NO904392L - PROCEDURE FOR CONDITIONING ALUMINUM ALUMINUM POWDER. - Google Patents

PROCEDURE FOR CONDITIONING ALUMINUM ALUMINUM POWDER.

Info

Publication number
NO904392L
NO904392L NO90904392A NO904392A NO904392L NO 904392 L NO904392 L NO 904392L NO 90904392 A NO90904392 A NO 90904392A NO 904392 A NO904392 A NO 904392A NO 904392 L NO904392 L NO 904392L
Authority
NO
Norway
Prior art keywords
solution
aluminum alloy
alloy powder
acid
powder
Prior art date
Application number
NO90904392A
Other languages
Norwegian (no)
Other versions
NO904392D0 (en
Inventor
Guenter Staniek
Uwe Hoppe
Karl Wefers
Original Assignee
Deutsche Forsch Luft Raumfahrt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Forsch Luft Raumfahrt filed Critical Deutsche Forsch Luft Raumfahrt
Publication of NO904392D0 publication Critical patent/NO904392D0/en
Publication of NO904392L publication Critical patent/NO904392L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/10Orthophosphates containing oxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

Oppfinnelsen angår kondisjonering av aluminium-legeringspulver. The invention relates to the conditioning of aluminum alloy powder.

Et problem med pulvermetallurgien i aluminiumlegeringer består i dannelse av et oksidsjikt på overflaten av de små pulverdelene. Dannelse av dette oksidet foregår allerede ved ytterst lave oksygenpartialtrykk og lar seg derfor i praksis ikke unngå. Ved lagring av pulvere forstørres sjiktene ytterligere gjennom hydroksiddannelse. Disse overflatesjikt-ene vanskeliggjør som relativt store bruddstykker en feilfri forbindelse mellom pulveroverflåtene i løpet av bearbeidingen til kompaktmaterialer ved pressing, smiing eller strengpressing. Det oppstår indre feil i strukturen og disse har negativ påvirkning på de mekaniske egenskapene til pro-duktene . A problem with powder metallurgy in aluminum alloys consists in the formation of an oxide layer on the surface of the small powder particles. Formation of this oxide already takes place at extremely low oxygen partial pressures and therefore cannot be avoided in practice. When storing powders, the layers are further enlarged through hydroxide formation. These surface layers, as relatively large broken pieces, make it difficult for a flawless connection between the powder surfaces during the processing into compact materials by pressing, forging or string pressing. Internal defects occur in the structure and these have a negative effect on the mechanical properties of the products.

Den til nå nesten utelukkende anvendte metoden for reduksjon av skadelig påvirkning av overflateoksid på de mekaniske egenskapene er varmebehandlingen av aluminium-legeringspulver i vakuum, den såkalte "utgassing". Virkningen av utgassingen består i at det oppstående duktile eller elastiske oksidsjiktet blir overført til et sprøtt oksidsjikt. Med vanlig bearbeiding av aluminium-legeringspulveret, f.eks. til profiler ved kaldisostatisk pressing, utgassing, varme-pressing og strengpressing, kan dette sprøe sjiktet bli oppdelt i flere mindre bruddstykker, som påvirker mindre negativt eller - ved egnet fordeling - fordelaktig i en dispersjonsherding de mekaniske egenskapene. Sammenligner man imidlertid egenskapene med rask størknet pulver før og etter konsolideringen (fortetning, kompaktering), kan man gå ut fra at en utgassingsbehandling bare er en provisorisk hjelpe-løsning og muliggjør ikke fullstendig utnyttelse av de oppnådde egenskapsforbedringene i pulveret. The until now almost exclusively used method for reducing the harmful effect of surface oxide on the mechanical properties is the heat treatment of aluminum alloy powder in vacuum, the so-called "outgassing". The effect of the outgassing is that the resulting ductile or elastic oxide layer is transferred to a brittle oxide layer. With normal processing of the aluminum alloy powder, e.g. to profiles by cold-isostatic pressing, outgassing, heat-pressing and strand pressing, this brittle layer can be divided into several smaller broken pieces, which affect the mechanical properties less negatively or - with suitable distribution - advantageously in a dispersion hardening. However, if one compares the properties of rapidly solidified powder before and after consolidation (densification, compaction), one can assume that an outgassing treatment is only a temporary auxiliary solution and does not enable full utilization of the achieved property improvements in the powder.

Oppgaven til foreliggende oppfinnelse er derfor å stille til rådighet en ytterligere mulighet med pulverbehandling eller pulverkondisjonering ved aluminium-legeringspulveret, der de kompakte materialene oppviser forbedrede mekaniske egenskaper, sammenlignet med de som er blitt fremstilt fra aluminium-legeringspulver som bare har blitt behandlet med utgassing. I tillegg har det omgivende oksidsjiktet på pulverdelene blitt forandret slik at man i den etterfølgende bearbeidingen bare trenger å anvende en lavere bearbeidings-temperatur. I det videre blir gassutviklingen (blæredannelse) i løpet av bearbeidingen redusert til et minimum. The task of the present invention is therefore to make available a further possibility of powder treatment or powder conditioning with the aluminum alloy powder, where the compact materials exhibit improved mechanical properties, compared to those that have been produced from aluminum alloy powder that has only been treated with outgassing. In addition, the surrounding oxide layer on the powder parts has been changed so that in the subsequent processing one only needs to use a lower processing temperature. Furthermore, gas evolution (blister formation) during processing is reduced to a minimum.

Oppgaven blir ifølge oppfinnelsen løst med en fremgangsmåte til kondisjonering av aluminium-legeringspulver, som er kjennetegnet ved aluminium-legeringspulveret blir behandlet som suspensjon i en oppløsning som består av et oksidasjonsmiddel eller en vandig oppløsning av et oksidasjonsmiddel og en organisk eller uorganisk syre ved en pH-verdi på < 4 og oppløsningen blir tørket etter atskillelse. According to the invention, the task is solved with a method for conditioning aluminum alloy powder, which is characterized by the aluminum alloy powder being treated as a suspension in a solution consisting of an oxidizing agent or an aqueous solution of an oxidizing agent and an organic or inorganic acid at a pH -value of < 4 and the solution is dried after separation.

Fremgangsmåten kan anvendes uten innskrenkning på pulver av alle typer aluminiumlegeringer. De til fremgangsmåten ifølge oppfinnelsen foretrukne anvendbare vanlige partikkel-størrelsene som egner seg til den etterfølgende bearbeidingen av egnede aluminium-legeringsstørrelse utgjør mindre enn 100 pm, fortrinnsvis mindre enn 20 pm. The method can be used without restriction on powders of all types of aluminum alloys. The preferred usable common particle sizes for the method according to the invention which are suitable for the subsequent processing of suitable aluminum alloy sizes are less than 100 pm, preferably less than 20 pm.

Optimale blandingsforhold av aluminium-legeringspulver til den anvendte oppløsningen utgjør dermed 1:2 til 2:1, fortrinnsvis 1:1. Optimum mixing ratios of aluminum alloy powder to the used solution are thus 1:2 to 2:1, preferably 1:1.

Som oksidasjonsmiddel blir det fortrinnsvis anvendt hydrogenperoksid som 30 vekt-# vandig oppløsning natriumperoksid (Na202) eller kaliumpermanganat (KMnO^. Som organiske syrer er fortrinnsvis maursyre (HCOOH) egnet, som uorganiske syrer viser det seg at ortofosforsyre er spesielt egnet. As an oxidizing agent, hydrogen peroxide is preferably used as a 30% aqueous solution of sodium peroxide (Na2O2) or potassium permanganate (KMnO2). As organic acids, formic acid (HCOOH) is preferably suitable, as inorganic acids it turns out that orthophosphoric acid is particularly suitable.

Ifølge oppfinnelsen blir oppløsningen fremstilt fraAccording to the invention, the solution is prepared from

30 vekt-# vandig hydrogenperoksidoppløsning og maursyre i vektforhold 1:2 til 1:10, fortrinnsvis 1:4; 30 vekt-# vandig hydrogenperoksidoppløsning og ortofosfor syre i vektforhold 100:10 til 100:1, fortrinnsvis 100:3; natriumperoksid og maursyre i vektforhold 1:5 til 1:30, fortrinnsvis 1:12; kaliumpermanganat og maursyre i vektforhold 1:100 til 10:100, fortrinnsvis 5:100; en 1 til 20 vekt-#, fortrinnsvis 5 vekt-$ vandig opp- løsning av natriumperoksid så vel som en tilsats av ortofosf orsyre, som blir valgt slik at pH i oppløsningen < 4, fortrinnsvis 3; en mettet vandig oppløsning av kaliumpermanganat så vel som en tilsats av ortofosforsyre, som blir valgt slik at pH i oppløsningen < 4, fortrinnsvis 3; - en 1 til 20 vekt-#, fortrinnsvis 1 til 10 vekt-£ vandig oppløsning av kromtrioksid under tilsats av ortofosforsyre i vektforhold 10:1 til 1:10, fortrinnsvis 4:1 til 1:4, særlig foretrukket 1:1,5 (CrC>3 : ortofosf orsyre). pH-verdien i oppløsningen utgjør dermed i hvert tilfelle < 4. 30 wt # of aqueous hydrogen peroxide solution and formic acid in a weight ratio of 1:2 to 1:10, preferably 1:4; 30 wt-# aqueous hydrogen peroxide solution and orthophosphorus acid in a weight ratio of 100:10 to 100:1, preferably 100:3; sodium peroxide and formic acid in a weight ratio of 1:5 to 1:30, preferably 1:12; potassium permanganate and formic acid in a weight ratio of 1:100 to 10:100, preferably 5:100; a 1 to 20 wt-#, preferably 5 wt-$ aqueous up- solution of sodium peroxide as well as an addition of orthophosphoric acid, which is chosen so that the pH of the solution < 4, preferably 3; a saturated aqueous solution of potassium permanganate as well as an addition of orthophosphoric acid, which is chosen so that the pH of the solution < 4, preferably 3; - a 1 to 20 wt-#, preferably 1 to 10 wt-£ aqueous solution of chromium trioxide with the addition of orthophosphoric acid in a weight ratio of 10:1 to 1:10, preferably 4:1 to 1:4, particularly preferred 1:1.5 (CrC>3 : orthophosphoric acid). The pH value in the solution is therefore < 4 in each case.

Aluminium-legeringspulveret blir ifølge oppfinnelsen satt i bevegelse med magnetrører, vibrasjonsrører eller ultraskall i 5 til 60 minutter og filtrert av. Behandlingen av aluminium-legeringspulveret foregår avhengig av den anvendte opp-løsningen ved en temperatur i området fra 10 til 100° C, fortrinnsvis ved 18 til 25°C. Avhengig av den eksoterme reaksjonen til behandlingsmidlet på overflaten av aluminium-legeringspulveret kan det dermed komme en temperaturstigning, hvorpå reaksjonsfortsettelsen er tydelig. Maursyre/KMn04-oppløsningen fører ved en reaksjonstemperatur på 80° C til gode resultater. Deretter blir det behandlede aluminium-legeringspulveret, før det blir underkastet en ytterligere bearbeiding, tørket ved en temperatur mellom 80 og 140°C, fortrinnvis ved en temperatur rundt 120°C i minst 10 timer. According to the invention, the aluminum alloy powder is set in motion with magnetic stirrers, vibrating stirrers or ultrashells for 5 to 60 minutes and filtered off. The treatment of the aluminum alloy powder takes place, depending on the solution used, at a temperature in the range from 10 to 100°C, preferably at 18 to 25°C. Depending on the exothermic reaction of the treatment agent on the surface of the aluminum alloy powder, a temperature rise may thus occur, after which the continuation of the reaction is evident. The formic acid/KMn04 solution leads to good results at a reaction temperature of 80° C. Then, before being subjected to further processing, the treated aluminum alloy powder is dried at a temperature between 80 and 140°C, preferably at a temperature around 120°C for at least 10 hours.

Virkningen av denne kjemiske behandlingen viser seg i de forandrede mekaniske egenskapene til streng-pressprofilene. Ved siden av den bedre fordelingen av bruddstykkene i overflateoksidsjiktet opptrer det ved oppvarming i løpet av bearbeidingen, spesielt ved strengepressing, mindre gass fra overflateoksidsjiktet. Et optimum blir oppnådd når dette gassutløpet uteblir fullstendig. The effect of this chemical treatment shows itself in the changed mechanical properties of the strand-press profiles. In addition to the better distribution of the fragments in the surface oxide layer, heating during processing, especially during strand pressing, results in less gas from the surface oxide layer. An optimum is achieved when this gas outlet is completely absent.

Virkningen av den kjemiske forbehandlingen ifølge oppfinnelsen på aluminium-legeringspulveret (pulver av Al-Fe-, Al-Cr— eller Al-Si-basis) på egenskapene til de derav utvunnede kompakte materialene blir fastslått gjennom strukturundersøkelser, strekkforsøk og bestemmelse av bruddseigheten. The effect of the chemical pre-treatment according to the invention on the aluminum alloy powder (Al-Fe-, Al-Cr- or Al-Si-based powder) on the properties of the compact materials extracted from it is determined through structural investigations, tensile tests and determination of the fracture toughness.

Strukturundersøkelsene blir gjennomført ved hjelp av lysmikroskopi, rasterelektronmikroskopi og gjennomstrålings-elektronmikroskopi av oksidsjiktet så vel som av aluminium-legeringspulveret selv og også fra de derav fremstilte strengpressprofilene. Dermed kan en spesielt enhetlig, fin struktur i strengpressprof ilen bli påvist og til og med en gunstig fordeling av restene oksidsjiktet på de tidligere pulverpartiklene. The structural investigations are carried out using light microscopy, scanning electron microscopy and transmission electron microscopy of the oxide layer as well as of the aluminum alloy powder itself and also from the extruded profiles produced from it. Thus, a particularly uniform, fine structure in the strand press profile can be demonstrated and even a favorable distribution of the residual oxide layer on the former powder particles.

I strekkforsøkene ble strekkgrensen ( 0, 2% tøyningsgrense), strekkfasthet og totaltøyning bestemt. Dermed viste det seg hver gang en minst lik fasthet sammenlignet med prøver som bare var utgasset ifølge teknikkens stand, så vel som en minst 15% forbedret tøyning. In the tensile tests, the tensile limit (0.2% strain limit), tensile strength and total strain were determined. Thus, each time an at least equal firmness was shown compared to samples that had only been outgassed according to the state of the art, as well as an at least 15% improved elongation.

Målingen av bruddseigheten (Kjc-verdi) ble gjennomført på "Short Rod"-prøver. Forbedringer av den kjemiske behandlingen fremtrer her sterkere som ved tøyningsforsøkene. The measurement of the fracture toughness (Kjc value) was carried out on "Short Rod" samples. Improvements in the chemical treatment appear here more strongly than in the stretching tests.

Til forsøkene ble et Al^Fe-legerIngspulver (15 pm midlere størrelsesdiameter) til rundstaver med 12 mm diameter presset sammen (direkte strengpresse, 400°C, presstrykk 1000 MPa spesifikk presskraft, omformingsforhold 21:1). Den målte bruddseighet for aluminium-legeringsprøven som bare var utgasset utgjorde dermed Kjc= 25 MPa *\/m, for kjemisk behandlede prøver (særlig med 30 vekt-# hydrogenperoksid/- maursyre) utgjorde verdien Kjc= 48 MPa<*>>/m. For the experiments, an Al^Fe alloy powder (15 pm average size diameter) was pressed together into round bars with a diameter of 12 mm (direct strand press, 400°C, pressing pressure 1000 MPa specific pressing force, conversion ratio 21:1). The measured fracture toughness for the aluminum alloy sample that was only outgassed was thus Kjc= 25 MPa *\/m, for chemically treated samples (especially with 30 wt-# hydrogen peroxide/- formic acid) the value was Kjc= 48 MPa<*>>/m .

Anvendingsmuligheter for fremgangsmåten ifølge oppfinnelsen finnes i hele pulvermetallurgien med aluminiumlegeringer, der problemet med oksidhuder foreligger ved alle aluminium-legeringspulvere. Den kjemiske virkningen beror dermed på to forløp, det tilsvarende valg av kjemikalier som blir forbundet til hverandre på forskjellige måter. For det ene blir det pulveroppstående overflatesjikt angrepet, oppløst eller modifisert, ved dysebehandling og lagring, for det andre er noen av kjemikaliene i stand til å frembringe nye overflateoksidsjikt, som oppviser gunstigere egenskaper med hensyn på konsolideringen av pulveret. Application possibilities for the method according to the invention can be found in the entire powder metallurgy with aluminum alloys, where the problem of oxide skins exists with all aluminum alloy powders. The chemical effect thus depends on two processes, the corresponding choice of chemicals that are connected to each other in different ways. On the one hand, the surface layer formed by the powder is attacked, dissolved or modified, during nozzle processing and storage, and on the other hand, some of the chemicals are able to produce new surface oxide layers, which exhibit more favorable properties with regard to the consolidation of the powder.

I de etterfølgende eksemplene er det angitt spesifikasjoner til praktisk gjennomføring av fremgangsmåten. I eksemplene ble det anvendt Al^Fe-pulver med en midlere partikkel-størrelse på 15 pm. pH-måling i eksemplene med maursyre som oppløsningsmiddel ble ikke foretatt. Med "maursyre" dreier det seg om konsentrert maursyre, med "hydrogenperoksid" dreier det seg om en 30 vekt-% vandig oppløsning. I alle tilfelle blir reaksjonsforløpet observert ved at temperaturen i suspensjonen blir registrert. In the following examples, specifications are given for the practical implementation of the method. Al^Fe powder with an average particle size of 15 pm was used in the examples. pH measurement in the examples with formic acid as solvent was not carried out. "Formic acid" refers to concentrated formic acid, "hydrogen peroxide" refers to a 30% by weight aqueous solution. In all cases, the course of the reaction is observed by recording the temperature in the suspension.

EksemplerExamples

A. Behandling av aluminium- legeringspulver med en blanding av A. Treatment of aluminum alloy powder with a mixture of

hydrogenperoksid- oppløsnlng og maursyrehydrogen peroxide solution and formic acid

400 g maursyre og 100 g hydrogenperoksidoppløsning blir blandet med hverandre kaldt og i denne oppløsningen blir 600 g Al^Fe-pulver suspendert. Under stadig omrøring blir prøven holdt i 30 minutter ved 20° C og deretter filtrert over en filternutsch, vasket med maursyre og deretter med aceton til pH-nøytralitet. Maursyren kan eventuelt etter tørking over kalsiumklorid bli tilbakevunnet ved destillasjon. Tørkingen av den således utvunnede aluminium-legeringspulveret foregår ved ca. 120°C i 12 timer. 400 g of formic acid and 100 g of hydrogen peroxide solution are mixed with each other cold and in this solution 600 g of Al^Fe powder is suspended. With constant stirring, the sample is kept for 30 minutes at 20°C and then filtered over a filter nutch, washed with formic acid and then with acetone to pH neutrality. The formic acid can possibly be recovered by distillation after drying over calcium chloride. The drying of the thus extracted aluminum alloy powder takes place at approx. 120°C for 12 hours.

B. Behandling av aluminium- legeringspulver med en blanding av B. Treatment of aluminum alloy powder with a mixture of

kaliumpermanganat og maursyrepotassium permanganate and formic acid

600 g Al^Fe-pulver blir suspendert i 400 g konsentrert maursyre og blandet under kraftig omrøring i løpet av 5 minutter med 6 g finoppdelt kaliumpermanganat. Suspensjonen blir deretter oppvarmet i ca. 10 minutter ved 80°C. Deretter blir suspensjonen filtrert over en filternutsch, vasket med maursyre og deretter med aceton og tørket ved en temperatur på 110°C i 15 timer. 600 g of Al^Fe powder is suspended in 400 g of concentrated formic acid and mixed with vigorous stirring for 5 minutes with 6 g of finely divided potassium permanganate. The suspension is then heated for approx. 10 minutes at 80°C. The suspension is then filtered over a filter nutch, washed with formic acid and then with acetone and dried at a temperature of 110°C for 15 hours.

C. Behandling av aluminium- legeringspulver med en blanding C. Treatment of aluminum alloy powder with a mixture

natriumperoksid og maursyresodium peroxide and formic acid

I 400 g maursyre blir under avkjøling 35 g fast natriumperoksid oppløst, brakt til romtemperatur og i denne løsningen blir 600 g Al^Fe-pulver suspendert. Viderebehandlingen foregår som beskrevet under A. In 400 g of formic acid, 35 g of solid sodium peroxide is dissolved during cooling, brought to room temperature and in this solution 600 g of Al^Fe powder is suspended. Further processing takes place as described under A.

D. Behandling av aluminium- legeringspulver med en blanding av D. Treatment of aluminum alloy powder with a mixture of

hydrogenperoksldoppløsnlng og ortofosforsyrehydrogen peroxide solution and orthophosphoric acid

Til 100 g hydrogenperoksidoppløsnig blir det under omrøring tilsatt 3 g ortofosforsyre og pH-verdien blir bestemt med < 3 (glasselektrode). Deretter blir i denne oppløsningen 100 g AlfcFe-pulver tilsatt og omrørt i 25 minutter ved 18°C. Suspensjonen blir deretter filtrert over en filternutsch, resten blir vasket nøytralt med aceton og tørket ved 120°C i II timer. To 100 g of hydrogen peroxide solution, 3 g of orthophosphoric acid is added while stirring and the pH value is determined with < 3 (glass electrode). Then, 100 g AlfcFe powder is added to this solution and stirred for 25 minutes at 18°C. The suspension is then filtered over a filter nutch, the residue is washed neutrally with acetone and dried at 120°C for II hours.

E. Behandling av aluminium- legeringspulver med en blanding av E. Treatment of aluminum alloy powder with a mixture of

vandig kaliumpermanganatoppløsning og ortofosforsyreaqueous potassium permanganate solution and orthophosphoric acid

Til 100 g friskt fremstilt, mettet kaliumpermanganatopp-løsning blir ortofosforsyre tilsatt i en mengde slik at pH-verdien i løsningen utgjør < 3 (måling med glasselektrode). I denne løsningen blir deretter 90 g aluminium-legeringspulver tilsatt og omrørt i 40 minutter ved 20°C. Etter filtrering og utvasking av filterresten med aceton blir det tørket i 15 timer ved 130°C. To 100 g of freshly prepared, saturated potassium permanganate top solution, orthophosphoric acid is added in an amount such that the pH value in the solution is < 3 (measurement with a glass electrode). In this solution, 90 g of aluminum alloy powder is then added and stirred for 40 minutes at 20°C. After filtering and washing out the filter residue with acetone, it is dried for 15 hours at 130°C.

F. Behandling av aluminium- legeringspulver med en blanding av F. Treatment of aluminum alloy powder with a mixture of

vandig natriumperoksidoppløsnlng og ortofosforsyreaqueous sodium peroxide solution and orthophosphoric acid

Til 100 ml frisk fremstilt, 5 vekt-56, vandig natriumperoksid-oppløsnlng blir ortofosforsyre tilsatt i en mengde slik at pH-verdien i løsningen utgjør < 3 (måling med glasselektrode). I denne løsningen blir deretter ved romtemperatur tilsatt 105 g aluminium-legeringspulver og omrørt i 25 minutter ved 18-22°C. Etter filtrering og utvasking av filterresten ble aluminium-legeringspulveret tørket i 13 timer ved 120°C. To 100 ml of freshly prepared, 5 wt-56, aqueous sodium peroxide solution, orthophosphoric acid is added in an amount such that the pH value in the solution is < 3 (measurement with a glass electrode). 105 g of aluminum alloy powder is then added to this solution at room temperature and stirred for 25 minutes at 18-22°C. After filtering and washing out the filter residue, the aluminum alloy powder was dried for 13 hours at 120°C.

G. Behandling av aluminium- legeringspulver med en blanding av G. Treatment of aluminum alloy powder with a mixture of

vandig kromtrloksld og ortofosforsyreaqueous chromium trioxide and orthophosphoric acid

Til 1000 ml destillert vann blir 35 g kromtrloksld (Cr03) tilsatt og deretter blandet med 50 g 85 vekt-% ortofosforsyre. pH-verdien i oppløsningen er dermed < 4. Til 250 ml av denne løsningen blir det deretter ved romtemperatur tilsatt 250 g aluminium-legeringspulver og omrørt i 5 minutter ved 50° C. Etter filtrering blir pulveret vasket med metanol og tørket i 24 timer ved 77°C. To 1000 ml of distilled water, 35 g of chromium trioxide (CrO3) is added and then mixed with 50 g of 85% by weight orthophosphoric acid. The pH value in the solution is thus < 4. To 250 ml of this solution, 250 g of aluminum alloy powder is then added at room temperature and stirred for 5 minutes at 50° C. After filtration, the powder is washed with methanol and dried for 24 hours at 77°C.

Claims (15)

1. Fremgangsmåte for kondisjonering av aluminium-legeringspulver, karakterisert ved at aluminium-legeringspulveret blir behandlet som suspensjon i en oppløsning som består av et oksidasjonsmiddel eller en vandig oppløsning av et oksidasjonsmiddel og en organisk eller uorganisk syre ved en pH-verdi ved < 4 og blir tørket etter atskillelse fra oppløsningen.1. Process for conditioning aluminum alloy powder, characterized in that the aluminum alloy powder is treated as a suspension in a solution consisting of an oxidizing agent or an aqueous solution of an oxidizing agent and an organic or inorganic acid at a pH value of < 4 and is dried after separation from the solution. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det som oksidasjonsmiddel blir anvendt hydrogenperoksid, natriumperoksid, kaliumpermanganat eller kromtrloksld.2. Method according to claim 1, characterized in that hydrogen peroxide, sodium peroxide, potassium permanganate or chromium trioxide is used as oxidizing agent. 3. Fremgangsmåte ifølge kravene 1 eller 2, karakterisert ved at det som organisk syre blir anvendt maursyre eller som uorganisk syre blir anvendt fosforsyre.3. Process according to claims 1 or 2, characterized in that formic acid is used as organic acid or phosphoric acid is used as inorganic acid. 4 . Fremgangsmåte ifølge kravene 1 til 3, karakterisert ved at et aluminium-legeringspulver med mindre enn 100 pm, fortrinnsvis mindre enn 20 pm partikkelstørrelse blir anvendt.4. Method according to claims 1 to 3, characterized in that an aluminum alloy powder with a particle size of less than 100 pm, preferably less than 20 pm, is used. 5 . Fremgangsmåte ifølge kravene 1 til 4, karakterisert ved at et vektforhold av aluminium-legeringspulver til oppløsning mellom 2:1 og 1:2, fortrinnsvis 1:1, blir anvendt.5 . Method according to claims 1 to 4, characterized in that a weight ratio of aluminum alloy powder to solution between 2:1 and 1:2, preferably 1:1, is used. 6. Fremgangsmåte ifølge kravene 1 til 5, karakterisert ved at behandlingen av aluminium-legerings pulveret blir foretatt ved en temperatur mellom 10 og 100°C, fortrinnsvis mellom 18 og 25°C.6. Method according to claims 1 to 5, characterized in that the treatment of the aluminum alloy powder is carried out at a temperature between 10 and 100°C, preferably between 18 and 25°C. 7. Fremgangsmåte ifølge kravene 1 til 5, karakterisert ved at behandlingen av aluminium-legeringspulveret blir foretatt ved 80°C.7. Method according to claims 1 to 5, characterized in that the treatment of the aluminum alloy powder is carried out at 80°C. 8. Fremgangsmåte ifølge kravene 1 til 7, karakterisert ved at tørking av det behandlede aluminium-legeringspulveret blir foretatt ved en temperatur mellom 80 og 140°C, fortrinnsvis ved 120°C.8. Method according to claims 1 to 7, characterized in that drying of the treated aluminum alloy powder is carried out at a temperature between 80 and 140°C, preferably at 120°C. 9. Fremgangsmåte ifølge kravene 1 til 8, karakterisert ved at det blir anvendt en oppløsning av 30 vekt-% vandig hydrogenperoksidoppløsning - og maursyre i vektforholdet 1:2 til 1:10, fortrinnsvis 1:4.9. Method according to claims 1 to 8, characterized in that a solution of 30% by weight aqueous hydrogen peroxide solution and formic acid is used in a weight ratio of 1:2 to 1:10, preferably 1:4. 10. Fremgangsmåte ifølge kravene 1 til 8, karakterisert ved at det blir anvendt en oppløsning av 30 vekt-% vandig hydrogenperoksidoppløsning og ortofosforsyre i vektforholdet 100:10 til 100:1, fortrinnsvis 100:3.10. Method according to claims 1 to 8, characterized in that a solution of 30% by weight aqueous hydrogen peroxide solution and orthophosphoric acid is used in a weight ratio of 100:10 to 100:1, preferably 100:3. 11. Fremgangsmåte Ifølge kravene 1 til 8, karakterisert ved at det blir anvendt en oppløsning av natriumperoksid og maursyre i vektforholdet 1:5 til 1:30, fortrinnsvis 1:12.11. Method According to claims 1 to 8, characterized in that a solution of sodium peroxide and formic acid is used in a weight ratio of 1:5 to 1:30, preferably 1:12. 12. Fremgangsmåte ifølge kravene 1 til 8, karakterisert ved at det blir anvendt en oppløsning av kaliumpermanganat og maursyre i vektforholdet 1:100 til 10:100, fortrinnsvis 6:100.12. Method according to claims 1 to 8, characterized in that a solution of potassium permanganate and formic acid is used in a weight ratio of 1:100 to 10:100, preferably 6:100. 13. Fremgangsmåte Ifølge kravene 1 til 8, karakterisert ved at det blir anvendt en 1 til 20 vekt-%, fortrinnsvis 5 vekt-% vandig oppløsning av natriumperoksid så vel som en tilsats av ortofosforsyre, som blir valgt slik at pH-verdien i oppløsningen utgjør < 4, fortrinnsvis 3.13. Method According to claims 1 to 8, characterized in that a 1 to 20% by weight, preferably 5% by weight, aqueous solution of sodium peroxide is used as well as an addition of orthophosphoric acid, which is chosen so that the pH value in the solution is < 4, preferably 3. 14 . Fremgangsmåte ifølge kravene 1 til 8, karakterisert ved at det blir anvendt en oppløsning av en mettet vandig oppløsning av kaliumpermanganat så vel som en tilsats av ortofosforsyre, som blir valgt slik at pH-verdien i oppløsningen utgjør < 4, fortrinnsvis 3.14 . Method according to claims 1 to 8, characterized in that a solution of a saturated aqueous solution of potassium permanganate is used as well as an addition of orthophosphoric acid, which is chosen so that the pH value in the solution is < 4, preferably 3. 15 . Fremgangsmåte ifølge kravene 1 til 8, karakterisert ved at det til en 1 til 20 vekt-%, fortrinnsvis 1 til 10 vekt-% vandig oppløsning av kromtrloksld blir tilsatt ortofosforsyre i vektforholdet 10:1 til 1:10, fortrinnsvis 4:1 til 1:4 og pH-verdien i oppløsningen utgjør < 4.15 . Method according to claims 1 to 8, characterized in that orthophosphoric acid is added to a 1 to 20% by weight, preferably 1 to 10% by weight aqueous solution of chromium trioxide in a weight ratio of 10:1 to 1:10, preferably 4:1 to 1 :4 and the pH value in the solution amounts to < 4.
NO90904392A 1989-10-13 1990-10-11 PROCEDURE FOR CONDITIONING ALUMINUM ALUMINUM POWDER. NO904392L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3934251A DE3934251C1 (en) 1989-10-13 1989-10-13

Publications (2)

Publication Number Publication Date
NO904392D0 NO904392D0 (en) 1990-10-11
NO904392L true NO904392L (en) 1991-04-15

Family

ID=6391433

Family Applications (1)

Application Number Title Priority Date Filing Date
NO90904392A NO904392L (en) 1989-10-13 1990-10-11 PROCEDURE FOR CONDITIONING ALUMINUM ALUMINUM POWDER.

Country Status (4)

Country Link
EP (1) EP0422629A1 (en)
JP (1) JPH03134101A (en)
DE (1) DE3934251C1 (en)
NO (1) NO904392L (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3879003A1 (en) * 2020-03-10 2021-09-15 Chemetall GmbH Improved method for increasing the concentration of iron(ii) ions in iron side phosphating systems and according phosphating plant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004332A (en) * 1958-09-02 1961-10-17 Bell Telephone Labor Inc Powder metallurgy process
GB1140052A (en) * 1966-04-07 1969-01-15 Foseco Int Treatment of aluminium and aluminium alloy powders
JPS6050176A (en) * 1983-08-27 1985-03-19 Pentel Kk Production of colored aluminum powder

Also Published As

Publication number Publication date
JPH03134101A (en) 1991-06-07
DE3934251C1 (en) 1991-01-24
NO904392D0 (en) 1990-10-11
EP0422629A1 (en) 1991-04-17

Similar Documents

Publication Publication Date Title
Cao et al. Reinforcement with graphene nanoflakes in titanium matrix composites
US5698088A (en) Formic acid-graphite intercalation compound
US6406612B1 (en) Expandable graphite and method
CN107159132B (en) CO 2/CO selective adsorbent and preparation method thereof
CN110144500B (en) Antimony-containing high-strength high-toughness aluminum-silicon alloy and preparation method thereof
Tiwari et al. Study of fabrication processes and properties of Al-CNT composites reinforced by carbon nano tubes-a review
JPWO2019138588A1 (en) Cellulose nanofibers and sheet-like materials made of them, and methods for producing them
WO2016106964A1 (en) Method for preparing polyvinyl chloride by suspension and polymerization, and feeding device
US20020038766A1 (en) Expandable graphite and method
KR101647747B1 (en) Surface modification method of aluminum oxide carrier
WO2001053200A1 (en) Method for producing artificial powder graphite
NO904392L (en) PROCEDURE FOR CONDITIONING ALUMINUM ALUMINUM POWDER.
CN106829938B (en) The method that overcritical sulfur hexafluoride stripping prepares graphene or graphene nanometer sheet
Wang et al. Formation of carbon micro-sphere chains by defluorination of PTFE in a magnesium and supercritical carbon dioxide system
JPS6369705A (en) Production of expanded graphite
US3247297A (en) Process for the preparation of metallic materials by compression of a magnesium or magnesium alloy powder
CN114507356A (en) Phenolphthalein-based polyaryletherketone-carbon nanotube graft and preparation method thereof, and polyetheretherketone heat-conducting composite material and preparation method thereof
Gangloff et al. The Influence of Environment Purity on Gaseous Iodine Embrittlement of Zircaloy-2 and High Purity Zirconium
CN116287827B (en) Heterostructure aluminum alloy with adjustable heterogeneity and preparation method thereof
NO145115B (en) PROCEDURE FOR AA REDUCE CREATION BY HEAT EXCHANGERS AND DEVICE FOR IMPLEMENTING THIS PROCEDURE
CN114790000B (en) High-temperature-resistant sealing material based on expanded graphite and preparation method thereof
CN115121788B (en) Preparation method of nano porous spherical tungsten
US3127242A (en) Method of treating magnesia
RU2691690C2 (en) Titanium alloy and the method of manufacturing the casing for products that experience cyclic loads
WO2020170985A1 (en) Activated carbon and method for producing same