JP2985546B2 - Manufacturing method of alloy powder - Google Patents

Manufacturing method of alloy powder

Info

Publication number
JP2985546B2
JP2985546B2 JP4350894A JP35089492A JP2985546B2 JP 2985546 B2 JP2985546 B2 JP 2985546B2 JP 4350894 A JP4350894 A JP 4350894A JP 35089492 A JP35089492 A JP 35089492A JP 2985546 B2 JP2985546 B2 JP 2985546B2
Authority
JP
Japan
Prior art keywords
powder
alloy powder
heating
transition metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4350894A
Other languages
Japanese (ja)
Other versions
JPH0681011A (en
Inventor
道也 久米
芳雄 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26365061&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2985546(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP4350894A priority Critical patent/JP2985546B2/en
Publication of JPH0681011A publication Critical patent/JPH0681011A/en
Application granted granted Critical
Publication of JP2985546B2 publication Critical patent/JP2985546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属間化合物粉末のみ
ならず、希土類金属を含む合金粉末の新規な製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing not only an intermetallic compound powder but also an alloy powder containing a rare earth metal.

【0002】[0002]

【従来の技術】一般に、希土類金属とFe、Co、Ni
等の遷移金属との金属間化合物又は合金は産業上有用な
材料であり、例えば、TbーFe−Coの薄膜は光磁気
メモリーに、Sm−Coは永久磁石に、La−Niは水
素貯蔵合金にと利用される。この場合、これらの金属間
化合物又は合金は粉末状態で求められることが多い。粉
末を得るためには、成分となる金属を溶融してインゴッ
トにした後、このインゴットを粉砕する方法が一般的で
あるが、直接粉末を得る方法としては、希土類酸化物粉
末と遷移金属粉末を混合し、これをカルシウム蒸気中で
加熱することで希土類酸化物を還元して遷移金属中に拡
散させる還元拡散法が知られている。
2. Description of the Related Art Generally, rare earth metals and Fe, Co, Ni
Intermetallic compounds or alloys with transition metals such as Tb—Fe—Co thin films for magneto-optical memory, Sm—Co for permanent magnets, and La—Ni for hydrogen storage alloys are industrially useful materials. Used with In this case, these intermetallic compounds or alloys are often required in a powder state. In order to obtain the powder, it is common to melt the metal as a component into an ingot and then pulverize the ingot.However, as a method of directly obtaining the powder, a rare earth oxide powder and a transition metal powder A reduction diffusion method is known in which a rare earth oxide is reduced by mixing and heating in a calcium vapor to diffuse the rare earth oxide into a transition metal.

【0003】還元拡散法は安価な希土類酸化物を使用す
ることや、合金が還元と同時にできるという利点があ
り、永久磁石用のSmCo5 金属間化合物又はSm−C
o合金の製造では広くこの方法が用いられる。しかし、
大きな製造単位で、即ち、大容量で還元拡散法を実施し
たり、或いは合金成分が複雑になってくると、どうして
も、均一な反応を行うことが困難となる問題がある。し
かも、反応副生成物であるCaOや未反応Caを除去す
るために水洗工程が必要であり、水に対し不安定な物質
では採用できない。例えば、Nd−Fe合金に適用する
と、反応そのものは完了するが、後の水洗工程で著しく
酸素量が増大してしまうという欠点がある。たとえ、水
分中の酸素量を極力減らすことができたり、有機溶媒等
で水洗工程を簡略化できたとしても、還元拡散法により
得られた合金粉末では、耐食性が根本的に改善されるも
のではなく、多くの場合、大気中に暴露しておくだけで
も酸素量が増大し、求められる物性或いは特性の発現が
著しく阻害されている。
[0003] The reduction diffusion method has the advantage of using an inexpensive rare earth oxide and the fact that an alloy can be formed at the same time as the reduction. Therefore, the SmCo5 intermetallic compound or Sm-C
This method is widely used in the production of o-alloys. But,
When the reduction diffusion method is performed in a large production unit, that is, in a large capacity, or when the alloy components become complicated, there is a problem that it is difficult to perform a uniform reaction. In addition, a water washing step is required to remove CaO and unreacted Ca, which are reaction by-products, and water-unstable substances cannot be used. For example, when applied to an Nd-Fe alloy, the reaction itself is completed, but there is a disadvantage that the amount of oxygen is significantly increased in a subsequent washing step. Even if the amount of oxygen in water can be reduced as much as possible, or even if the washing step can be simplified with an organic solvent, etc., the alloy powder obtained by the reduction diffusion method does not fundamentally improve the corrosion resistance. In many cases, exposure to the atmosphere alone increases the amount of oxygen, and significantly impairs the development of required physical properties or characteristics.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明の目的
とするところは、従来の還元拡散法を改善して均一な反
応を得、これにより、水洗工程を経ても酸素量の増大せ
ず、ひいては通常の大気中で水分に対し安定な合金粉末
を得ることのできる合金粉末の製造方法を提供すること
にある。
Therefore, an object of the present invention is to improve the conventional reduction-diffusion method to obtain a uniform reaction, whereby the amount of oxygen does not increase even after a water washing step. Further, it is an object of the present invention to provide a method for producing an alloy powder capable of obtaining an alloy powder which is stable against moisture in ordinary atmosphere.

【0005】[0005]

【発明を解決するための手段】本発明者等は、還元拡散
法の改善について鋭意研究を重ねた結果、テルミット法
に代表される酸化物の還元時の発熱によって反応を容易
ならしめることを還元拡散法に適用することの有用性を
見い出し、例えば、酸化鉄がCaにより還元されるとき
の発熱作用を積極的に利用して反応の均一化及び反応の
効率化を図り、しかも、水及び弱酸水溶液の水洗工程を
経ても酸素量が増大せず、通常の大気中で水分に対し安
定な合金粉末を得ることのできる合金粉末の製造方法を
完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the improvement of the reduction diffusion method. It finds usefulness in application to the diffusion method, for example, to make the reaction more uniform and more efficient by positively utilizing the exothermic effect when iron oxide is reduced by Ca, and furthermore, water and weak acid. Even after the aqueous solution washing step, the amount of oxygen does not increase, and a method for producing an alloy powder capable of obtaining an alloy powder stable to moisture in ordinary air has been completed.

【0006】即ち、本発明の製造方法は、希土類金属
と、Fe、Co及びNiの中からから選ばれた少なくと
も1種の金属とを均一に含んでなる合金粉末の製造方法
において、希土類酸化物粉と、上記遷移金属の金属粉
と、上記合金粉末における遷移金属の30原子%までの
範囲に相当する量である遷移金属の酸化物粉と、粒状の
Caとを混合し、この混合物をアルゴン雰囲気中で加熱
して上記遷移金属の酸化物の還元による自己発熱を誘引
させた後、引続いて600℃から1200℃の範囲内で
加熱し、その後、この反応生成物を水および弱酸水溶液
で処理するすることを特徴としている。
That is, the present invention provides a method for producing an alloy powder comprising a rare earth metal and at least one metal selected from the group consisting of Fe, Co and Ni. Powder, the transition metal powder, the transition metal oxide powder in an amount corresponding to a range of up to 30 atomic% of the transition metal in the alloy powder, and granular Ca are mixed, and the mixture is mixed with argon. After heating in an atmosphere to induce self-heating due to the reduction of the oxide of the transition metal, the mixture is subsequently heated in the range of 600 ° C. to 1200 ° C., and then the reaction product is diluted with water and a weak acid aqueous solution. It is characterized by processing.

【0007】また、本発明の製造方法は、アルゴン雰囲
気での600℃から1200℃の範囲内での加熱工程の
後、一度、冷却・真空排気してから、引き続いて、窒素
ガス雰囲気或いは窒素元素を含むガス雰囲気で大気圧以
上の圧力にて250℃から800℃の範囲内で上記混合
物を加熱する工程をさらに含んでいてもよい。
Further, according to the manufacturing method of the present invention, after a heating step in a range of 600 ° C. to 1200 ° C. in an argon atmosphere, the system is cooled and evacuated once, and then continuously in a nitrogen gas atmosphere or a nitrogen element. And heating the mixture at a pressure of at least atmospheric pressure in a gas atmosphere containing at least 250 ° C. to 800 ° C.

【0008】[0008]

【作用】Fe、Co、Niの遷移金属の酸化物の還元に
よる自己発熱により、希土類酸化物を還元して遷移金属
中に拡散させる還元拡散反応を容易ならしめると共に、
反応効率を高めることができる。
The self-heating caused by the reduction of the transition metal oxides of Fe, Co and Ni facilitates the reduction-diffusion reaction of reducing the rare earth oxide and diffusing it into the transition metal,
Reaction efficiency can be increased.

【0009】また、本発明の製造方法は、還元拡散反応
後に窒素又は窒素を含む雰囲気中での窒素処理を行って
もよく、これにより、水洗工程は勿論大気中に暴露して
おいても酸素量が増大しない希土類−Fe、Co、Ni
系合金粉末を製造することができる。
In the production method of the present invention, after the reduction-diffusion reaction, nitrogen treatment may be performed in an atmosphere containing nitrogen or nitrogen. Rare earths not increasing in amount-Fe, Co, Ni
Based alloy powder can be manufactured.

【0010】即ち、従来の還元拡散法によれば、副生成
物であるCaOは速やかに水と反応してCa(OH)2
になるが、未反応のCaは比較的緩慢に反応するので除
去に手間取り、ひいては純度の低下をもたらす原因にも
なっていたのに対し、本発明によれば、窒素処理を行っ
ているので、未反応のCaの大部分がCaN等の窒化物
になり、このCaN等の窒化物はCaOと同様に速やか
に水と反応するのでこの除去には極めて好都合である。
That is, according to the conventional reduction diffusion method, CaO, which is a by-product, quickly reacts with water to produce Ca (OH) 2
However, since unreacted Ca reacts relatively slowly, it takes time to remove it, which also causes a decrease in purity.On the other hand, according to the present invention, since nitrogen treatment is performed, Most of the unreacted Ca becomes nitride such as CaN, and the nitride such as CaN reacts with water as quickly as CaO, which is very convenient for the removal.

【0011】[0011]

【実施例】以下、本発明の実施例について、Nd−Fe
合金粉末の製造例から説明する。
EXAMPLES Examples of the present invention will now be described with reference to Nd-Fe.
An example of the production of an alloy powder will be described.

【0012】まず、目的とする組成に応じた割合でNd
2O3粉末とFe粉末とCa粉末とを混合する。この場
合、Feの原子量に対しに対し30原子%までの範囲に
てFe2O3又はFe3O4で置換する。これら酸化鉄がC
aにより還元されるときの反応熱により、全体として均
一な反応を行わしめることができ、外部エネルギーの節
約や収率の向上につながる。また、粒状のCa粉の混合
量については、希土類酸化物と、選択的に混合する金属
酸化物との酸化物を還元するに足ることが必要である
が、好適には、粒状のCaの混合量は、Nd2O3と、F
e2O3又はFe3O4と中の酸素原子の当量に対し1.5
倍程度が望ましい。
First, Nd is added at a ratio corresponding to the desired composition.
2O3 powder, Fe powder and Ca powder are mixed. In this case, substitution is made with Fe2 O3 or Fe3 O4 in a range up to 30 atomic% based on the atomic weight of Fe. These iron oxides are C
Due to the reaction heat at the time of reduction by a, a uniform reaction can be performed as a whole, which leads to saving of external energy and improvement of the yield. In addition, the mixing amount of the granular Ca powder needs to be sufficient to reduce the oxide of the rare earth oxide and the metal oxide to be selectively mixed. The quantities are Nd2O3 and F
1.5 relative to the equivalent of oxygen atoms in e2O3 or Fe3O4
About double is desirable.

【0013】このようにして得られた混合粉を真空排気
が可能な加熱容器中に配置する。加熱容器内を真空排気
した後、アルゴンガスを通じながら600℃から120
0℃の範囲内、望ましくは800℃から1000℃の範
囲内で数時間、好適には2時間程度加熱する。加熱温度
が600℃未満であると、酸化物の還元反応が進行せず
好ましくなく、一方、加熱温度が1200℃より越える
と、Caが飛散してしまい好ましくない。ここで、混合
粉、出発系にFe2O3又はFe3O4が適量入っているの
で、昇温途中で自己発熱し、効率的に均一な反応を行わ
しめることができる。Feに対して30原子%以上相当
のFe2O3又はFe3O4が混合されていると、極めて大
きな発熱により爆発あるいは飛散が起きて好ましくな
い。
[0013] The mixed powder thus obtained is placed in a heating vessel capable of evacuating. After evacuating the inside of the heating vessel, the temperature was reduced from 600 ° C. to 120 ° C. while passing argon gas.
The heating is performed within a range of 0 ° C., preferably within a range of 800 ° C. to 1000 ° C. for several hours, preferably for about 2 hours. When the heating temperature is lower than 600 ° C., the reduction reaction of the oxide does not proceed, which is not preferable. On the other hand, when the heating temperature is higher than 1200 ° C., Ca is scattered, which is not preferable. Here, since an appropriate amount of Fe2 O3 or Fe3 O4 is contained in the mixed powder and the starting system, self-heating occurs during the temperature rise, and a uniform reaction can be efficiently performed. If Fe2O3 or Fe3O4 equivalent to 30 atomic% or more of Fe is mixed, explosion or scattering occurs due to extremely large heat generation, which is not preferable.

【0014】次いで、加熱を止め、引き続いてアルゴン
ガス中で250℃から800℃の範囲内で、好ましくは
300℃から600℃の範囲内の一定の温度まで冷却し
て以後この温度で一定に保持する。その後、加熱容器を
再び真空排気した後、窒素ガスを導入する。導入するガ
スは窒素に限らず窒素原子を含むガス、例えば、アンモ
ニア、窒素と水素との混合ガスでもよい。大気圧以上の
圧力で窒素ガスを通じながら1時間以内、好適には30
分間程度加熱した後、加熱を停止し放冷する。窒素ガス
の圧力は特に規定さえるものではなく、高圧になれば、
処理時間を短くすることができる。
Then, the heating is stopped and subsequently cooled to a certain temperature in the range of 250 ° C. to 800 ° C., preferably in the range of 300 ° C. to 600 ° C. in argon gas, and thereafter kept at this temperature. I do. Thereafter, the heating vessel is evacuated again, and then nitrogen gas is introduced. The gas to be introduced is not limited to nitrogen, and may be a gas containing nitrogen atoms, for example, ammonia, or a mixed gas of nitrogen and hydrogen. Within 1 hour, preferably 30 minutes, while passing nitrogen gas at a pressure higher than atmospheric pressure.
After heating for about a minute, stop heating and allow to cool. The pressure of nitrogen gas is not particularly specified, and if it becomes high pressure,
Processing time can be shortened.

【0015】得られた反応生成物をイオン交換水に投入
し、これにより、反応生成物が直ちに崩壊し、合金粉末
とCa成分との分離が始まる。水中での撹拌、静置、上
澄み液の除去を数回繰り返し、最後に酢酸等の弱酸で処
理することにより、Ca成分の分離が完了する。得られ
た合金粉末は粒径がシャープに揃うと共に流動性のある
ものである。
The obtained reaction product is put into ion-exchanged water, whereby the reaction product immediately collapses and separation of the alloy powder and the Ca component starts. Stirring in water, standing, and removal of the supernatant liquid are repeated several times, and finally treatment with a weak acid such as acetic acid completes the separation of the Ca component. The obtained alloy powder has a sharp particle size and fluidity.

【0016】窒素又は窒素を含む雰囲気中での窒素処理
が水洗工程に先立ち行われていることにより、水洗工程
においても、酸素成分を含まない合金粉末が得られるこ
とに役立つ。即ち、従来、反応副生成物であるCaO等
のCa成分は速やかに水と反応してCa(OH)2 にな
るが、未反応のCaは比較的緩慢に反応するので除去に
手間取り、ひいては純度の低下をもたらす原因にもなっ
ていたのに対し、本発明の如く窒素処理を行っている
と、未反応のCaの大部分がCaN等の窒化物になり、
このCaN等の窒化物はCaOと同様に速やかに水と反
応するのでこの除去には極めて好都合である。
The fact that the nitrogen treatment in the atmosphere containing nitrogen or nitrogen is carried out prior to the water washing step contributes to obtaining an alloy powder containing no oxygen component even in the water washing step. That is, conventionally, a Ca component such as CaO, which is a reaction by-product, quickly reacts with water to produce Ca (OH) 2, but unreacted Ca reacts relatively slowly, so that it takes time to remove it, and thus purity. In contrast, when nitrogen treatment was performed as in the present invention, most of unreacted Ca became nitrides such as CaN,
Since the nitride such as CaN reacts with water as quickly as CaO, it is very convenient for the removal.

【0017】以下、本発明の具体例について従来と比較
しながら説明する。
Hereinafter, a specific example of the present invention will be described in comparison with a conventional example.

【0018】(実施例1)平均粒径1μmのNd2O3粉
23.15gと平均粒径30μmのFe粉37.17g
と平均粒径1μmのFe2O3粉3.42gとを混合し、
さらに粒状のCa16.28gを加えて充分に混合す
る。この混合粉のうち、Fe原子の中でFe2O3粉とし
て6.5原子%に相当し、また、Caの当量はNd2O3
中の酸素原子の当量に対し1.5倍である。混合物を軟
鋼製の坩堝に入れ、加熱容器中にセットする。加熱容器
内を1×10-2トル(Torr )以下まで真空排気した後、
アルゴンガスを導入し、大気圧で流通させる。
Example 1 23.15 g of Nd2O3 powder having an average particle size of 1 μm and 37.17 g of Fe powder having an average particle size of 30 μm
And 3.42 g of Fe 2 O 3 powder having an average particle size of 1 μm,
Further, 16.28 g of granular Ca is added and mixed well. Of the mixed powder, Fe atom was equivalent to 6.5 atom% as Fe 2 O 3 powder, and Ca equivalent was Nd 2 O 3
It is 1.5 times the equivalent of the oxygen atom in the medium. The mixture is placed in a mild steel crucible and set in a heating vessel. After evacuating the inside of the heating vessel to 1 × 10 -2 Torr or less,
Argon gas is introduced and circulated at atmospheric pressure.

【0019】加熱容器を加熱し、初期の昇温中620℃
から急激な自己発熱が見られ、系の温度は瞬間的に87
0℃に達する。以後850℃で2時間保持し続け、以後
アルゴンガスを流通させたままま冷却していく。500
℃になったらこの温度に保持を開始し、アルゴンガスの
流通を止めて直ちに加熱容器内を真空排気する。加熱容
器内が1×10-2トル(Torr )以下まで真空排気された
後、排気を止め、窒素ガスを導入し、大気圧で窒素ガス
が流通するようにし、その後、30分間の熱処理を行っ
てから加熱を止めて放冷する。
The heating vessel is heated and 620 ° C. during the initial heating.
, Rapid self-heating was observed, and the system temperature instantaneously rose to 87
Reach 0 ° C. Thereafter, the temperature is kept at 850 ° C. for 2 hours, and thereafter, cooling is performed while the argon gas is kept flowing. 500
When the temperature reaches ° C, the temperature is maintained, the flow of argon gas is stopped, and the inside of the heating vessel is immediately evacuated. After the inside of the heating vessel is evacuated to 1 × 10 -2 Torr or less, the evacuation is stopped, nitrogen gas is introduced, nitrogen gas flows at atmospheric pressure, and then heat treatment is performed for 30 minutes. Then stop heating and allow to cool.

【0020】得られた反応生成物は多孔質のブロック状
であって容易に坩堝から取り出すことができ、反応生成
物を3000ccのイオン交換水中に投入すると、直ち
に崩壊する。この時、反応生成物中のCaOと、ほとん
どをCaN等の窒化物とする未反応のCaとが微細なC
a(OH)2 に変わる。このスラリーを10分間撹拌し
た後、10分間静置し、微細なCa(OH)2 が浮遊し
ている上澄み液を捨てる。ここで再度3000ccのイ
オン交換水を加えて先と同様な操作を行う。数回、この
操作を繰り返した後、当初pH4.5に調整された酢酸
水溶液中で15分間撹拌、静置して上澄み液を捨てる。
この後再度水洗いを数回行ってCa分の除去が完了す
る。最後に、Ca分を除去した合金粉末をヌッチェにて
アルコール置換しながら水と分離し、分離したケーキを
80℃で真空乾燥し、これにより、Nd−Fe合金粉末
を得る。
The obtained reaction product is a porous block and can be easily taken out of the crucible. When the reaction product is put into 3000 cc of deionized water, it immediately disintegrates. At this time, CaO in the reaction product and unreacted Ca mostly composed of nitride such as CaN are fine C
a (OH) 2. After stirring this slurry for 10 minutes, it is left still for 10 minutes, and the supernatant liquid in which fine Ca (OH) 2 is floating is discarded. Here, 3000 cc of ion-exchanged water is added again, and the same operation as above is performed. After repeating this operation several times, the mixture is stirred for 15 minutes in an aqueous acetic acid solution initially adjusted to pH 4.5, allowed to stand, and the supernatant is discarded.
Thereafter, washing with water is performed several times again to complete the removal of the Ca content. Finally, the alloy powder from which the Ca component has been removed is separated from water while substituting alcohol with Nutsche, and the separated cake is vacuum dried at 80 ° C., thereby obtaining an Nd—Fe alloy powder.

【0021】こうして得られた合金粉末は50.15g
で、粒径を約50μmとする流動性の良い黒色粉末であ
った。化学分析によれば、Nd28.2%、Fe70.
1%、Ca0.07%及びO(酸素原子)0.56%で
あった。出発原料のNdとFeからに基づく収率は8
3.0%であった。
The obtained alloy powder weighs 50.15 g.
It was a black powder with good fluidity and a particle size of about 50 μm. According to chemical analysis, Nd 28.2%, Fe70.
1%, Ca 0.07% and O (oxygen atom) 0.56%. The yield based on the starting materials Nd and Fe is 8
3.0%.

【0022】(実施例2)平均粒径1μmのNd2O3粉
23.01gと平均粒径30μmのFe粉37.17g
及び平均粒径1μmのFe2O3粉6.43gを混合す
る。これら原料のFe原子のうちFe2O3に由来するも
のは13原子%である。さらにこれに粒状のCa19.
60gを加えて充分に混合する。Caの当量はNd2O3
及びFe2 O3 中の酸素原子の当量に対し1.5倍であ
る。以後、実施例1と全く同様の操作でアルゴンガスで
の加熱処理、窒素処理及び後処理を行ったが、初期の昇
温中570℃から急激な自己発熱が見られ、系の温度は
瞬間的に1070℃に達する。
Example 2 23.01 g of Nd 2 O 3 powder having an average particle size of 1 μm and 37.17 g of Fe powder having an average particle size of 30 μm
And 6.43 g of Fe2O3 powder having an average particle size of 1 .mu.m. Of the Fe atoms of these raw materials, those originating from Fe2 O3 account for 13 atomic%. Furthermore, granular Ca19.
Add 60 g and mix well. The equivalent of Ca is Nd2O3
And 1.5 times the equivalent of oxygen atoms in Fe2 O3. Thereafter, heat treatment with argon gas, nitrogen treatment, and post-treatment were performed in exactly the same manner as in Example 1, but rapid self-heating was observed from 570 ° C during the initial temperature increase, and the system temperature was instantaneously increased. Reaches 1070 ° C.

【0023】得られたNd−Fe合金粉末は54.76
gであって、粒径約50μmの流動性の良い黒色粉末で
あった。化学分析によれば、Nd28.1%、Fe6
9.9%、Ca0.12%及びO(酸素原子)0.88
%であった。出発原料のNdとFeからに基づく収率は
87.1%であった。
The obtained Nd—Fe alloy powder was 54.76.
g of a powder having a particle size of about 50 μm and having good fluidity. According to chemical analysis, Nd 28.1%, Fe6
9.9%, Ca 0.12% and O (oxygen atom) 0.88
%Met. The yield based on the starting materials Nd and Fe was 87.1%.

【0024】(実施例3)平均粒径1μmのSm2O3粉
22.88g、平均粒径30μmのFe粉38.64g
及び平均粒径1μmのFe2O3粉1.43gを混合す
る。これら原料のFe原子のうちFe2O3に由来するも
のは2.6原子%である。さらにこれに粒状のCa1
3.44gを加えて充分に混合する。Caの当量はSm
2O3及びFe2O3 中の酸素原子の当量に対し1.5倍
である。以後、実施例1と全く同様の操作を行ったが、
初期の昇温中690℃から急激な自己発熱が見られ、系
の温度は瞬間的に830℃に達する。
Example 3 22.88 g of Sm 2 O 3 powder having an average particle size of 1 μm and 38.64 g of Fe powder having an average particle size of 30 μm
And 1.43 g of Fe2O3 powder having an average particle size of 1 .mu.m. Of the Fe atoms in these raw materials, those derived from Fe2O3 are 2.6 atomic%. In addition, granular Ca1
Add 3.44 g and mix well. Ca equivalent is Sm
It is 1.5 times the equivalent of oxygen atoms in 2O3 and Fe2O3. Thereafter, the same operation as in Example 1 was performed,
Rapid self-heating is observed from 690 ° C. during the initial temperature rise, and the temperature of the system instantaneously reaches 830 ° C.

【0025】得られたSm−Fe合金粉末は54.26
gであって、粒径約50μmの流動性の良い黒色粉末で
あった。化学分析によれば、Sm28.5%、Fe7
0.0%、Ca0.11%及びO(酸素原子)0.36
%であった。出発原料のSmとFeからに基づく収率は
97.9%であった。
The obtained Sm-Fe alloy powder was 54.26.
g of a powder having a particle size of about 50 μm and having good fluidity. According to chemical analysis, Sm 28.5%, Fe7
0.0%, Ca 0.11% and O (oxygen atom) 0.36
%Met. The yield based on the starting materials Sm and Fe was 97.9%.

【0026】(実施例3)アルゴンガス中での加熱温度
を750℃とした以外は実施例1と同じ条件にて反応を
行った。得られた合金粉末は49.21gで、粒径を約
50μmとする流動性の良い黒色粉末であった。化学分
析によれば、Nd27.2%、Fe71.1%、Ca
0.11%及びO(酸素原子)0.71%であった。出
発原料のNdとFeからに基づく収率は81.4%であ
った。
Example 3 A reaction was performed under the same conditions as in Example 1 except that the heating temperature in argon gas was 750 ° C. The obtained alloy powder was 49.21 g, and was a black powder having good fluidity and a particle size of about 50 μm. According to chemical analysis, Nd 27.2%, Fe 71.1%, Ca
0.11% and O (oxygen atom) 0.71%. The yield based on the starting materials Nd and Fe was 81.4%.

【0027】(比較例1)実施例1と同じNdとFeの
原子量比率であってFe2O3粉を混合せずにNd−Fe
合金粉末を作製した。即ち、平均粒径1μmのNd2O3
粉23.15gと平均粒径30μmのFe粉39.44
gを混合し、さらに粒状のCa12.41gを加えて充
分に混合した。Caの当量はNd2O3中の酸素原子に対
して1.5倍である。その後の操作は実施例1と同様に
行った。
(Comparative Example 1) The same atomic weight ratio of Nd and Fe as in Example 1 was used, and Nd-Fe was used without mixing Fe2O3 powder.
An alloy powder was produced. That is, Nd2O3 having an average particle size of 1 .mu.m
23.15 g of powder and 39.44 of Fe powder having an average particle size of 30 μm
g of the mixture, and 12.41 g of granular Ca were added and mixed well. The equivalent of Ca is 1.5 times the oxygen atom in Nd2O3. Subsequent operations were performed in the same manner as in Example 1.

【0028】得られたNd−Fe合金粉末は46.22
gであって、粒径約50μmの赤黒色粉末であった。化
学分析によれば、Nd27.7%、Fe70.2%、C
a0.08%及びO(酸素原子)0.85%であった。
出発原料のNdとFeからに基づく収率は70.3%で
あった。
The obtained Nd—Fe alloy powder was 46.22.
g of red-black powder having a particle size of about 50 μm. According to chemical analysis, Nd 27.7%, Fe 70.2%, C
a 0.08% and O (oxygen atom) 0.85%.
The yield based on the starting materials Nd and Fe was 70.3%.

【0029】(比較例2)比較例1では、窒素処理をし
たが、窒素処理をしない比較例について述べる。
Comparative Example 2 In Comparative Example 1, a comparative example in which nitrogen treatment was performed but nitrogen treatment was not performed will be described.

【0030】平均粒径1μmのNd2O3粉23.15g
と平均粒径30μmのFe粉39.44gとを混合し、
さらに粒状のCa12.41gを加えて充分に混合す
る。この場合、比較例1と同様に、実施例1と同じNd
とFeの原子量比率であり、また、Caの当量はSm2
O3中の酸素原子の当量に対し1.5倍である。以後、
還元拡散反応後の窒素処理を除いて、実施例1と全く同
じ処理を行う。
23.15 g of Nd 2 O 3 powder having an average particle size of 1 μm
And 39.44 g of Fe powder having an average particle size of 30 μm,
Further, 12.41 g of granular Ca is added and mixed well. In this case, as in Comparative Example 1, the same Nd as in Example 1 was used.
And the atomic weight ratio of Fe, and the equivalent of Ca is Sm2
It is 1.5 times the equivalent of the oxygen atom in O3. Since then
Except for the nitrogen treatment after the reduction diffusion reaction, the same treatment as in Example 1 is performed.

【0031】得られたNd−Fe合金粉末は40.45
gであって、粒径約50μmの赤黒色粉末であった。化
学分析によれば、Nd15.12%、Fe82.1%、
Ca1.6%、O(酸素原子)0.86%であった。出
発原料のNdとFeに基づく収率は66.4%であっ
た。
The obtained Nd—Fe alloy powder was 40.45
g of red-black powder having a particle size of about 50 μm. According to chemical analysis, Nd 15.12%, Fe 82.1%,
Ca was 1.6% and O (oxygen atom) was 0.86%. The yield based on the starting materials Nd and Fe was 66.4%.

【0032】(比較例3)次に、実施例3と同じSmと
Feの原子量比率であってFe2O3粉を混合せずにSm
−Fe合金粉末を作製した比較例について述べる。
(Comparative Example 3) Next, the same atomic weight ratio of Sm and Fe as that of Example 3
-A comparative example in which an Fe alloy powder was produced will be described.

【0033】平均粒径1μmのSm2O3粉22.88g
と平均粒径30μmのFe粉39.73gを混合し、さ
らに粒状のCa11.83gを加えて充分に混合する。
Caの当量はSm2O3中の酸素原子の当量に対し1.5
倍である。以後、実施例3と全く同じ処理を行った。
22.88 g of Sm 2 O 3 powder having an average particle size of 1 μm
And 39.73 g of Fe powder having an average particle size of 30 μm, and 11.83 g of granular Ca are further added and sufficiently mixed.
The equivalent of Ca is 1.5 times the equivalent of the oxygen atom in Sm2O3.
It is twice. Thereafter, the same processing as in Example 3 was performed.

【0034】得られたSm−Fe合金粉末は51.22
gであって、粒径約50μmの赤黒色粉末であった。化
学分析によれば、Sm28.7%、Fe69.8%、C
a0.09%、O(酸素原子)0.33%であった。出
発原料のSmとFeに基づく収率は84.8%であっ
た。
The obtained Sm-Fe alloy powder was 51.22.
g of red-black powder having a particle size of about 50 μm. According to chemical analysis, Sm 28.7%, Fe 69.8%, C
a 0.09% and O (oxygen atom) 0.33%. The yield based on the starting materials Sm and Fe was 84.8%.

【0035】上述した実施例と比較例を比較することに
より、明らかなように、出発原料粉に酸化鉄を含めない
場合に比較して、本発明の実施例では、収率が高く、ま
た、均一な還元拡散反応が行われているため、得られた
合金粉末が均一な流動性のあるものが得られている。
It is apparent from the comparison between the above-described example and the comparative example that the yield of the example of the present invention is higher than that of the case where the starting material powder does not contain iron oxide, and Since the uniform reduction-diffusion reaction is performed, the obtained alloy powder has a uniform fluidity.

【0036】また、本発明の実施例では、得られた合金
粉末は、大気中に放置しておいても、酸素量がほとんど
変化せず、安定性のあるものであった。
In the examples of the present invention, the obtained alloy powder was stable even when left in the air, with little change in the oxygen content.

【0037】尚、上述の説明においては、希土類とF
e、Ni、Coとからなる合金粉末について説明した
が、本発明によれば、Fe、Ni、Coの中から選ばれ
た金属粉の一部がTi、Zr、Hf、V、Nb、Ta、
Cr、Mo、W、Mn、B、Al、Ca、In、Siお
よびCuの酸化物の形あるいは金属の形で置換すること
はしてもよいことは言うまでもなく可能であり、目的に
応じて各種組成の合金を製造し得る。
In the above description, rare earth and F
Although the alloy powder composed of e, Ni, and Co has been described, according to the present invention, part of the metal powder selected from Fe, Ni, and Co is Ti, Zr, Hf, V, Nb, Ta,
It is needless to say that it is possible to substitute in the form of oxides or metals of Cr, Mo, W, Mn, B, Al, Ca, In, Si and Cu. An alloy of the composition may be produced.

【0038】[0038]

【発明の効果】以上説明したように本発明によれば、従
来の還元拡散法を改善して均一な反応を得、これによ
り、水洗工程を経ても酸素量の増大せず、ひいては通常
の大気中で水分に対し安定な合金粉末を得ることのでき
る合金粉末の製造方法を提供することができる。
As described above, according to the present invention, the conventional reduction-diffusion method is improved to obtain a uniform reaction, whereby the amount of oxygen does not increase even after the water washing step, and the ordinary It is possible to provide a method for producing an alloy powder capable of obtaining an alloy powder stable in water.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B22F 9/20 B22F 1/00 C21B 15/02 C22C 1/00 C22C 28/00 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) B22F 9/20 B22F 1/00 C21B 15/02 C22C 1/00 C22C 28/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類金属と、Fe、Co及びNiの中
からから選ばれた少なくとも1種の金属とCaとを均一
に含んでなる合金粉末の製造方法において、希土類酸化
物粉と、上記遷移金属の金属粉と、上記合金粉末におけ
る遷移金属の30原子%までの範囲に相当する量である
遷移金属の酸化物粉と、粒状のCaとを混合し、この混
合物をアルゴン雰囲気中で加熱して上記遷移金属の酸化
物の還元による自己発熱を誘引させた後、引続いて60
0℃から1200℃の範囲内で加熱し、その後、窒素ガ
ス雰囲気あるいは窒素元素を含むガスの雰囲気で大気圧
以上の圧力にて250℃から800℃の範囲内で上記混
合物を加熱する窒素処理によって耐酸化処理と共に、カ
ルシウムの一部を窒化カルシウムとし、この反応生成物
を水および弱酸水溶液で処理し窒化カルシウムを溶出除
去することを特徴とする合金粉末の製造方法。
1. A method for producing an alloy powder comprising a rare earth metal, at least one metal selected from the group consisting of Fe, Co and Ni, and Ca, wherein the rare earth oxide powder and the transition A metal powder of a metal, an oxide powder of a transition metal corresponding to a range of up to 30 atomic% of the transition metal in the alloy powder, and granular Ca are mixed, and the mixture is heated in an argon atmosphere. After the self-heating by the reduction of the oxide of the transition metal is induced,
By heating in the range of 0 ° C. to 1200 ° C. and then in a nitrogen gas atmosphere or a gas atmosphere containing a nitrogen element, the mixture is heated in a range of 250 ° C. to 800 ° C. at a pressure higher than the atmospheric pressure and a temperature of 250 ° C. A method for producing an alloy powder, characterized in that a part of calcium is converted into calcium nitride together with an oxidation resistance treatment, and the reaction product is treated with water and a weak acid aqueous solution to elute and remove calcium nitride.
【請求項2】 希土類金属と、Fe、Co及びNiの中
からから選ばれた少なくとも1種の金属とCaを均一に
含んでなる合金粉末の製造方法において、希土類酸化物
粉と、上記遷移金属の金属粉と、上記合金粉末における
遷移金属の30原子%までの範囲に相当する量である遷
移金属の酸化物粉と、粒状のCaとを混合し、この混合
物をアルゴン雰囲気中で加熱して上記遷移金属の酸化物
の還元による自己発熱を誘引させた後、引続いて600
℃から1200℃の範囲内で加熱し、その後、冷却・真
空排気してから、引き続いて、窒素ガスの雰囲気あるい
は窒素元素を含むガスの雰囲気で大気圧以上の圧力にて
250℃から800℃の範囲内で上記混合物を加熱し、
この反応生成物を水および弱酸水溶液で処理することを
特徴とする合金粉末の製造方法。
2. A method for producing an alloy powder comprising a rare earth metal, at least one metal selected from the group consisting of Fe, Co and Ni, and Ca uniformly, wherein the rare earth oxide powder and the transition metal , A transition metal oxide powder in an amount corresponding to a range of up to 30 atomic% of the transition metal in the alloy powder, and granular Ca, and heating the mixture in an argon atmosphere. After inducing self-heating by the reduction of the oxide of the transition metal, 600
C. to 1200.degree. C., followed by cooling and evacuation, and subsequently at 250.degree. C. to 800.degree. C. in a nitrogen gas atmosphere or a gas atmosphere containing nitrogen element at a pressure higher than atmospheric pressure. Heating the mixture within the range,
A method for producing an alloy powder, comprising treating the reaction product with water and a weak acid aqueous solution.
JP4350894A 1992-01-18 1992-12-04 Manufacturing method of alloy powder Expired - Lifetime JP2985546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4350894A JP2985546B2 (en) 1992-01-18 1992-12-04 Manufacturing method of alloy powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2715992 1992-01-18
JP4-27159 1992-01-18
JP4350894A JP2985546B2 (en) 1992-01-18 1992-12-04 Manufacturing method of alloy powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11179706A Division JP2000026908A (en) 1999-06-25 1999-06-25 Alloy powder

Publications (2)

Publication Number Publication Date
JPH0681011A JPH0681011A (en) 1994-03-22
JP2985546B2 true JP2985546B2 (en) 1999-12-06

Family

ID=26365061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4350894A Expired - Lifetime JP2985546B2 (en) 1992-01-18 1992-12-04 Manufacturing method of alloy powder

Country Status (1)

Country Link
JP (1) JP2985546B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089747A1 (en) * 2000-05-24 2001-11-29 Kabushiki Kaisha Bridgestone Alloy powder for rare earth magnet and method for extracting the same
JP5912559B2 (en) 2011-03-30 2016-04-27 田中貴金属工業株式会社 Method for producing FePt-C sputtering target
TWI504768B (en) 2012-01-13 2015-10-21 Tanaka Precious Metal Ind FePt sputtering target and its manufacturing method
KR101717367B1 (en) 2015-08-19 2017-03-16 엘에스산전 주식회사 Static var compensator apparatus and operating method thereof
CN113510247B (en) * 2021-04-23 2022-11-22 兰州大学 Ce 2 Fe 17 And Ce 2 Fe 17 N 3 Preparation method of alloy powder

Also Published As

Publication number Publication date
JPH0681011A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
JP3304726B2 (en) Rare earth-iron-nitrogen magnet alloy
JPS61295308A (en) Production of alloy powder containing rare earth metal
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
EP0079487B1 (en) Hydriding body-centered cubic phase alloys at room temperature
JP2985546B2 (en) Manufacturing method of alloy powder
US4806155A (en) Method for producing dysprosium-iron-boron alloy powder
JP2985545B2 (en) Manufacturing method of alloy powder
JP2014080653A (en) Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder
JP2869966B2 (en) Manufacturing method of alloy powder
JP2000026908A (en) Alloy powder
JP2838616B2 (en) Method for producing alloy powder for rare earth permanent magnet
JP2838617B2 (en) Method for producing alloy powder for rare earth permanent magnet
JP2000034510A (en) Alloy powder
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPS62261101A (en) Manufacture of alloy powder for permanent magnet
JP3120546B2 (en) Manufacturing method of permanent magnet material
JPH06124815A (en) Manufacture of material powder of r-tm-b group permanent magnet
JP2650697B2 (en) Production method of high purity metallic chromium
JP2002038206A (en) Method for producing rare earth-transition metal- nitrogen-based alloy powder
JPH04191342A (en) Production of alloy containing rare earth metal by using reduction-diffusion process
JP3715331B2 (en) Method for producing raw powder for anisotropic bonded magnet
JP2000063914A (en) Production of rare earth alloy powder by reduction diffusing method
JPS619534A (en) Manufacture of permanent magnet alloy
JPS60100638A (en) Manufacture of permanent magnet alloy
JPH0765083B2 (en) Method for producing alloy powder for permanent magnet alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 13