case of Fig. 1, assuming that the common emitter current amplification factor of transistor Q1 is sufficiently large,
Output current I. U, is approximately equal to the emitter current of transistor Q1. Furthermore, the emitter current is a current (1) flowing through the resistor R2, and a diode D3. It is the sum of the current I2 flowing through the resistor R3. These are respectively given by the following equations.

2 3 VO2・・・D3の導通電圧 ここで、上式が成り立つように、 VDl+VDZ  VIEI   VI13>0となる
ように、ダイオードD、、D、、)ランジスタQ、の接
合面積よりも、ダイオードD3の接合面積を大きくする
2 3 VO2...Conduction voltage of D3 Here, so that the above formula holds true, VDl+VDZ VIEI VI13>0, the junction area of diode D3 is larger than the junction area of transistor Q. Increase the bonding area.

ここで、■ゎ、〜VD3+  VQIはPN接合電圧で
あって、その値は該当するPN接合を流れる電流値には
、はとんど依存せず、はぼ一定な値をとる。
Here, ■ゎ, ~VD3+ VQI is a PN junction voltage, and its value hardly depends on the current value flowing through the corresponding PN junction, and takes a nearly constant value.

すなわち、電源■1の電圧値が変動し、抵抗R1゜ダイ
オードDI、D2を流れる電流が変化しても電流1.と
12、従ってそれらの和である出力型流I。Uアは、は
ぼ一定な値を維持する。
That is, even if the voltage value of the power supply 1 fluctuates and the current flowing through the resistor R1° and the diodes DI and D2 changes, the current 1. and 12, and therefore the output type flow I which is their sum. UA maintains a nearly constant value.

一方、温度が変化した場合には、電流1.は従来例の場
合と同様、負の温度係数を示す。(温度上昇に伴ない減
少する。)さて、ここでダイオードD3の接合面積をダ
イオードDI+  D2+  トランジスタQ1の接合
面積よりも大きくしであるから、VO2の温度係数の大
きさは、■。1lVD21VQlの温度係数よりも大き
い。すなわち、Vn++VnzV !II  V D:
lは正の温度係数を持つ。
On the other hand, when the temperature changes, the current 1. indicates a negative temperature coefficient as in the conventional example. (It decreases as the temperature rises.) Now, since the junction area of diode D3 is larger than the junction area of diode DI+D2+ transistor Q1, the magnitude of the temperature coefficient of VO2 is . It is larger than the temperature coefficient of 1lVD21VQl. That is, Vn++VnzV! II V D:
l has a positive temperature coefficient.

一方、■。I+VD2  VREIに関してはPN接合
1段相当の電圧となり、負の温度係数を持つ。従って・ (i)  ダイオードD、、D、、トランジスタQ。
On the other hand, ■. Regarding I+VD2 VREI, it becomes a voltage equivalent to one stage of PN junction, and has a negative temperature coefficient. Therefore, (i) Diode D, ,D, ,transistor Q.

に対するダイオードD3の接合面積の比Gi)  抵抗
R2とR8の値 を選択することにより、出力電流I。lJrの大きさを
、任意の値に設定するとともに、その温度係数の大きさ
を極めて小さく (式の上からは零にすることも可能)
設定することができるのである。
The ratio of the junction area of the diode D3 to the output current I by selecting the values of the resistors R2 and R8. Set the size of lJr to an arbitrary value and make the temperature coefficient extremely small (it can also be set to zero from the top of the equation)
It can be set.

(第2の実施例)・・・第2図の場合 トランジスタQ、のエミッタ接地電流増幅率が充分大き
いとすると、出力電流I。R17はトランジスタQ、の
エミッタ電流とほぼ等しく、電流11と12の和となる
(Second Embodiment) In the case of FIG. 2, if the common emitter current amplification factor of the transistor Q is sufficiently large, the output current I. R17 is approximately equal to the emitter current of transistor Q, and is the sum of currents 11 and 12.

ここで、  IIE2 1、− 2 VIE2   V□3 T、− 3 V 81!3・・・Q3のベース・エミッタ電圧ただし
、vIIE2〉■BE3が成り立つように、トランジス
タQ、のベース・エミッタ接合面積を、トランジスタQ
2のベース・エミッタ接合面積よりも大きくする。
Here, IIE2 1, - 2 VIE2 V□3 T, - 3 V 81!3...Base-emitter voltage of Q3 However, the base-emitter junction area of transistor Q is set so that vIIE2〉■BE3 holds. , transistor Q
It should be larger than the base-emitter junction area of No.2.

すなわち、電圧■。2が負の温度係数を示すのに対して
、(トランジスタQ、の電流密度をトランジスタQ2の
電流密度よりも小さくしであるので)電圧V B E 
2  V I E 3は正の温度係数を示す。
In other words, the voltage ■. 2 exhibits a negative temperature coefficient, whereas the voltage V B E
2 V I E 3 indicates a positive temperature coefficient.

従って、 Qλ (1)トランジスタ躯に対するトランジスタQ3の接合
面積の比 6D  抵抗RtとR3の値 を選択することにより、電流I I+ I t (≧1
out)の大きさを任意の値に設定するとともに、その
温度係数の大きさを極めて小さくすることができるので
ある。
Therefore, Qλ (1) Ratio of the junction area of transistor Q3 to the transistor body 6D By selecting the values of resistors Rt and R3, the current I I+ I t (≧1
It is possible to set the magnitude of (out) to an arbitrary value and to make the magnitude of the temperature coefficient extremely small.

この外に注意すべきは、 ■ 第1図のダイオードD1〜D、はPN接合であれば
よく、たとえば第2図におけるトランジスタQ、のよう
に、コレクタ・ベースを接続したトランジスタでもよい
。(ベース・エミッタ接合を利用する。) ■ 第2図のトランジスタQ3はトランジスタでなくて
、単なるダイオードでもよい。
In addition, it should be noted that: (1) The diodes D1 to D in FIG. 1 may be PN junctions, and may also be transistors with collectors and bases connected, such as the transistor Q in FIG. 2, for example. (The base-emitter junction is used.) ■ The transistor Q3 in FIG. 2 may be a simple diode instead of a transistor.

(発明の効果) 以上説明したように、本発明によれば、電源電圧変動に
対して一定な値を維持しつつ、温度変動に対しても一定
の値を維持することのできる定電流回路を実現すること
ができるので、特に温度変動の激しい環境下に置かれる
各種電子装置の定電流回路として適用すれば、それら電
子装置の特性(温度変動に対する特性)を一定に保つこ
とができるようになるという効果を有する。
(Effects of the Invention) As explained above, according to the present invention, a constant current circuit that can maintain a constant value against power supply voltage fluctuations and also maintain a constant value against temperature fluctuations is provided. Therefore, if it is applied as a constant current circuit for various electronic devices that are placed in environments with severe temperature fluctuations, it will be possible to maintain the characteristics of those electronic devices (characteristics against temperature fluctuations) constant. It has this effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本発明の定電流回路の第1と第2の実
施例を示し、第3図と第4図は従来の定電流回路の構成
を示す。 ■1 ・・・・・正電圧源 Q、−Q、  ・・NPN )ランジスタD、〜D、・
・ダイオード R,−R3・・抵抗 T、・・・・・電流出力端子 l01jT  ・・・・出力電流
1 and 2 show first and second embodiments of the constant current circuit of the present invention, and FIGS. 3 and 4 show the configuration of a conventional constant current circuit. ■1...Positive voltage source Q, -Q,...NPN) transistor D, ~D,...
-Diode R, -R3...Resistance T,...Current output terminal l01jT...Output current

Claims (1)

【特許請求の範囲】  第1のPN接合素子の両端に生ずる電圧を検出し、第
1の抵抗を用いて該電圧を電流に変換して電流を作成し
、トランジスタを介して該電流を出力する定電流回路に
おいて、 第2のPN接合素子と第2の抵抗とを直列的に接続した
回路を前記第1の抵抗に並列接続したことを特徴とする
定電流回路。
[Claims] Detecting a voltage generated across a first PN junction element, converting the voltage into a current using a first resistor to create a current, and outputting the current via a transistor. A constant current circuit, characterized in that a circuit in which a second PN junction element and a second resistor are connected in series is connected in parallel to the first resistor.
JP1275641A 1989-10-23 1989-10-23 Constant current circuit Expired - Fee Related JP2599304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275641A JP2599304B2 (en) 1989-10-23 1989-10-23 Constant current circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275641A JP2599304B2 (en) 1989-10-23 1989-10-23 Constant current circuit

Publications (2)

Publication Number Publication Date
JPH03136111A true JPH03136111A (en) 1991-06-10
JP2599304B2 JP2599304B2 (en) 1997-04-09

Family

ID=17558293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275641A Expired - Fee Related JP2599304B2 (en) 1989-10-23 1989-10-23 Constant current circuit

Country Status (1)

Country Link
JP (1) JP2599304B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474145B2 (en) 2006-02-09 2009-01-06 Ricoh Company, Ltd. Constant current circuit
JP2016106418A (en) * 2016-02-02 2016-06-16 三菱電機照明株式会社 Constant current circuit and light-emitting diode driving constant current circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136643A (en) * 1978-04-05 1979-10-23 Philips Nv Layout for reference voltage circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136643A (en) * 1978-04-05 1979-10-23 Philips Nv Layout for reference voltage circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474145B2 (en) 2006-02-09 2009-01-06 Ricoh Company, Ltd. Constant current circuit
JP2016106418A (en) * 2016-02-02 2016-06-16 三菱電機照明株式会社 Constant current circuit and light-emitting diode driving constant current circuit

Also Published As

Publication number Publication date
JP2599304B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
JP3322685B2 (en) Constant voltage circuit and constant current circuit
WO1993017492A1 (en) Current detecting circuit
US4675592A (en) Voltage output circuit
JPS62191907A (en) Semiconductor circuit
JPH03136111A (en) Constant-current circuit
KR100292924B1 (en) Current source circuit
JPH11505053A (en) Reference voltage source with temperature compensation
JPH08339232A (en) Reference voltage circuit
JP3643389B2 (en) Constant voltage circuit
EP0528659A1 (en) Impedance multiplier
JP3286228B2 (en) Semiconductor integrated circuit
JP4130856B2 (en) Current source circuit
JPS5842886B2 (en) constant voltage device
KR0170357B1 (en) Temperature independent current source
JPH0330888B2 (en)
JPH022545B2 (en)
JPH1131018A (en) Reference voltage generating circuit
JPH0789304B2 (en) Reference voltage circuit
JPS6133519A (en) Reference voltage source circuit
JP3036084B2 (en) Constant voltage circuit
JP3315850B2 (en) Current-voltage converter
JPH04340613A (en) Constant current source circuit
JPS5977529A (en) Constant-current circuit
JPS59127410A (en) Current mirror circuit
JPS60252929A (en) Reference voltage generating circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees