JPH03131062A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03131062A
JPH03131062A JP26948889A JP26948889A JPH03131062A JP H03131062 A JPH03131062 A JP H03131062A JP 26948889 A JP26948889 A JP 26948889A JP 26948889 A JP26948889 A JP 26948889A JP H03131062 A JPH03131062 A JP H03131062A
Authority
JP
Japan
Prior art keywords
region
semiconductor device
film
type mosfet
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26948889A
Other languages
Japanese (ja)
Inventor
Juri Kato
樹理 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26948889A priority Critical patent/JPH03131062A/en
Publication of JPH03131062A publication Critical patent/JPH03131062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the existence of a parasitic bipolar transistor, and to obviate a latch-up by covering all regions of the undersides and side faces of a bipolar transistor region, an N-type MOSFET re gion and a P-type MOSFET region with insulating films in a semiconductor device composed of Bi-CMOS. CONSTITUTION:A thermal oxide SiO2 film 12 and a single crystal Si thin-film 14, an underside of which has an N<+> diffusion layer 13, are formed onto an Si substrate 11. Si is removed selectively in the element isolation regions of the Si thin-film 14, trenches are shaped, and the trenches are buried with an insulating film 15. The trenches are formed up to SiO2 12, and all regions of undersides, side faces and top faces are also surrounded by thermal oxide film SiO2 in the Si thin-film layer 14 with the N<+> diffusion layer 13 through thermal oxidation. All sections of undersides and side faces and top faces except contact holes for connecting wirings are surrounded by the insulating film in a bipolar transistor region, an N-type MOSFET region and a P-type MOSFET region. There is no parasitic bipolar, and a latch-up is avoided. The element isolation region 15 can be brought to small width of 1mum or less, thus allowing the scale- down of a Bi-CMOS semiconductor device.

Description

【発明の詳細な説明】 C産業上の利用分野1 本発明は、半導体装置及びその製造方法に関する。特に
、B 1−CMOSからなる高速大規模集積回路(LS
I)において有効である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application 1 The present invention relates to a semiconductor device and a method for manufacturing the same. In particular, high-speed large-scale integrated circuits (LS
I) is valid.

r従来の技術〕 従来のB1−CMOSからなる半導体装置の断面図を第
5図に示す、基板31には、n9埋め込み層32、B0
埋め込み層33がエピタキシャル成長により形成され、
nウェル34、Pウェル35形成後、フィールド酸化膜
39、ゲート1f極37を形成する。その後コレクタn
0拡散層45、ベースP0拡散層40を形成、MOSF
ETのソースドレインP′″拡散層43、n′″拡散層
44を形成後、第2層目の多結晶シリコンによるエミツ
タ層42が形成され、これらのバイポーラ、MOSFE
Tはパッシベーション膜38で覆われ、コンタクト穴を
通して、配線層と接続する。
rPrior art] FIG. 5 shows a cross-sectional view of a conventional semiconductor device made of B1-CMOS.
A buried layer 33 is formed by epitaxial growth,
After forming the n-well 34 and the p-well 35, a field oxide film 39 and a gate 1f pole 37 are formed. Then collector n
0 diffusion layer 45, base P0 diffusion layer 40 formed, MOSF
After forming the source/drain P''' diffusion layer 43 and n''' diffusion layer 44 of the ET, a second layer of emitter layer 42 made of polycrystalline silicon is formed, and these bipolar and MOSFE
T is covered with a passivation film 38 and connected to the wiring layer through the contact hole.

[発明が解決しようとする課題] 従来のB1−CMOS構造では、バイポーラと基板間、
n型MOSとバイポーラ間、P型MO3とn型MO5間
に寄生バイポーラトランジスタが存在する。このため雑
音電流があるレベルを超えると、寄生バイポーラトラン
ジスタが導通して、電流端子から接地端子に定常的な大
電流が流れ、いわゆるラッチアップの不具合を発生する
。従来は、バイポーラ、P型MO5,n型MOSの平面
寸法を充分大きく取り、寄生バイポーラの増幅率を小さ
くすることによりラッチアップを回避してきた。このた
め素子間の分離幅が大きく、Bi−CMO5半導体装置
の縮小化、高集積化が困難であった。
[Problem to be solved by the invention] In the conventional B1-CMOS structure, between the bipolar and the substrate,
A parasitic bipolar transistor exists between the n-type MOS and the bipolar transistor and between the P-type MO3 and the n-type MO5. Therefore, when the noise current exceeds a certain level, the parasitic bipolar transistor becomes conductive and a steady large current flows from the current terminal to the ground terminal, causing a so-called latch-up problem. Conventionally, latch-up has been avoided by making the planar dimensions of the bipolar, P-type MO5, and n-type MOS sufficiently large and reducing the amplification factor of the parasitic bipolar. Therefore, the separation width between elements is large, making it difficult to downsize and highly integrate Bi-CMO5 semiconductor devices.

本発明は、かかる従来の不具合を回避し、ラッチアップ
の生じない高信頼性な高集積化されたBi−CMO3半
導体装置を提供することを目的とする。
An object of the present invention is to avoid such conventional problems and provide a highly reliable and highly integrated Bi-CMO3 semiconductor device that does not cause latch-up.

[課題を解決するための手段] 本発明によれば、Bi−0MO5からなる半導体装置に
おいて、バイポーラトランジスタ領域、n型MOSFE
T領域、及びP型MOSFET領域は、各々、下面及び
側面のすべての領域が絶縁膜で覆われている。このため
第4図に示すように、本発明では寄生バイポーラトラン
ジスタが存在せずラッチアップが発生しない、また、P
、 nMOSFET、バイポーラトランジスタ各々の領
域は、上面の配線接続だめのコンタクト穴領域を除く、
全面(上、下、側面)が熱酸化膜で覆われている。特に
CZ、MCZ、FZのシリコン基板の熱酸化膜Sin、
で囲まれている時は、Si基板と熱酸化SiO,lIi
の安定した界面を持つので、界面または表面リークを最
小限に抑制でき、高信頼性半導体装置を得る。
[Means for Solving the Problems] According to the present invention, in a semiconductor device made of Bi-0MO5, a bipolar transistor region, an n-type MOSFE
The entire bottom and side surfaces of the T region and the P-type MOSFET region are each covered with an insulating film. Therefore, as shown in FIG. 4, in the present invention, there is no parasitic bipolar transistor and latch-up does not occur.
, nMOSFET, and bipolar transistor, except for the contact hole area for wiring connection on the top surface.
The entire surface (top, bottom, and sides) is covered with a thermal oxide film. Especially thermal oxide film Sin of silicon substrate of CZ, MCZ, FZ,
When surrounded by Si substrate and thermally oxidized SiO, lIi
Since the semiconductor device has a stable interface, interface or surface leakage can be minimized and a highly reliable semiconductor device can be obtained.

〔実 施 例〕〔Example〕

以下、実施例を用いて本発明を説明する。第1〜4図は
、本発明による半導体装置の製造工程断面図であり、第
4図は本発明によるBi−CMO8半導体装置の断面図
である。断面図のフローに従って本発明による半導体装
置の製造方法を説明する。第1図では、CZ、MCZ、
またはFZいずれかのSi基板1及びn9拡散層4が全
面に形成されたSi基板5上には、各々熱酸化膜SiO
□2.3が形成されている。第2図では、Si基板1と
St基板表面を接触させ、熱処理により接着させた後、
Si基板5を研削することにより、Si基板11上には
熱酸化5iOa膜12、及び、下面に00拡散層13を
有する、単結晶Sil膜14が形成される。第3図では
、該Si薄膜14の素子分離領域は、選択的にSiが除
去され溝を形成後、絶縁膜15で溝を埋め込む、溝をS
iO*12まで形成後、熱酸化を行なえば、n3拡散層
13を有する該Si薄膜層14は、下面、側面、上面い
ずれの領域も熱酸化膜5102で囲まれることになる。
The present invention will be explained below using examples. 1 to 4 are cross-sectional views of the manufacturing process of a semiconductor device according to the present invention, and FIG. 4 is a cross-sectional view of a Bi-CMO8 semiconductor device according to the present invention. A method for manufacturing a semiconductor device according to the present invention will be explained according to a flowchart of a cross-sectional view. In Figure 1, CZ, MCZ,
A thermal oxide film SiO
□2.3 is formed. In FIG. 2, the surfaces of the Si substrate 1 and the St substrate are brought into contact and bonded by heat treatment, and then
By grinding the Si substrate 5, a thermally oxidized 5iOa film 12 and a single crystal Sil film 14 having a 00 diffusion layer 13 on the lower surface are formed on the Si substrate 11. In FIG. 3, in the element isolation region of the Si thin film 14, Si is selectively removed to form a groove, and then the groove is filled with an insulating film 15.
If thermal oxidation is performed after forming up to iO*12, the Si thin film layer 14 having the n3 diffusion layer 13 will be surrounded by a thermal oxide film 5102 on the lower surface, side surfaces, and upper surface.

第4図では、nウェル1t、Pウェル16を形成、ゲー
ト電極18、コレクタn′″拡散領域20.ベースP4
拡散領域21を形成し、ソースドレインP0拡散層23
、n4拡散層22を形成後、第2層の多結晶5i25及
びエミッタを形成し、パッシベーションSiO□19.
24で覆われている。この後は、パッシベーション膜に
設けられたコンタクト穴を通して、配線層と接続するこ
とになる0本発明の製造方法による、本発明による半導
体装置は、バイポーラトランジスタ領域、n型MOSF
ET領域、P型MOSFET領域は、各々、下面及び側
面のすべての部分、及び、配線接続のためのコンタクト
穴を除いた上面が、絶縁膜で囲まれる。このため、寄生
バイポーラが存在せずラッチアップを回避する。従って
素子分離領域15は、1μm以下の小さな幅にすること
が可能であり、Bi−CMO5半導体装置の縮小化が可
能になる6本発明によればコレクタn9拡散層20は、
バイポーラトランジスタ下面全面に拡がっている。n°
拡散層13と接続しているため、大きな増幅率を得るこ
とができる。またnウェル17の領域下面には、高濃度
n゛拡散層13が存在するためnウェルの電位は安定す
る。Pウェル16においても下面にn″″拡散層が存在
するため、コレクタ20形成時に、電源または、接地端
子のn0層を形成しておけば、Pウェルの電位を安定さ
せることができる。
In FIG. 4, an n well 1t, a p well 16 are formed, a gate electrode 18, a collector n'' diffusion region 20, a base P4
A diffusion region 21 is formed, and a source/drain P0 diffusion layer 23 is formed.
, after forming the n4 diffusion layer 22, a second layer of polycrystalline 5i 25 and an emitter are formed, and passivation SiO□19.
It is covered with 24. After this, the semiconductor device according to the present invention, which is manufactured by the manufacturing method of the present invention, is connected to the wiring layer through the contact hole provided in the passivation film.
The ET region and the P-type MOSFET region are each surrounded by an insulating film on all portions of the lower surface and side surfaces, and on the upper surface except for contact holes for wiring connection. Therefore, there is no parasitic bipolar and latch-up is avoided. Therefore, the element isolation region 15 can have a small width of 1 μm or less, making it possible to downsize the Bi-CMO5 semiconductor device.6 According to the present invention, the collector n9 diffusion layer 20 is
It spreads over the entire bottom surface of the bipolar transistor. n°
Since it is connected to the diffusion layer 13, a large amplification factor can be obtained. Further, since the high concentration n' diffusion layer 13 exists on the lower surface of the n-well 17, the potential of the n-well is stabilized. Since an n″″ diffusion layer exists on the lower surface of the P well 16, the potential of the P well can be stabilized by forming an n0 layer for a power supply or ground terminal when forming the collector 20.

〔発明の効果] 本発明の製造方法及び半導体装置は、上で説明したよう
に、寄生バイポーラトランジスタが存在せず、高集積化
してもラッチアップの不具合が生じない、またSi薄膜
14のアクティブ領域は、Si基板の熱酸化膜S i 
Ox / S i界面からなり、界面リークが抑制でき
る。さらに、バイポーラ領域、nウェル、Pウェル領域
の各々の下面にはn0拡散層が存在するため、バイポー
ラトランジスタでは大きな増幅率を得、両ウェルの電位
は安定する。従って本発明は、ラッチアップの生じない
高速かつ高信頼性な高集積Bi−CMO3からなる半導
体装置及びその製造方法を提供する。
[Effects of the Invention] As explained above, the manufacturing method and semiconductor device of the present invention have no parasitic bipolar transistor, no latch-up problem occurs even when highly integrated, and an active region of the Si thin film 14. is the thermal oxide film S i of the Si substrate
Consisting of an Ox/Si interface, interfacial leakage can be suppressed. Furthermore, since there is an n0 diffusion layer on the bottom surface of each of the bipolar region, n-well, and p-well region, the bipolar transistor obtains a large amplification factor and the potential of both wells becomes stable. Therefore, the present invention provides a high-speed, highly reliable semiconductor device made of highly integrated Bi-CMO3 that does not cause latch-up, and a method for manufacturing the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はそれぞれ本発明による半導体装置の製
造工程断面図。 第5図は従来の半導体装置の断面図。 1.5・・・・半導体基板 2.3・・・・絶縁膜 4・・・・・・n゛拡散層 11・・・・・Si基板 12・・・・・Stow 13・・・・・n0拡敢層 14・・・・・St薄膜 15・・・・・5ift 16・・・・・Pウェル 17・・・・・nウェル 18・・・・・ゲート電極 19.24・・Sing 20・・・・・n0拡散層 21・・・・・P99拡敢 25・・・・・POLY−3iエミツタ22・・・・・
n0拡散層 23・・・・・P゛拡散層 31・・・・・Si基板 32・・・・・n′″埋め込み層 33・・・・・P9埋め込み層 34・・・・・nウェル 35・・・・・Pウェル 37・・・・・ゲート電極 38.39・・SiO□ 40・・・・・P°拡散層 41・・・・・n+拡散層 42・・・・・エミッタPOLY−Si43・・・・・
P00拡散 44・・・・・n′″拡散層 45・・・・・n0拡敢層 以
1 to 4 are sectional views showing the manufacturing process of a semiconductor device according to the present invention, respectively. FIG. 5 is a sectional view of a conventional semiconductor device. 1.5... Semiconductor substrate 2.3... Insulating film 4... n Diffusion layer 11... Si substrate 12... Stow 13... n0 expansion layer 14...St thin film 15...5ift 16...P well 17...n well 18...gate electrode 19.24...Sing 20 ......n0 diffusion layer 21...P99 expansion 25...POLY-3i emitter 22...
n0 diffusion layer 23...P'' diffusion layer 31...Si substrate 32...n''' buried layer 33...P9 buried layer 34...n well 35 ...P well 37...Gate electrode 38.39...SiO□ 40...P° diffusion layer 41...N+ diffusion layer 42...Emitter POLY- Si43...
P00 diffusion 44...n''' diffusion layer 45...n0 diffusion layer and above

Claims (3)

【特許請求の範囲】[Claims] (1)バイポーラ及び相補型MOSFETからなる半導
体装置(以下Bi−CMOSと呼ぶ)において、バイポ
ーラ領域、n型MOSFET領域、及び、P型MOSF
ET領域は、各々別々に分離され、配線接続のためのコ
ンタクト穴領域を除いた上面、下面及び側面のすべての
部分が絶縁膜に囲まれてなることを特徴とする半導体装
置。
(1) In a semiconductor device consisting of bipolar and complementary MOSFETs (hereinafter referred to as Bi-CMOS), a bipolar region, an n-type MOSFET region, and a p-type MOSFET
1. A semiconductor device characterized in that the ET regions are separated from each other, and all of the upper surface, lower surface, and side surfaces except for contact hole regions for interconnection are surrounded by an insulating film.
(2)Bi−CMOSからなる半導体装置において、バ
イポーラ領域、P型MOSFET領域、及びn型MOS
FET領域のすべての領域の下面にはn^+拡散層が形
成されてなることを特徴とする請求項1記載の半導体装
置。
(2) In a semiconductor device made of Bi-CMOS, a bipolar region, a P-type MOSFET region, and an n-type MOS
2. The semiconductor device according to claim 1, wherein an n^+ diffusion layer is formed on the lower surface of all regions of the FET region.
(3)Bi−CMOSからなる半導体装置において、バ
イポーラ領域、n型MOSFET領域、及び、P型MO
SFET領域は、各々、下面及び側面のすべての部分、
及び、配線接続のためのコンタクト穴領域を除いた上面
が、半導体基板の熱酸化膜で囲まれてなることを特徴と
する請求項1記載の半導体装置。
(3) In a semiconductor device made of Bi-CMOS, a bipolar region, an n-type MOSFET region, and a p-type MOSFET
The SFET regions include all parts of the bottom and side surfaces, respectively;
2. The semiconductor device according to claim 1, wherein the upper surface of the semiconductor substrate excluding a contact hole region for wiring connection is surrounded by a thermal oxide film of the semiconductor substrate.
JP26948889A 1989-10-17 1989-10-17 Semiconductor device Pending JPH03131062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26948889A JPH03131062A (en) 1989-10-17 1989-10-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26948889A JPH03131062A (en) 1989-10-17 1989-10-17 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP37119299A Division JP2000156424A (en) 1999-01-01 1999-12-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03131062A true JPH03131062A (en) 1991-06-04

Family

ID=17473140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26948889A Pending JPH03131062A (en) 1989-10-17 1989-10-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03131062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10444031B2 (en) 2014-09-16 2019-10-15 Hitachi Automotive Systems, Ltd. Sensor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10444031B2 (en) 2014-09-16 2019-10-15 Hitachi Automotive Systems, Ltd. Sensor device
EP3196728B1 (en) * 2014-09-16 2020-12-02 Hitachi Automotive Systems, Ltd. Sensor device

Similar Documents

Publication Publication Date Title
JP2788269B2 (en) Semiconductor device and manufacturing method thereof
US5525824A (en) Semiconductor device with isolation regions
JPS62291171A (en) Lateral transistor
JPH1070245A (en) Integrated circuit including device dielectrically insulated from substrate and junction insulated device
JPH03214666A (en) Semiconductor device containing charge transfer device and manufacture thereof
JP3864430B2 (en) Manufacturing method of semiconductor device
JP2003197759A (en) Semiconductor device
JP3161091B2 (en) Semiconductor integrated circuit device
JPH03131062A (en) Semiconductor device
JPH11330383A (en) Semiconductor device
JPS5949702B2 (en) Semiconductor integrated circuit device
US5008724A (en) Semiconductor device
JPH0530075B2 (en)
JP4424277B2 (en) Semiconductor device and bonded wafer
JP2001007219A (en) Semiconductor device and manufacture thereof
JP3438359B2 (en) Semiconductor device
JP2000156424A (en) Manufacture of semiconductor device
JPS59144168A (en) Bipolar mos semiconductor device and manufacture thereof
JPH0534115Y2 (en)
JPS6334949A (en) Semiconductor device
JPH0794741A (en) Semiconductor device
JPH03120752A (en) Semiconductor device and manufacture thereof
JPS62104068A (en) Semiconductor integrated circuit device
JPH02170571A (en) Semiconductor device and manufacture thereof
JP2678081B2 (en) Semiconductor integrated circuit device