JPH03134101A - Conditioning of aluminum alloy powder - Google Patents

Conditioning of aluminum alloy powder

Info

Publication number
JPH03134101A
JPH03134101A JP2275117A JP27511790A JPH03134101A JP H03134101 A JPH03134101 A JP H03134101A JP 2275117 A JP2275117 A JP 2275117A JP 27511790 A JP27511790 A JP 27511790A JP H03134101 A JPH03134101 A JP H03134101A
Authority
JP
Japan
Prior art keywords
solution
alloy powder
aluminum alloy
acid
weight ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2275117A
Other languages
Japanese (ja)
Inventor
Guenter Dr Staniek
ギュンテル・シュタニーク
Uwe Hoppe
ウーヴェ・ホッペ
Karl Wefers
カール・ヴェフェルズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Publication of JPH03134101A publication Critical patent/JPH03134101A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/10Orthophosphates containing oxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE: To obtain Al alloy powder showing excellent mechanical properties as those obtd. by the effect of degassing by separating Al alloy powder treated as suspension in a soln. of prescribed pH composed of an oxidizer and organic or inorganic acid and thereafter executing drying. CONSTITUTION: A soln. composed of an oxidizer (hydrogen peroxide, sodium peroxide, potassium permanganate or chromium trioxide) or the aq. soln. of the oxidizer and organic or inorganic acid (formic acid or phosphoric acid) is prepd. In this soln. of pH<=4, Al alloy powder is treated as suspension. Next, the soln. and the Al alloy powder are separated, and, after that, drying is executed. Thus, the mechanical properties more excellent than those obtd. by the effect of heating in a vacuum, what is called, degassing can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルミニウム合金粉末のコンディショニングに
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the conditioning of aluminum alloy powders.

発明が解決しようとする課題 アルミニウム合金の粉末冶金において、粉末粒子の表面
への酸化物層の形成が問題を起こす。これらの酸化物は
非常に低い酸素分圧を形成し、従って実質上避けられな
い。粉末を貯蔵する場合、層は水酸化物の形成をずっと
増加し続ける。これらの表面層は比較的大きな断片を形
成し、従って加圧成形、鍛造又は押出加工により成形体
材料に加工した場合、粉末表面の確実な結合を防げる。
Problem to be Solved by the Invention In powder metallurgy of aluminum alloys, the formation of an oxide layer on the surface of powder particles causes a problem. These oxides form very low oxygen partial pressures and are therefore virtually unavoidable. When storing the powder, the layer continues to increase hydroxide formation. These surface layers form relatively large pieces and thus prevent a reliable bonding of the powder surfaces when processed into compact materials by pressing, forging or extrusion.

製品の機械的性質に不利益な効果をもたらす内部欠損が
発達する。
Internal defects develop which have a detrimental effect on the mechanical properties of the product.

現在、表面酸化物の機械的性質への悪影響を減少させる
ほとんど唯一の方法は、アルミニウム合金粉末の真空中
での加熱処理、いわゆる「ガス抜き」である。ガス抜き
の効果は、微粒化後形成される延性又は伸縮性の酸化物
層がもろい酸化物層を覆うことである。アルミニウム合
金粉末の、ありきたりの処理では、例えば冷却等方加圧
、ガス抜き、熱加工成形及び押出加工による形状へのあ
りきたりの処理において、このもろい層は、機械的性質
にほとんど有害作用を示さないか、又は適当に分配され
るなら、分散硬化によって同様の性質にすぐれた効果を
示す多くの小断片に砕かれる。
Currently, almost the only way to reduce the negative effect of surface oxides on mechanical properties is heat treatment of aluminum alloy powders in vacuum, so-called "outgassing". The effect of degassing is that the ductile or stretchable oxide layer formed after atomization covers the brittle oxide layer. In routine processing of aluminum alloy powders into shapes, such as by cold isostatic pressing, degassing, thermoforming and extrusion, this brittle layer has little detrimental effect on the mechanical properties. If not present, or if properly distributed, dispersion hardening will break it into many small pieces exhibiting superior effects on similar properties.

しかしながら、急速に凝固した粉末の性質を焼固(圧縮
及び圧縮成型)の面後で比較すると、ガス抜き処理は間
に合せの改善方法にすぎず、粉末になされる特性改良の
完全な開発はなされていないと考えうる。
However, comparing the properties of rapidly solidified powders after sintering (compression and compression molding) shows that the degassing process is only a makeshift improvement method, and the full development of the property improvements made to the powder is difficult. It can be assumed that this has not been done.

発明の目的及び課題を解決するための手段本発明の目的
は、その成形体材料がガス抜きのみによって処理された
アルミニウム合金粉末から造られたものに比べて改良さ
れた機械的性質を示すアルミニウム合金粉末の粉末処理
又は粉末コンディショニングの他の方法を提供すること
である。
OBJECTS OF THE INVENTION AND MEANS FOR SOLVING THE PROBLEMS The object of the invention is to provide an aluminum alloy whose compact material exhibits improved mechanical properties compared to those made from aluminum alloy powders treated only by degassing. It is an object of the present invention to provide other methods of powder processing or powder conditioning of powders.

加えて、粉末粒子を取りまく酸化物層を修飾して以下の
処理がより低い処理温度しか必要としないようにする。
In addition, the oxide layer surrounding the powder particles is modified so that subsequent processing requires lower processing temperatures.

加えて処理中のガス発生(泡形成)を最少に減らす。In addition, gas evolution (foam formation) during processing is reduced to a minimum.

本発明によれば、この目的は、アルミニウム合金粉末を
酸化剤又は酸化剤の水溶液と有機又は無機の酸からなる
溶液中、ptr4以下で懸詞液として処理し、溶液の分
離後乾燥することを特徴とするアルミニウム合金粉末の
コンディショニング方法により達成される。
According to the invention, this purpose is to treat the aluminum alloy powder as a suspended liquid in an oxidizing agent or a solution consisting of an aqueous solution of an oxidizing agent and an organic or inorganic acid at a ptr of 4 or less, and to dry it after separation of the solution. This is achieved by a characteristic method of conditioning aluminum alloy powder.

本工程は全ての種類のアルミニウム合金の粉末に何ら限
定されることなく適用しうる。次の加工に′適したアル
ミニウム合金粉末の本発明による工程に用いうる通常の
粒径は、100ミクロン以下、好ましくは20ミクロン
以下である。
This process can be applied to all types of aluminum alloy powder without any limitation. Typical particle sizes for use in the process according to the invention of aluminum alloy powder suitable for further processing are below 100 microns, preferably below 20 microns.

アルミニウム合金粉末対混合に用いる溶液の最適比率は
、I:2ないし2.]、好ましくはl2の間である。
The optimum ratio of aluminum alloy powder to solution used for mixing is I:2 to 2. ], preferably l2.

過酸化水素は、好ましくは30重量%水溶液又は過酸化
ナトリウJ、(NatO2)あるいは過マンガン酸カリ
ウム(KMnO4)の形で酸化剤として用いられる。適
当な好ましい有機酸は、ギ酸(HCOo 1−1 )で
、一方オルトリン酸は、無機酸として特に好ましいこと
が立証された。
Hydrogen peroxide is preferably used as an oxidizing agent in the form of a 30% by weight aqueous solution or sodium peroxide (NatO2) or potassium permanganate (KMnO4). A suitable and preferred organic acid is formic acid (HCOo 1-1 ), while orthophosphoric acid has proven particularly preferred as an inorganic acid.

本発明によれば、溶液は以下のように調製され30重量
%過酸化水素溶液とギ酸の重量比は1:2ないし1:1
0、好ましくはl:4;30重量%過酸化水素溶液とオ
ルトリン酸の重量比は100:10ないし100:1.
好ましくは!+12; 過酸化ナトリウムとギ酸の重量比はl:5ないし1:3
0.好ましくは1:12; 過マンガン酸カリウムとギ酸の重量比は1:Iooない
し10:100、好ましくは5:1001ないし20重
量%、好ましくは5重量%の過酸化ナトリウム水溶液に
選択されたオルトリン酸が添加されて溶液のpHは4以
下で、好ましくは3である; 過マンガン酸カリウムの飽和水溶液にオルトリン酸を添
加して溶液のpHは4以下で、好ましくは3である; lないし20重量%、好ましくは!ないし10重量%の
三酸化物対酸水溶液にオルトリン酸を、三酸化物対リン
酸の重量比がIO+1ないし1lO1好ましくは4:1
ないしI:4、最適には1:1.5として加える。いず
れの場合も、溶液のpHは4以下である。
According to the invention, the solution is prepared as follows, and the weight ratio of 30% by weight hydrogen peroxide solution to formic acid is 1:2 to 1:1.
0, preferably l:4; the weight ratio of 30% by weight hydrogen peroxide solution to orthophosphoric acid is from 100:10 to 100:1.
Preferably! +12; weight ratio of sodium peroxide and formic acid is l:5 to 1:3
0. Preferably 1:12; the weight ratio of potassium permanganate to formic acid is from 1:Ioo to 10:100, preferably from 5:1001 to 20% by weight, preferably 5% by weight of the selected orthophosphoric acid in an aqueous sodium peroxide solution. is added and the pH of the solution is below 4, preferably 3; orthophosphoric acid is added to a saturated aqueous solution of potassium permanganate and the pH of the solution is below 4, preferably 3; l to 20 wt. %,Preferably! orthophosphoric acid in an aqueous solution of trioxide to phosphoric acid of from 10% by weight to IO+1 to 10% by weight, preferably 4:1.
or I:4, optimally 1:1.5. In either case, the pH of the solution is 4 or less.

アルミニウム合金粉末をマクネチックスクーラー、振動
スターラー又は超音波を用いて本発明の溶液に5〜60
分間混合し、次いで濾過する。アルミニウム合金粉末は
、lOないし100°C1好ましくは18ないし25℃
の範囲の温度で用いられる溶液の作用として処理される
。アルミニウム合金粉末表面での処理剤の発熱反応の結
果、温度上昇が生じ、反応が進行していることを示す。
Aluminum alloy powder is added to the solution of the present invention using a magnetic cooler, vibration stirrer or ultrasonic wave for 5 to 60 minutes.
Mix for a minute, then filter. The aluminum alloy powder has a temperature of lO to 100°C, preferably 18 to 25°C.
Processed as a function of the solution used at temperatures in the range of . As a result of the exothermic reaction of the treatment agent on the surface of the aluminum alloy powder, a temperature rise occurs, indicating that the reaction is progressing.

ギ酸/ K M n O4溶液は80℃の反応温度で良
好な結果を示す。次いで被処理アルミニウム合金粉末を
80と140℃の間の温度、好ましくは約120℃で少
なくとも10時間乾燥してギ酸又は水を除去し、次の加
工がなされる。
Formic acid/K M n O4 solution shows good results at a reaction temperature of 80 °C. The treated aluminum alloy powder is then dried at a temperature between 80 and 140° C., preferably about 120° C., for at least 10 hours to remove any formic acid or water before further processing.

作用、効果 この化学的処理は、押出加工形状の機械的性質の変化に
反影する。表面酸化物層の残斐(断片)の分散が改良さ
れるのに加えて、加工工程、特に押出加工での加熱で、
表面酸化物層からのガス放出が少ない。このガス放出が
完全に抑えられたときに最適に達する。
Effect: This chemical treatment reflects a change in the mechanical properties of the extruded shape. In addition to improving the dispersion of residues (fragments) of the surface oxide layer, heating during processing, especially extrusion,
Less gas is released from the surface oxide layer. The optimum is reached when this outgassing is completely suppressed.

本発明のアルミニウム合金粉末(12−Fe、A&−C
r又はl! −S iを基礎とする粉末)の化学的前処
理による、粉末から造られる成形体材料の性質への効果
は、構造調査、張力試験及び破壊しん性の測定により決
定された。
Aluminum alloy powder of the present invention (12-Fe, A&-C
r or l! The effect of the chemical pretreatment of the -S i -based powder) on the properties of the molded body material made from the powder was determined by structural investigations, tensile tests and fracture toughness measurements.

構造調査は、光学顕微鏡、走査型電子顕微鏡及び透過型
電子顕微鏡を用いてアルミニウム合金粉末自体とそれか
ら造られた押出加工型との両方の酸化物層について行な
った。その結果、押出加工型での特に均一な良好構造及
び前者の粉末粒子の酸化物層の残斐の好適な分散が明ら
かにされた。
Structural investigations were carried out on the oxide layers of both the aluminum alloy powder itself and the extrusion molds made therefrom using optical microscopy, scanning electron microscopy and transmission electron microscopy. The results revealed a particularly uniform good structure in the extrusion mold and a good dispersion of the oxide layer residue of the former powder particles.

張力試験で降伏点(耐力の0.2%)、引張り強さ及び
全伸長を測定した。いずれの場合も、ガス抜きだけを行
った従来技術の材料に比べて少くとも同等の強度を有し
、又、伸長で少くとも15%改良された。
The yield point (0.2% of yield strength), tensile strength and total elongation were measured in a tension test. In each case, it had at least the same strength and at least a 15% improvement in elongation compared to prior art materials that were only vented.

破壊じん性(K 、c値)は[ショート・ロッド(ro
d)J試料で測定した。この場合、化学的処理による改
良は、引張り試験の場合よりも明らかであった。
The fracture toughness (K, c value) is [short rod (ro)
d) Measured with J sample. In this case, the improvement due to chemical treatment was more obvious than in the case of the tensile test.

試験用に、A(、Fe合金粉末(平均粒径15ミクロン
)を直径12m+nの円形ロッド(直径押出加工加圧、
400℃、圧力1.000MPa(比圧縮力)、変成比
21:1)に成型した。単にガス抜きしたアルミニウム
合金試料に関する測定破壊しん性はに、c=25MPa
・v+n;化学的処理試料(特に30wt%過酸化水素
/ギ酸による)に関してはK 、C= 48MPa・ν
mであった〇 本発明の方法は、酸化物フィルムの問題が全てのアルミ
ニウム合金粉末に存在するので、アルミニウム合金の粉
末冶金にわたって適用可能である。
For testing, A (Fe alloy powder (average particle size 15 microns) was placed in a circular rod (diameter extrusion pressurized,
It was molded at 400°C, pressure 1.000 MPa (specific compressive force), and transformation ratio 21:1). The measured fracture toughness for a simply degassed aluminum alloy sample was c = 25 MPa.
・v+n; For chemically treated samples (particularly with 30 wt% hydrogen peroxide/formic acid), K, C = 48 MPa・ν
The method of the present invention is applicable throughout the powder metallurgy of aluminum alloys since the problem of oxide films is present in all aluminum alloy powders.

選択される化学薬品に依存する化学的効果は、異なる方
法に結びついた二つの工程に基づく。第一は、微粒化及
び粉末の貯蔵の間に生じる表面層を攻撃し、溶解し又は
修飾するのであり、第二は、いくらかの化学薬品が、粉
末の強化に関してより好ましい性質を有する新しい表面
酸化物層を生成する。
The chemical effect, depending on the chemicals selected, is based on two steps linked to different methods. The first is that it attacks, dissolves or modifies the surface layer that arises during atomization and storage of the powder, and the second is that some chemicals create a new surface oxidation that has more favorable properties with respect to powder strengthening. Generate layers.

以下の実施例において、方法の実施に関する指針を示す
。実施例では、15ミクロンの平均粒径を有するAll
!8Fe粉末を用いた。溶媒としてギ酸を用いた実施例
ではl)Hの測定は行なわなかった。
The examples below provide guidance on the implementation of the method. In the example, All with an average particle size of 15 microns
! 8Fe powder was used. In the examples using formic acid as a solvent, l) H was not measured.

実施例中「ギ酸」とは、濃ギ酸を、又、過酸化水素は3
0wt%水溶液をいう。全ての場合について、反応の進
行を懸濁液の温度をモニタリングすることにより観察し
た。
In the examples, "formic acid" refers to concentrated formic acid, and hydrogen peroxide refers to
0wt% aqueous solution. In all cases, the progress of the reaction was monitored by monitoring the temperature of the suspension.

実施例 A、過酸化水素水とギ酸との混合物によるアルミニウム
合金粉末の処理 400gのギ酸と100gの過酸化水素溶液を混合し、
冷却して6009のAg、Fe粉末をこの溶液に懸濁す
る。一定速度で撹拌しながら試料を20℃で30分間保
持し、次いでブフナー漏斗で濾過し、次いでまずギ酸で
、次にアセトンでpHが中性となるまで洗浄する。ギ酸
は蒸留し塩化カルシウムで乾燥することにより回収でき
る。こうして得られるアルミニウム合金粉末を約120
°Cで12時間乾燥する。
Example A, Treatment of Aluminum Alloy Powder with a Mixture of Hydrogen Peroxide and Formic Acid 400 g of formic acid and 100 g of hydrogen peroxide solution were mixed;
After cooling, Ag, Fe powder of 6009 is suspended in this solution. The sample is kept at 20° C. for 30 minutes with constant stirring, then filtered on a Buchner funnel and washed first with formic acid and then with acetone until the pH is neutral. Formic acid can be recovered by distillation and drying with calcium chloride. Approximately 120% of the aluminum alloy powder thus obtained
Dry for 12 hours at °C.

B、過マンガン酸カリウムとギ酸の混合物によるアルミ
ニウム合金粉末の処理 6009のA12aFe粉末を400gの濃ギ酸に懸濁
し5分以内に69の微粉砕過マンガン酸カリウムを激し
く撹拌しながら混合する。次いで懸濁液を約10分間8
0℃に加熱する。次いで懸濁液をブフナー漏斗で濾過し
、まずギ酸で次いでアセトンで洗浄し、110℃で15
時間乾燥する。
B. Treatment of Aluminum Alloy Powder with Mixture of Potassium Permanganate and Formic Acid The A12aFe powder of 6009 is suspended in 400 g of concentrated formic acid and within 5 minutes the finely ground potassium permanganate of 69 is mixed with vigorous stirring. The suspension was then stirred for about 10 minutes at 8
Heat to 0°C. The suspension was then filtered on a Buchner funnel, washed first with formic acid and then with acetone, and incubated at 110°C for 15 minutes.
Dry for an hour.

C9過酸化ナトリウムとギ酸の混合物によるアルミニウ
ム合金粉末の処理 400gのギ酸に冷却しなから359の固体過酸化す)
・リウムを溶解し、室温とし、次いでAQ、Fe粉末を
この溶液に懸濁する。以下の操作は上記Aに記載の通り
である。
Treatment of aluminum alloy powder with a mixture of C9 sodium peroxide and formic acid.
- Dissolve the lium and bring it to room temperature, then suspend the AQ, Fe powders in this solution. The following operations are as described in A above.

D、過酸化水素溶液とオルトリン酸の混合物によるアル
ミニウム合金粉末の処理 39のオルトリン酸を1009の過酸化水素溶液に撹拌
下に添加し、p)(を3以下(ガラス電極)に調整する
。次いで100gのA&aFe粉末をこの溶液に加えて
25分間18℃で撹拌する。次いで懸濁液をブフナー漏
斗で濾過して120℃で11時間乾燥する。
D. Treatment of aluminum alloy powder with a mixture of hydrogen peroxide solution and orthophosphoric acid Add the orthophosphoric acid of 39 to the hydrogen peroxide solution of 1009 with stirring, and adjust p) (to 3 or less (glass electrode). Then 100 g of A&aFe powder is added to this solution and stirred for 25 minutes at 18° C. The suspension is then filtered on a Buchner funnel and dried at 120° C. for 11 hours.

E、過マンガン酸カリウム水溶液とオルトリン酸の混合
物によるアルミニウム合金粉末の処理オルトリン酸を1
009の新しく調製した過マンガン酸カリウム飽和水溶
液に、溶液のpHが3以下(ガラス電極で測定)となる
ように添加する。
E. Treatment of aluminum alloy powder with a mixture of potassium permanganate aqueous solution and orthophosphoric acid
009 is added to a freshly prepared saturated aqueous potassium permanganate solution such that the pH of the solution is 3 or less (measured with a glass electrode).

次いで909のアルミニウム合金粉末をこの溶液に加え
て40分間20℃で撹拌する。濾過及び濾過残留物をア
セトンに浸漬したのち、15時間130℃で乾燥する。
909 aluminum alloy powder is then added to this solution and stirred for 40 minutes at 20°C. After filtration and immersion of the filter residue in acetone, it is dried at 130° C. for 15 hours.

F、過酸化ナトリウム水溶液とオルトリン酸の混合物に
よるアルミニウム合金粉末の処理オルトリン酸を新しく
調製した5vt%の過酸化ナトリウム水溶液に、溶液の
pHが3以下(ガラス電極で測定)となるように添加す
る。次いで1059のアルミニウム合金粉末を室温下、
この溶液に加えて18−22℃で25時間撹拌する。濾
過及び濾過残留物の浸漬後、アルミニウム合金粉末を1
20℃で13時間乾燥する。
F. Treatment of aluminum alloy powder with a mixture of sodium peroxide aqueous solution and orthophosphoric acid Orthophosphoric acid is added to a freshly prepared 5vt% sodium peroxide aqueous solution so that the pH of the solution is 3 or less (measured with a glass electrode). . Next, 1059 aluminum alloy powder was heated at room temperature.
Add to this solution and stir at 18-22°C for 25 hours. After filtration and soaking of the filter residue, add 1 aluminum alloy powder
Dry at 20°C for 13 hours.

G、水溶性三酸化物対酸とオルトリン酸の混合物による
アルミニウム合金粉末の処理 10003!+2の蒸留水に359の三酸化物対酸(C
ros)を加えた。次いでこれを50gの85wt%オ
ルトリン酸と混合した。これにより溶液のpH価は4以
下となった。次いで2509のアルミニウム合金粉末を
溶液に室温下に添加し、50℃で5分間撹拌した。濾過
後、粉末をメタノールで洗浄して77℃で24時間乾燥
した。
G. Treatment of aluminum alloy powder with a mixture of water-soluble trioxide versus acid and orthophosphoric acid 10003! 359 trioxide to acid (C
ros) was added. This was then mixed with 50g of 85wt% orthophosphoric acid. As a result, the pH value of the solution became 4 or less. Next, 2509 aluminum alloy powder was added to the solution at room temperature and stirred at 50° C. for 5 minutes. After filtration, the powder was washed with methanol and dried at 77°C for 24 hours.

Claims (1)

【特許請求の範囲】 1、アルミニウム合金粉末を、本質的に酸化剤又は酸化
剤の水溶液と有機又は無機の酸からなる溶液中、pH4
以下で懸濁液として処理し、溶液の分離後乾燥すること
を特徴とするアルミニウム合金粉末のコンディショニン
グ方法。 2、酸化剤が過酸化水素、過酸化ナトリウム、過マンガ
ン酸カリウム又は三酸化クロムである請求項1の方法。 3、酸がギ酸又はリン酸である請求項1又は2の方法。 4、アルミニウム合金粉末の粒径が100ミクロン以下
である請求項1、2又は3の方法。 5、アルミニウム合金粉末の粒径が20ミクロン以下で
ある請求項4の方法。 6、アルミニウム合金粉末対溶液の重量比が2:1と1
:2の間である請求項1、2又は3の方法。 7、該重量比が1:1である請求項6の方法。 8、アルミニウム合金粉末の処理を10゜と100℃の
間で行なう請求項1、2又は3の方法。 9、該温度が18゜と25℃の間である請求項8の方法
。 10、アルミニウム合金粉末の処理を80℃で行なう請
求項1、2又は3の方法。 11、被処理アルミニウム合金粉末を80゜と140℃
の間で乾燥する請求項1、2又は3の方法。 12、該温度が80゜と140℃の間である請求項11
の方法。 13、溶液が、本質的に30重量%過酸化水素水とギ酸
の1:2ないし1:10の重量比よりなる請求項1の方
法。 14、溶液が本質的に30重量%過酸化水素水とオルト
リン酸の100:10ないし100:1の重量比よりな
る請求項1の方法。 15、溶液が本質的に過酸化ナトリウムとギ酸の1:5
ないし1:30の重量比よりなる請求項1の方法。 16、溶液が本質的に過マンガン酸カリウムとギ酸の1
:100ないし10:100の重量比よりなる請求項1
の方法。 17、溶液がオルトリン酸を加えて溶液のpHを4以下
に調整した本質的に1ないし20の重量%の過酸化ナト
リウム水溶液よりなる請求項1の方法。 18、溶液がオルトリン酸を加えて溶液のpHを4以下
に調整した本質的に過マンガン酸カリウムの飽和水溶液
よりなる請求項1の方法。 19、溶液が本質的にオルトリン酸を加えた三酸化クロ
ムの1ないし20重量%水溶液よりなり、三酸化物対酸
の重量比が10:1ないし1:10である請求項1の方
法。
[Claims] 1. Aluminum alloy powder is dissolved in a solution consisting essentially of an oxidizing agent or an aqueous solution of an oxidizing agent and an organic or inorganic acid at a pH of 4.
A method for conditioning aluminum alloy powder, characterized in that it is treated as a suspension and dried after separation of the solution. 2. The method of claim 1, wherein the oxidizing agent is hydrogen peroxide, sodium peroxide, potassium permanganate or chromium trioxide. 3. The method according to claim 1 or 2, wherein the acid is formic acid or phosphoric acid. 4. The method according to claim 1, 2 or 3, wherein the aluminum alloy powder has a particle size of 100 microns or less. 5. The method according to claim 4, wherein the aluminum alloy powder has a particle size of 20 microns or less. 6. The weight ratio of aluminum alloy powder to solution is 2:1 and 1
4. The method of claim 1, 2 or 3, wherein the method is between: :2. 7. The method of claim 6, wherein the weight ratio is 1:1. 8. The method of claim 1, 2 or 3, wherein the processing of the aluminum alloy powder is carried out at a temperature between 10° and 100°C. 9. The method of claim 8, wherein said temperature is between 18° and 25°C. 10. The method according to claim 1, 2 or 3, wherein the aluminum alloy powder is treated at 80°C. 11. Aluminum alloy powder to be treated at 80° and 140°C
4. The method of claim 1, 2 or 3, wherein the method comprises drying between 12. Claim 11, wherein the temperature is between 80° and 140°C.
the method of. 13. The method of claim 1, wherein the solution consists essentially of 30% by weight hydrogen peroxide and formic acid in a weight ratio of 1:2 to 1:10. 14. The method of claim 1, wherein the solution consists essentially of 30% by weight hydrogen peroxide and orthophosphoric acid in a weight ratio of 100:10 to 100:1. 15. The solution is essentially 1:5 of sodium peroxide and formic acid.
The method of claim 1 comprising a weight ratio of from 1:30 to 1:30. 16.The solution consists essentially of potassium permanganate and formic acid.
Claim 1 comprising a weight ratio of :100 to 10:100.
the method of. 17. The method of claim 1, wherein the solution consists of an essentially 1 to 20% by weight aqueous sodium peroxide solution with the addition of orthophosphoric acid to adjust the pH of the solution to below 4. 18. The method of claim 1, wherein the solution consists essentially of a saturated aqueous solution of potassium permanganate to which the pH of the solution is adjusted to below 4 by the addition of orthophosphoric acid. 19. The method of claim 1, wherein the solution consists essentially of a 1 to 20% by weight aqueous solution of chromium trioxide with orthophosphoric acid, and the weight ratio of trioxide to acid is from 10:1 to 1:10.
JP2275117A 1989-10-13 1990-10-12 Conditioning of aluminum alloy powder Pending JPH03134101A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3934251A DE3934251C1 (en) 1989-10-13 1989-10-13
DE3934251.4 1989-10-13

Publications (1)

Publication Number Publication Date
JPH03134101A true JPH03134101A (en) 1991-06-07

Family

ID=6391433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275117A Pending JPH03134101A (en) 1989-10-13 1990-10-12 Conditioning of aluminum alloy powder

Country Status (4)

Country Link
EP (1) EP0422629A1 (en)
JP (1) JPH03134101A (en)
DE (1) DE3934251C1 (en)
NO (1) NO904392L (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3879003A1 (en) * 2020-03-10 2021-09-15 Chemetall GmbH Improved method for increasing the concentration of iron(ii) ions in iron side phosphating systems and according phosphating plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004332A (en) * 1958-09-02 1961-10-17 Bell Telephone Labor Inc Powder metallurgy process
JPS6050176A (en) * 1983-08-27 1985-03-19 Pentel Kk Production of colored aluminum powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1140052A (en) * 1966-04-07 1969-01-15 Foseco Int Treatment of aluminium and aluminium alloy powders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004332A (en) * 1958-09-02 1961-10-17 Bell Telephone Labor Inc Powder metallurgy process
JPS6050176A (en) * 1983-08-27 1985-03-19 Pentel Kk Production of colored aluminum powder

Also Published As

Publication number Publication date
NO904392D0 (en) 1990-10-11
NO904392L (en) 1991-04-15
EP0422629A1 (en) 1991-04-17
DE3934251C1 (en) 1991-01-24

Similar Documents

Publication Publication Date Title
JP6979082B2 (en) Methods for Producing Reduced Graphene Oxide from Quiche Graphite
CN110144500B (en) Antimony-containing high-strength high-toughness aluminum-silicon alloy and preparation method thereof
Rabin et al. Microstructure and tensile properties of Fe 3 Al produced by combustion synthesis/hot isostatic pressing
CN108941547B (en) Preparation method of copper-doped graphene reinforced aluminum-based composite material
JPH03134101A (en) Conditioning of aluminum alloy powder
US2888325A (en) Method of making boron nitride material and bodies
CN115785665A (en) High-strength MXene-based electromagnetic shielding composite film and preparation method thereof
US2653869A (en) Manufacture of ductile vanadium
JPS6369705A (en) Production of expanded graphite
JP2985546B2 (en) Manufacturing method of alloy powder
US4036907A (en) Poly(meta-phenylene isophthalamide) composition
US3954703A (en) Composition of poly(meta-phenylene isophthalamide) with additive for fabricating molded article
JP2022532240A (en) Methods for Producing Reduced Graphene Oxide from Expanded Quiche Graphite
JPS59208066A (en) Method for working internally nitrided molybdenum-zirconium alloy
CN110951016A (en) Preparation method of high-strength carbon nanotube/TiAl composite material
JP2985545B2 (en) Manufacturing method of alloy powder
US3475168A (en) Method of making metallic articles containing mineral fibers
US3431090A (en) Low melting metallic articles reinforced with modified chrysotile
CN115285985B (en) Preparation method of carboxylated graphene and carboxylated graphene prepared by same
JPH079114A (en) Production of composite material
CN115141950B (en) Preparation method of simple substance carbon reinforced aluminum matrix composite material
JPH05195003A (en) Deoxidation treatment for pulverized metal powder
CN114736434B (en) Preparation method of PTFE fastener with metal detectable function
CN107936294B (en) A kind of N- cetyl maleamic acid-lanthanum (III)-shepardite compound
JPH02282437A (en) Aluminum borate whisker reinforced metal matrix composite and its manufacture