JPH0313593A - Formation of ceramic coating film on surface of aluminum substrate - Google Patents

Formation of ceramic coating film on surface of aluminum substrate

Info

Publication number
JPH0313593A
JPH0313593A JP14906189A JP14906189A JPH0313593A JP H0313593 A JPH0313593 A JP H0313593A JP 14906189 A JP14906189 A JP 14906189A JP 14906189 A JP14906189 A JP 14906189A JP H0313593 A JPH0313593 A JP H0313593A
Authority
JP
Japan
Prior art keywords
spark discharge
film
electrolytic bath
coating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14906189A
Other languages
Japanese (ja)
Other versions
JP2729835B2 (en
Inventor
Haruo Hanagata
花形 晴雄
Tsukasa Suzuki
鈴木 吏
Kazuo Yanagida
柳田 和夫
Hidesato Igarashi
五十嵐 英郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEITSUPUSOOLE KK
Dipsol Chemicals Co Ltd
Original Assignee
DEITSUPUSOOLE KK
Dipsol Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DEITSUPUSOOLE KK, Dipsol Chemicals Co Ltd filed Critical DEITSUPUSOOLE KK
Priority to JP14906189A priority Critical patent/JP2729835B2/en
Publication of JPH0313593A publication Critical patent/JPH0313593A/en
Application granted granted Critical
Publication of JP2729835B2 publication Critical patent/JP2729835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a high quality ceramic coating film on the surface of an Al substrate by carrying out spark discharge with the substrate as the anode in an electrolytic bath contg. silicate to form a coating film and by further carrying out spark discharge in an electrolytic bath contg. colloidal silica. CONSTITUTION:Spark discharge is carried out with an Al substrate as the anode in an electrolytic bath contg. silicate to form a coating film on the surface of the substrate. The silicate may be sodium silicate, the concn. is regulated to about >=10g/l and the coating film is preferably formed in about >=0.5mum thickness. Spark discharge is then carried out with the substrate as the anode in a second electrolytic bath contg. colloidal silica. The concn. of the colloidal silica in the bath is about 10-500g/l and the pref. thickness of the resulting film is about 2-200mum. A ceramic coating film having superior insulating property, smoothness and hardness is formed on the surface of the Al substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミニウム基体表面に陽極火花放電によっ
てセラミックス皮膜を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a ceramic film on the surface of an aluminum substrate by anodic spark discharge.

〔従来の技術〕[Conventional technology]

アルミニウム基体上にセラミックスを形成する方法には
、焼結法、気相法、化成法が知られている。
Sintering methods, vapor phase methods, and chemical conversion methods are known as methods for forming ceramics on aluminum substrates.

焼結法は形成しようとするセラミックスの原料粉体を基
材にスプレーする法や浸漬する方法等により塗布し、高
温の炉で溶融焼付ける方法である。
The sintering method is a method in which raw powder of the ceramic to be formed is applied to a base material by spraying or dipping, and then melted and baked in a high-temperature furnace.

気相法には、CVDとよばれる化学反応気相法と、PV
Dとよばれる物理的蒸発法がある。前者は、形成しよう
とするセラミックスの原料を加熱により気化させた後、
気相中で反応させて基材に皮膜を形成させるものであり
、一方後者は、形成しようとするセラミックスを気化さ
せ、物理的に表面に付着させ形成させるものである。
Gas phase methods include chemical reaction gas phase method called CVD and PV
There is a physical evaporation method called D. In the former method, after vaporizing the raw material of the ceramic to be formed by heating,
The latter method involves reacting in a gas phase to form a film on a substrate, while the latter method involves vaporizing the ceramic to be formed and physically adhering it to the surface.

化成法として代表的デよ方法は、陽極酸化法である。こ
の方法は、中性から酸性の溶液中で、基材を陽極として
電解酸化させ、基材のアルミニウムが酸化アルミニウム
となる反応を利用するものである。
A typical chemical conversion method is an anodic oxidation method. This method utilizes a reaction in which aluminum in the base material becomes aluminum oxide by electrolytically oxidizing the base material in a neutral to acidic solution using the base material as an anode.

さらに、陽極火花放電による方法が知られている。例え
ば、特公昭58−17278号、同59−28636号
、同59−28637号、同59−28638号、同5
9−45722号、及び、同60−12438号公報等
には、シリケートあるいは各種の金属酸素酸塩のアルカ
リ性水溶液からなる電解槽を構成し陽極付近に吸引され
るケイ酸イオン、金属酸素酸イオンと、陽極金属との間
に陽極火花放電を生じさせ、これによってセラミックス
層を形成する方法が開示されている。
Furthermore, methods using anodic spark discharge are known. For example, Special Publications No. 58-17278, No. 59-28636, No. 59-28637, No. 59-28638, No. 5
No. 9-45722 and No. 60-12438, etc., disclose that an electrolytic cell is composed of an alkaline aqueous solution of silicate or various metal oxyacids, and silicate ions, metal oxyacid ions, and the like are attracted near the anode. discloses a method of forming a ceramic layer by generating an anode spark discharge between the anode metal and the anode metal.

特に近年、この陽極火花放電による方法で得られる皮膜
は、超高真空でのガス放出特性、耐食性及び可撓性にす
ぐれ、さらに遠赤外放射性にすぐれる等の特徴が見い出
されて注目を集めるようになっている。
Particularly in recent years, films obtained by this method using anodic spark discharge have attracted attention because of their excellent outgassing properties in ultra-high vacuum, corrosion resistance, and flexibility, as well as excellent far-infrared radiation. It looks like this.

しかしながら、該陽極火花放電により得られる皮膜は他
の方法に比べて絶縁性等に劣るという問題がある。また
平滑性と硬度の上昇も望まれている。
However, there is a problem in that the film obtained by the anodic spark discharge is inferior in insulation properties, etc., compared to other methods. It is also desired to increase smoothness and hardness.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、絶縁性、平滑性及び硬度においてもすぐれた
特性を有する皮膜を、陽極火花放電によってアルミニウ
ム基材表面に形成できる方法を提供することを目的とす
る。
An object of the present invention is to provide a method for forming a film having excellent properties in terms of insulation, smoothness, and hardness on the surface of an aluminum substrate by anodic spark discharge.

〔課題を解決するための手段〕 従来の技術の欄の公告公報に記載されたセラミックス皮
膜は、使用するケイ酸塩から予想されるように、ナトリ
ウム、カリウム等のアルカリ金属が数%含有されており
、これらのアルカリ金属が、硬度、絶縁破壊電圧等の性
能に悪影響を与えていると推定される。さらに半導体製
造装置ではこれらのアルカリ金属は悪影響を与えるため
聞届となる。これに対して、コロイダルシリカでは、ケ
イ酸ナトリウム等に比較し、アルカリ金属量が数10分
の1であり、これらを用いて、火花散霧皮膜を形成すれ
ば性能の向上がはかれると考えた。
[Means for solving the problem] The ceramic film described in the official gazette in the conventional technology column contains several percent of alkali metals such as sodium and potassium, as expected from the silicate used. It is presumed that these alkali metals have an adverse effect on performance such as hardness and dielectric breakdown voltage. Furthermore, in semiconductor manufacturing equipment, these alkali metals are prohibited because they have an adverse effect. In contrast, in colloidal silica, the amount of alkali metal is several tenths of that of sodium silicate, etc., and we thought that performance could be improved by using these to form a spark-scattering film. .

尚、従来の技術の欄の公告公報にもコロイダルシリカで
皮膜形成可能との記載が見られるが、コロイダルシリカ
溶液による陽極電解のみでは、本発明の目的を達成する
に足る皮膜を形成できない。
Incidentally, although there is also a statement in the publication in the prior art section that it is possible to form a film with colloidal silica, it is not possible to form a film sufficient to achieve the object of the present invention only by anodic electrolysis using a colloidal silica solution.

しかしながら、検討の結果、本発明は、はじめにケイ酸
塩を含有する電解浴を用いて火花放電し、次いでコロイ
ダルシリカを含有する電解浴を用いて火花放電すると、
上記3題を効率よく達成できるとの却見に基づいてなさ
れたのである。
However, as a result of study, the present invention has shown that if a spark discharge is first performed using an electrolytic bath containing silicate, and then a spark discharge is performed using an electrolytic bath containing colloidal silica,
This was done based on the assumption that the above three issues could be achieved efficiently.

すな°わち、本発明は、電解浴中でアルミニウム基体を
陽極として通電し、火花放電によりアルミニウム基体表
面にセラミックス皮膜を形成させる方法であって、ケイ
酸塩を含有する第1の電解浴中で火花放電により皮膜を
形成した後、コロイダルシリカを含有する第2の電解浴
中で火花放電することを特徴とする、アルミニウム基体
表面にセラミックス皮膜を形成させる方法を提供する。
That is, the present invention is a method for forming a ceramic film on the surface of an aluminum substrate by spark discharge by applying electricity to an aluminum substrate as an anode in an electrolytic bath, the method comprising: a first electrolytic bath containing a silicate; Provided is a method for forming a ceramic film on the surface of an aluminum substrate, characterized in that the film is formed by spark discharge in a second electrolytic bath containing colloidal silica, and then spark discharge is performed in a second electrolytic bath containing colloidal silica.

第1の電解浴にはケイ酸塩を含有させる。つまり、ケイ
酸塩を含有する溶液が使用され、ケイ酸塩としては、一
般式M 20・nsioz(Mはアルカリ金属を示し、
nは0.5乃至20の正数を示す)で表わされる種々の
水溶性のもの、例えば、ケイ酸ナトリウム、ケイ酸カリ
ウム、ケイ酸リチウム等があげられる。ケイ酸塩の濃度
は、10g/j!以上が良く、好ましくは50〜300
g/lである。
The first electrolytic bath contains silicate. That is, a solution containing a silicate is used, and the silicate has the general formula M20.nsioz (M represents an alkali metal,
n is a positive number from 0.5 to 20), such as sodium silicate, potassium silicate, lithium silicate, etc. The concentration of silicate is 10g/j! or more, preferably 50 to 300
g/l.

第一段の電解では、陽極としては、ステンレス、鉄、ニ
ッケル等不溶性電極を用い、陽極にアルミニウム基体を
用いて火花放電を行う。電解時間、つまり火花放電前の
時間も含めた放電時間は、1分以上が良く、2〜5分が
好ましい。より好ましくは、第1段の電解により、厚み
が0.5μm以上、好ましくは1〜10μmの皮膜を形
成させるのがよい。つまり、このような皮膜を形成させ
ておくと、次に行う第2の火花放電でコロイダルシリカ
によるセラミックス皮膜を効率よく形成できるからであ
る。
In the first stage of electrolysis, an insoluble electrode such as stainless steel, iron, or nickel is used as the anode, and an aluminum substrate is used as the anode to perform spark discharge. The electrolysis time, that is, the discharge time including the time before spark discharge is preferably 1 minute or more, preferably 2 to 5 minutes. More preferably, the first stage electrolysis forms a film having a thickness of 0.5 μm or more, preferably 1 to 10 μm. In other words, if such a film is formed, a ceramic film made of colloidal silica can be efficiently formed in the second spark discharge performed next.

電解液の温度は、溶解塩が変化しない任意の温度で良い
が、5〜60℃が好ましい。
The temperature of the electrolytic solution may be any temperature at which the dissolved salt does not change, but preferably 5 to 60°C.

電流密度は、0.2 A/ dv”〜IOA/dm2が
よく電圧は150v以上である。好ましい電流密度節回
は、0.5〜3A/dm’である。つまり、電流密度が
低いと、火花放電を開始するまでの時間が長くなり、実
際的でなく、高すぎると皮膜が粗くなり適さないからで
ある。
The current density is preferably 0.2 A/dv" to IOA/dm2, and the voltage is 150 V or more. The preferred current density range is 0.5 to 3 A/dm'. In other words, if the current density is low, This is because it takes a long time to start spark discharge, which is impractical, and if the temperature is too high, the film will become rough, making it unsuitable.

本発明のアルミニウム基体としては、−数的な清浄なア
ルミ板であれば、洗浄、エツチング等は特に必要ないが
、皮膜の均一性、平滑性を向上させるために、洗浄やエ
ツチング等を行なう方が良い。
As for the aluminum substrate of the present invention, cleaning, etching, etc. are not particularly necessary as long as it is a numerically clean aluminum plate. However, in order to improve the uniformity and smoothness of the film, cleaning, etching, etc. is good.

火花放電を行うための整流器の波形は、3相全波、ノコ
ギリ波、パルス波等任意のものでよいが、火花放電開始
時間が短縮できること、皮膜が均一化する事などから、
ノコギリ波、パルス波が好ましい。
The waveform of the rectifier for spark discharge may be arbitrary, such as three-phase full wave, sawtooth wave, pulse wave, etc., but since it shortens the spark discharge start time and makes the film uniform,
Sawtooth waves and pulse waves are preferred.

第2の電解浴は、コロイダルシリカを含有する。The second electrolytic bath contains colloidal silica.

コロイダルシリカは、無定形シリカ粒子が水中に分散し
てコロイド状となっているものであり、代表的なコロイ
ダルシリカとしては、8産化学工業■の商品名「スノー
テックス」があげられる。尚、シリカ粒子径、pH,8
度等について種々のものを使用できる。しかし、粒子径
が30μm以上では、まだらに析$するので30μm以
下のものが好ましい。
Colloidal silica is made up of amorphous silica particles dispersed in water to form a colloid, and a typical example of colloidal silica is the product name "Snowtex" manufactured by Yasan Kagaku Kogyo ■. In addition, silica particle size, pH, 8
Various degrees can be used. However, if the particle size is 30 μm or more, precipitation will occur in spots, so particles of 30 μm or less are preferable.

電解液の濃度は、コロイダルシリカとして、10〜50
0g/J!(無水ケイ酸に換算して、1〜200g/l
)、好ましくは、無水ケイ酸に換算して、2.5〜10
0 g/lが良い。濃度が高くなると、ゼリー状の析出
がおこるようになり、セラミックス皮膜とならず、濃度
が低くなると、析出速度がおそくなり、実用的ではない
からである。
The concentration of the electrolyte is 10 to 50 as colloidal silica.
0g/J! (1 to 200 g/l in terms of silicic anhydride)
), preferably 2.5 to 10 in terms of silicic anhydride
0 g/l is good. This is because when the concentration is high, jelly-like precipitation occurs and no ceramic film is formed, and when the concentration is low, the deposition rate becomes slow and is not practical.

陰極としては、ステンレス、鉄、ニッケル等の不溶性電
極を用い、陽極に前記アルミニウム基体を用いて火花放
電を行う。電解時の電流密度は0.2〜IOA/dm”
で行なう事が出来るが、好ましくは、0.5〜3A/d
m”が良い。電流密度が低いと、平滑な析出とならず、
高すぎると下地の皮膜が破壊されたり、析出した皮膜が
粗になる傾向がある。又、電解時の電圧は450V以上
とするのがよい。電解時間は必要とする膜厚を得る任意
の時間とすることができるが、通常膜厚が2〜200μ
mとなるようにするのがよい。さらに皮膜の機能性、電
解時間の実用性を考慮したもっとも好ましい範囲は5〜
40μmである。
An insoluble electrode made of stainless steel, iron, nickel, or the like is used as the cathode, and the aluminum substrate is used as the anode to perform spark discharge. The current density during electrolysis is 0.2 to IOA/dm"
It can be carried out at 0.5 to 3 A/d.
m" is good. If the current density is low, the deposition will not be smooth,
If it is too high, the underlying film tends to be destroyed or the deposited film tends to become rough. Further, the voltage during electrolysis is preferably 450V or higher. The electrolysis time can be any time required to obtain the required film thickness, but usually when the film thickness is 2 to 200μ
It is better to set it so that it is m. Furthermore, considering the functionality of the film and the practicality of the electrolysis time, the most preferable range is 5~
It is 40 μm.

用いる整流器の波形は、3相全波、ノコギリ波、パルス
波等任意のものでよいが、より均一な皮膜を得ようとす
るには、7′二5り波、パルス波(矩形波形)が良い。
The waveform of the rectifier used may be any one such as three-phase full wave, sawtooth wave, pulse wave, etc., but in order to obtain a more uniform film, 7'25 wave or pulse wave (rectangular waveform) is recommended. good.

[発明の効果] 本発明によれば、得られた皮膜表面の苛惟アルカリの濃
度は、従来法に比較して数10分の1に減少でき、さら
に硬度、絶縁破壊電圧、平滑性等が向上した。しかも、
可とう性、遠赤外放射特性は従来法に比べて劣らないの
で、本発明の方法によれば従来のセラミックス皮膜にな
い特長を有する皮膜をアルミニウム基体上に形成できる
[Effects of the Invention] According to the present invention, the concentration of caustic alkali on the surface of the obtained film can be reduced to several tenths of that of the conventional method, and the hardness, dielectric breakdown voltage, smoothness, etc. Improved. Moreover,
Since the flexibility and far-infrared radiation characteristics are not inferior to those of conventional methods, the method of the present invention makes it possible to form a film on an aluminum substrate that has features not found in conventional ceramic films.

従って、本発明により、例えば、アルミニウムの線材に
セラミック皮膜を施せば、高真空で用いる事の8来るセ
ラミックス被覆電線が得られ、アルミニウムの薄板上に
皮膜を形成すると、アルミの高熱伝導性を生かした、電
子回路用フレキシブル基板が得られる。さらに、従来、
アルカリ金属を含有するので使用が困難だった半導体製
造装置等にも使用8来るようになる。
Therefore, according to the present invention, for example, by applying a ceramic coating to an aluminum wire, a ceramic-coated electric wire that can be used in high vacuum can be obtained, and by forming a coating on a thin aluminum plate, the high thermal conductivity of aluminum can be utilized. In addition, a flexible substrate for electronic circuits can be obtained. Furthermore, conventionally,
It has come to be used in semiconductor manufacturing equipment, etc., which used to be difficult to use because it contains alkali metals.

次に実施例により本発明を説明する。Next, the present invention will be explained with reference to examples.

〔実施例〕〔Example〕

実施例1 アルミニウム板を、脱脂、アルカリエツチング、酸活性
化して清浄化した後、陽極として用い、ステンL/ ス
板を陰極とし、KtO・n5io2200g/lを含有
する水溶液からなる第1の電解浴にて25℃で、I A
/d+n” 、 1分間火花散霧して2μmrg−のセ
ラミックス皮膜をアルミニウム板上に形成させた。該ア
ルミニウム板を電解浴から取り出し、水洗後、次に示す
第2の電解浴で火花放電した。
Example 1 After cleaning an aluminum plate by degreasing, alkali etching, and acid activation, it was used as an anode, a stainless steel plate was used as a cathode, and a first electrolytic bath consisting of an aqueous solution containing 2200 g/l of KtO·n5io was prepared. at 25°C, IA
/d+n'', spark spraying was carried out for 1 minute to form a 2 μm rg- ceramic film on the aluminum plate. The aluminum plate was taken out from the electrolytic bath, washed with water, and then spark discharged in the second electrolytic bath shown below.

該アルミニウム板を陽極にし、陰極をステンレス板とし
て、コロイダルシリカ (スノーテックスXS) 25
0 g/l (pHI O)を含有する水溶液からなる
軍2の電解浴で、−25℃でIA/dm”10分間火花
放電し、15μmのセラミックス皮膜を形成させた。
Using the aluminum plate as an anode and a stainless steel plate as a cathode, colloidal silica (Snowtex XS) 25
A ceramic film of 15 μm was formed by spark discharge at −25° C. for 10 minutes at IA/dm in a grade 2 electrolytic bath consisting of an aqueous solution containing 0 g/l (pHIO).

この皮膜の特性を表−1に示すが比較例1に比べ、硬度
、絶縁破壊電圧、平滑性にすぐれた特性を示した。
The properties of this film are shown in Table 1, and compared to Comparative Example 1, it exhibited superior properties in hardness, dielectric breakdown voltage, and smoothness.

実施例2 実施例1の第2の電解浴の水溶液を、コロイダルシリカ
(スノーテックスN)500g/j!  (pH約10
)とした以外は実施例1と同様にして火花放電した。
Example 2 The aqueous solution of the second electrolytic bath of Example 1 was mixed with 500 g/j of colloidal silica (Snowtex N)! (pH about 10
) Spark discharge was performed in the same manner as in Example 1 except that the spark discharge was performed in the same manner as in Example 1.

得られた皮膜の特性を表−1に示すが、硬度、絶縁破壊
電圧、平滑性ともすぐれたものであった。
The properties of the obtained film are shown in Table 1, and it was found to be excellent in hardness, dielectric breakdown voltage, and smoothness.

実施例3 実施例1の第2の電解浴の水溶液をコロイダルシリカ(
スノーテックス40)125g/j!  (pH約10
)に変更した以外は実施例1と同様にして火花放電した
Example 3 The aqueous solution of the second electrolytic bath of Example 1 was mixed with colloidal silica (
Snowtex 40) 125g/j! (pH about 10
) Spark discharge was carried out in the same manner as in Example 1 except that the

得られた皮膜の特性を表−1に示すが、硬度、絶縁破壊
電圧、平滑性ともすぐれたものであった。
The properties of the obtained film are shown in Table 1, and it was found to be excellent in hardness, dielectric breakdown voltage, and smoothness.

実施例4 実施例1の第2の電解浴の水溶液を、コロイダルシリカ
(スノーテックスO)  250 g/j!  (p)
I4)に変更した以外は実施例1と同様にして火花放電
した。
Example 4 The aqueous solution of the second electrolytic bath of Example 1 was mixed with colloidal silica (Snowtex O) at 250 g/j! (p)
Spark discharge was carried out in the same manner as in Example 1 except that the method was changed to I4).

得られた皮膜の特性を表−1に示すが、硬度、絶縁破壊
電圧、平滑性ともすぐれたものであった。
The properties of the obtained film are shown in Table 1, and it was found to be excellent in hardness, dielectric breakdown voltage, and smoothness.

実施例5 実施例1の第2の電解浴の液温を50℃とした以外は実
施例1と同様にして火花放電した。
Example 5 Spark discharge was performed in the same manner as in Example 1 except that the liquid temperature of the second electrolytic bath was 50°C.

得られた皮膜の特性を表−1に示すが、硬度、絶縁破壊
電圧、平滑性ともすぐれたものであった。
The properties of the obtained film are shown in Table 1, and it was found to be excellent in hardness, dielectric breakdown voltage, and smoothness.

比較例1 実施例1の第1の電解浴で用いたと同様なNa1OHn
5io* 200 g/ 1を含有する水溶液により、
25℃、IA/dm2 10分間、実施例1と同様に前
処理したアルミニウム板を陽極として、ステンレス板を
陰極として火花放電した。
Comparative Example 1 Na1OHn similar to that used in the first electrolytic bath of Example 1
By an aqueous solution containing 200 g/1 of 5io*
Spark discharge was performed at 25° C. and IA/dm2 for 10 minutes using an aluminum plate pretreated in the same manner as in Example 1 as an anode and a stainless steel plate as a cathode.

比較例2 実施例1の算1の電解浴を用いず、第2の電解浴だけに
より火花放電を行った。
Comparative Example 2 Spark discharge was performed using only the second electrolytic bath without using the electrolytic bath of Example 1.

得られた皮膜の特性を表−1に示すが、顆粒上で、実用
的ではなかった。従って、硬度、絶縁破壊電圧等は測定
不能だった。
The properties of the obtained film are shown in Table 1, but it was not practical because it was on granules. Therefore, hardness, dielectric breakdown voltage, etc. could not be measured.

尚、表−1中、膜厚、硬度、絶縁破壊電圧及び平滑性は
次の方法で行った。
In Table 1, film thickness, hardness, dielectric breakdown voltage, and smoothness were determined by the following methods.

膜 工 渦電流方式厚み計、パーマスコープEIIOB型/Fi
schar m)で測定また。
Membrane eddy current thickness gauge, permascope EIIOB type/Fi
schar m).

硬度 試験板を110℃で1時間乾燥、放冷した後、先端を平
らに研き、角を鋭くした鉛蓋を塗面に対し、45℃の角
度で塗面に強く押しつけ均一な速さで(3cs /秒)
vJかした。5回試験を謹り返し、4回以上やぶれなか
った場合の鉛蓋の硬さで示した。
After drying the hardness test plate at 110℃ for 1 hour and leaving it to cool, a lead cap with a sharpened tip and a sharp edge was strongly pressed against the coating surface at an angle of 45℃ and at an even speed ( 3cs/sec)
I played vJ. The test was repeated 5 times, and the hardness of the lead lid was shown if it did not break 4 times or more.

絶縁破壊電圧 JIS  C2110固体電気絶縁材料の絶縁耐力の試
験方法のフェス塗膜試験方法に準じた方法により、破壊
電圧計B”−5110AF型(@フェイス製)で測定し
た。
Dielectric breakdown voltage was measured using a breakdown voltmeter model B"-5110AF (manufactured by @Faith) according to the Fes coating film test method of JIS C2110 Test method for dielectric strength of solid electrical insulating materials.

平滑性 目視及び走査型電子顕微鏡により表面状態を観察して下
記の基準で判定した。
Smoothness The surface condition was observed visually and using a scanning electron microscope, and evaluated based on the following criteria.

◎・・・非常によい O・・・よい △・・・ややよい X・・・悪い 手 続 補 正 書 1、事件の表示 平成1年特許りIl算149061号 3、補正をする者 事件との関係◎・・・Very good O...good △・・・Slightly good X...Bad hand Continued Supplementary Positive book 1.Display of the incident 1999 patent No. 149061 3. Person who makes corrections Relationship with the incident

Claims (1)

【特許請求の範囲】[Claims] 電解浴中でアルミニウム基体を陽極として通電し、火花
放電によりアルミニウム基体表面にセラミックス皮膜を
形成させる方法であって、ケイ酸塩を含有する第1の電
解浴中で火花放電により皮膜を形成した後、コロイダル
シリカを含有する第2の電解浴中で火花放電することを
特徴とする、アルミニウム基体表面にセラミックス皮膜
を形成させる方法。
A method of forming a ceramic film on the surface of the aluminum substrate by spark discharge by applying current to the aluminum substrate as an anode in an electrolytic bath, the method comprising: forming a ceramic film on the surface of the aluminum substrate by spark discharge in a first electrolytic bath containing a silicate; A method for forming a ceramic film on the surface of an aluminum substrate, the method comprising performing spark discharge in a second electrolytic bath containing colloidal silica.
JP14906189A 1989-06-12 1989-06-12 Method for forming ceramic film on aluminum substrate surface Expired - Lifetime JP2729835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14906189A JP2729835B2 (en) 1989-06-12 1989-06-12 Method for forming ceramic film on aluminum substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14906189A JP2729835B2 (en) 1989-06-12 1989-06-12 Method for forming ceramic film on aluminum substrate surface

Publications (2)

Publication Number Publication Date
JPH0313593A true JPH0313593A (en) 1991-01-22
JP2729835B2 JP2729835B2 (en) 1998-03-18

Family

ID=15466818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14906189A Expired - Lifetime JP2729835B2 (en) 1989-06-12 1989-06-12 Method for forming ceramic film on aluminum substrate surface

Country Status (1)

Country Link
JP (1) JP2729835B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6994779B2 (en) * 1997-01-31 2006-02-07 Elisha Holding Llc Energy enhanced process for treating a conductive surface and products formed thereby
JP2014506728A (en) * 2011-02-08 2014-03-17 ケンブリッジ ナノサーム リミティド Insulated metal substrate
EP3147980A1 (en) 2015-09-24 2017-03-29 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6994779B2 (en) * 1997-01-31 2006-02-07 Elisha Holding Llc Energy enhanced process for treating a conductive surface and products formed thereby
JP2014506728A (en) * 2011-02-08 2014-03-17 ケンブリッジ ナノサーム リミティド Insulated metal substrate
US9551082B2 (en) 2011-02-08 2017-01-24 Cambridge Nanotherm Limited Insulated metal substrate
US9677187B2 (en) 2011-02-08 2017-06-13 Cambridge Nanolitic Limited Non-metallic coating and method of its production
EP3147980A1 (en) 2015-09-24 2017-03-29 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system

Also Published As

Publication number Publication date
JP2729835B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
JP5995882B2 (en) Highly conductive surface for electrochemical applications
JP4673903B2 (en) Metal oxide and / or metal hydroxide coated conductive material
US4349581A (en) Method for forming an anticorrosive coating on a metal substrate
JPS58161785A (en) Electrode clad with lead or lead alloy and manufacture
JPH02247393A (en) Electrolytic electrode with durability and its production
JP7462884B2 (en) Method for removing electrode surface deposits containing lead compounds from an electrode for electrolysis to which lead compounds are attached
JP2022039241A (en) Anode for alkaline water electrolysis
JPS5813629B2 (en) Cathode for seawater electrolysis
JP6474536B1 (en) Electrolytic rhodium plating solution
JPH0313593A (en) Formation of ceramic coating film on surface of aluminum substrate
KR20080045620A (en) Method of reactivating electrode for electrolysis
CN1014726B (en) Treating method for electrolytic etching of metal
JP3430479B2 (en) Anode for oxygen generation
JPH03271386A (en) Anode for generating oxygen and production thereof
JPH0313594A (en) Formation of ceramic coating film on surface of aluminum substrate
JPH02500602A (en) Method for depositing composite oxide-nickel coating on metal substrate and oxide-nickel electrode
JP3149629B2 (en) Oxygen generating electrode
RU2813428C1 (en) Method of processing titanium and its alloys
JP3795515B1 (en) Manufacturing method of semiconductor photoelectrochemical cell
JPS62199797A (en) Flexible metal-ceramic composite material and its production
JP2000054193A (en) Formation of ceramic film on aluminum substrate surface
JP4505612B2 (en) Metal surface treatment method
JP2003293196A (en) Electrode for electrolysis and production method therefor
RU2621029C1 (en) Electrolysis cathode
JPH0572478B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12