JPH03131031A - Thin-film wiring, manufacture thereof and semiconductor device - Google Patents

Thin-film wiring, manufacture thereof and semiconductor device

Info

Publication number
JPH03131031A
JPH03131031A JP26997289A JP26997289A JPH03131031A JP H03131031 A JPH03131031 A JP H03131031A JP 26997289 A JP26997289 A JP 26997289A JP 26997289 A JP26997289 A JP 26997289A JP H03131031 A JPH03131031 A JP H03131031A
Authority
JP
Japan
Prior art keywords
melting point
high melting
thin film
layer
film wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26997289A
Other languages
Japanese (ja)
Other versions
JP2936483B2 (en
Inventor
Motohiro Suwa
元大 諏訪
Yasushi Kawabuchi
靖 河渕
Hitoshi Onuki
仁 大貫
Katsuhiko Shioda
塩田 勝彦
Shinichi Fukada
晋一 深田
Masayasu Nihei
二瓶 正恭
Kunio Miyazaki
邦夫 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17479792&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03131031(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26997289A priority Critical patent/JP2936483B2/en
Publication of JPH03131031A publication Critical patent/JPH03131031A/en
Application granted granted Critical
Publication of JP2936483B2 publication Critical patent/JP2936483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the extension of a slit due to electro-migration by directly bringing a high melting-point substance layer having a specific melting point and a good conductive alloy layer into contact and unifying them. CONSTITUTION:A high melting-point substance layer 4 having the melting point of 1800K or higher and a good conductive alloy layer 5 are brought into contact directly and unified. That is, the high melting-point substance layer 4 and the good conductive alloy layer 5 are laminated directly without through an oxide film. These direct contact is formed by reducing a spontaneous oxide film shaped onto the high melting-point substance layer 4 by an additive added into the good conductive alloy layer 5 laminated onto the natural oxide film. When the alloy of an Al group is selected as the good conductive alloy 5, it is also effective that Cu, Pd, Hf, Ti, etc., are added into an Al wiring and a metallic element easy to be sufficiently bonded with oxygen such as Mg, Ca, Be, Na, and K is further added.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐エレクトロマイグレーション性が向上した
薄膜配線及び、その製造方法と、それを用いた半導体装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film wiring with improved electromigration resistance, a method for manufacturing the same, and a semiconductor device using the same.

〔従来の技術〕[Conventional technology]

従来、半導体用薄膜配線は、通常Afi合金単層で用い
られてきた。しかしながら、この薄膜配線では、配線の
微細化に伴い、絶縁膜等から受ける応力により断線して
しまうストレスマイグレーシミンという現象が発生した
。又、高電流密度化に伴う、配線の断線(エレクトロマ
イグレーション)も発生し、不良の原因となっていた。
Conventionally, thin film wiring for semiconductors has usually been used as a single layer of Afi alloy. However, in this thin film wiring, as the wiring becomes finer, a phenomenon called stress migration shimin occurs in which the wiring breaks due to stress received from an insulating film or the like. Furthermore, as the current density increases, wire breakage (electromigration) also occurs, causing defects.

この問題を解決するため、例えば特開昭62−1908
50号公報のように、マイグレーションによる断線のほ
とんど起らない高融点金属を、A4合金と積層したり、
これを包んだりして一体化し、たとえA4合金が断線し
たとしても、高融点金属により、電気的接続を取ること
により、配線の断線を防止していた。
In order to solve this problem, for example, Japanese Patent Application Laid-Open No. 62-1908
As in Publication No. 50, a high melting point metal that hardly causes disconnection due to migration is laminated with A4 alloy,
They were wrapped and integrated, and even if the A4 alloy were to break, the high-melting point metal would maintain an electrical connection to prevent the wiring from breaking.

又、A2合金中に、Cu、Ti、Pd、Zr等の元素を
添加することにより、Al合金自身の耐マイグレーショ
ン、性を向上することも試みられてきた。
Furthermore, attempts have been made to improve the migration resistance and properties of the Al alloy itself by adding elements such as Cu, Ti, Pd, and Zr to the A2 alloy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この方法では、金属上にAΩ膜を堆積す
るため、Aαの結晶配向性が旧来のSinm上に堆積し
たときに比べ悪くなり、Al合金自身の耐マイグレーシ
ョン性は悪くなる。そのため、一端Aflに断線が発生
すると、断線部のスリットは、Alのエレクトロマイグ
レーションによる移動により、どんどん広くなる。
However, in this method, since the AΩ film is deposited on the metal, the crystal orientation of Aα becomes worse than when deposited on the conventional Sinm, and the migration resistance of the Al alloy itself becomes worse. Therefore, when a disconnection occurs at one end Afl, the slit at the disconnection portion becomes wider and wider due to movement of Al due to electromigration.

更に説明を加えると、高融点物質と、良導電性合金を積
層した場合、たとえ、マイグレーションに弱い良導電合
金は断線したとしても、高融点物質は、マイグレーショ
ンにたいして、十分強いので、高融点物質が断線するこ
とはなく、電気的接続は、取り続けられる。しかしなが
ら、良導電性合金の断線部のスリットが拡大すると、配
線の電気抵抗が上昇してしまう。
To explain further, when a high melting point material and a good conductive alloy are laminated, even if the good conductive alloy, which is weak against migration, breaks, the high melting point material is strong enough against migration, so the high melting point material There is no disconnection, and the electrical connection continues. However, when the slit in the disconnected portion of the highly conductive alloy becomes enlarged, the electrical resistance of the wiring increases.

高融点物質表面には、高融点物質中に含まれる最も酸素
と結合しやすい元素Mの自然酸化膜が存在している。そ
の様な状態で、高融点物質上に良導電性合金を堆積する
と、良導電性合金と高融点物質界面には、Mの自然酸化
膜が存在し、良導電性合金と高融点物質の密着性が良く
ない。そのため、良導電性合金は、エレクトロマイグレ
ーションにより、急速に移動し、断線部スリットを拡大
してしまう。
On the surface of the high melting point substance, there exists a natural oxide film of the element M, which is included in the high melting point substance and is most likely to bond with oxygen. When a highly conductive alloy is deposited on a high melting point substance in such a state, a natural oxide film of M exists at the interface between the good conductive alloy and the high melting point substance, and the adhesion between the good conductive alloy and the high melting point substance increases. Sex is not good. Therefore, the highly conductive alloy rapidly moves due to electromigration and enlarges the slit at the disconnection portion.

又、Al合金中に種々の元素を添加し、Al合金自身の
耐マイグレーション性を向上したとしても、その効果だ
けでは、スリットの拡大を防止するには不十分である。
Further, even if various elements are added to the Al alloy to improve the migration resistance of the Al alloy itself, the effect alone is insufficient to prevent the slit from expanding.

その結果、高抵抗の高融点金属層のみの部分が拡大し、
配線の電気抵抗が高くなる。これが、半導体装置の不良
発生の原因となる。
As a result, the area containing only the high-resistance, high-melting-point metal layer expands,
The electrical resistance of the wiring increases. This causes defects in the semiconductor device.

以上説明したように上記従来技術は、Alf!!i!線
断線後の、エレクトロマイグレーションによるスリット
の拡大に伴う電気抵抗上昇について考慮されておらず、
配線の電気抵抗上昇による半導体装置の不良発生の問題
があった。
As explained above, the above conventional technology is based on Alf! ! i! It does not take into account the increase in electrical resistance due to the enlargement of the slit due to electromigration after the wire is broken.
There has been a problem of failure of semiconductor devices due to increased electrical resistance of wiring.

本発明の目的は、エレクトロマイグレーションによるス
リットの拡大を防止することにあり、高信頼性の薄膜配
線、及びその製造方法を提供することを目的としている
An object of the present invention is to prevent the expansion of slits due to electromigration, and an object of the present invention is to provide a highly reliable thin film wiring and a method for manufacturing the same.

又、別の目的は、本発明による薄膜配線を用いることに
より、高信頼性の半導体装置を提供することにある。
Another object is to provide a highly reliable semiconductor device by using the thin film wiring according to the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため1本発明に係る薄膜配線は、融
点が1800に以上の高融点物質層と。
In order to achieve the above object, a thin film wiring according to the present invention includes a high melting point material layer having a melting point of 1800 or more.

良導電性合金層とが直接接触して一体化されているもの
である。すなわち、酸化膜を介さないで直接高融点物質
層と良導電性合金層とが積層している構造である。ここ
で、高融点物質層と良導電性合金層との直接接触は、高
融点物質層の表面に形成された自然酸化膜が、その上に
積層された良導電性合金層中に添加された添加物により
還元されることにより形成されたものであるのがよい。
It is integrated with a highly conductive alloy layer in direct contact with it. That is, it has a structure in which a high melting point material layer and a highly conductive alloy layer are directly laminated without an oxide film interposed therebetween. Here, the direct contact between the high melting point material layer and the highly conductive alloy layer means that the natural oxide film formed on the surface of the high melting point material layer is added to the highly conductive alloy layer laminated thereon. It is preferably formed by reduction with an additive.

ここで形成される良導電性合金層は薄膜、例えば1μm
以下の状態で5μΩC■以下好ましくは4μΩC鳳以下
のものである。
The conductive alloy layer formed here is a thin film, for example, 1 μm thick.
Under the following conditions, it is 5 μΩC or less, preferably 4 μΩC or less.

また、本発明に係る薄膜配線は、Tiを0.1%以上に
含んだ融点が1800に以上の高融点物質層と、Mg、
Ca、Be、Na、にの少なくとも1種類を0.1%以
上含んでいるAl合金から成る良導電性合金層とが直接
接触して一体化されているものである。ここで、Al合
金は更に、Cu、Pd、Ti、Hf、Zrの少なくとも
1種類を0.1%以上含んでいるものがよい。また、良
導電性合金としてはCu、Ag、Auの各基合金でもよ
い、高融点物質はTi、W−Ti合金、TiN、チタン
シリサイドのいずれかであるものが挙げられる。
Further, the thin film wiring according to the present invention includes a layer of a high melting point material containing 0.1% or more of Ti and having a melting point of 1800 or more, Mg,
A highly conductive alloy layer made of an Al alloy containing 0.1% or more of at least one of Ca, Be, and Na is integrated in direct contact with the layer. Here, it is preferable that the Al alloy further contains 0.1% or more of at least one of Cu, Pd, Ti, Hf, and Zr. Further, examples of the highly conductive alloy include alloys based on Cu, Ag, and Au, and examples of the high melting point substance include Ti, W--Ti alloy, TiN, and titanium silicide.

前記薄膜配線において、高融点物質中に0.1%以上含
まれる元素のうちで450”Cでの酸化物の標準生成自
由エネルギーが最も小さい元素をMとし、良導電性合金
中の0.1%以上含まれる元素のうちで450℃での酸
化物の標準生成自由エネルギーが最も小さい金属元素を
Nとすると、n M Om + N 4 n M + 
N On m(nmmは定数、nlは。と、の積、0は
酸素原子)の酸化還元反応における450℃での標準自
由エネルギー変化が一100KJ以下であるような元素
M及びNを各々含むものであるのがよい、また、前記薄
膜配線において、良導電性合金層中に予め含まれている
金属元素の酸化物が存在しているものがよい。
In the thin film wiring, M is the element with the smallest standard free energy of formation of an oxide at 450"C among the elements contained at 0.1% or more in the high melting point material, and 0.1% in the high conductive alloy. If the metal element with the smallest standard free energy of formation of an oxide at 450°C is N among the elements contained at least %, then n M Om + N 4 n M +
Contains the elements M and N such that the standard free energy change at 450°C in the redox reaction of N On m (nmm is a constant, nl is the product of , and 0 is an oxygen atom) is 1100 KJ or less In addition, in the thin film wiring, it is preferable that an oxide of a metal element previously contained in the highly conductive alloy layer is present.

本発明に係る薄膜配線の製造方法は、他部材に高融点物
質層を設ける工程と、その上に良導電性合金層を設ける
工程と、高融点物質層表面にできる自然酸化物を良導電
性合金中に予め添加されている添加物により還元させて
除き、前記高融点物質層と良導電性合金層とを直接接触
させた構造とする工程と、を含むのがよい。ここで、高
融点物質層はTiを0.1%以上含んだ融点1800に
以上のものであり、良導電性合金層はMg、Ca。
The method for manufacturing thin film wiring according to the present invention includes a step of providing a high melting point material layer on another member, a step of providing a highly conductive alloy layer thereon, and a step of providing a highly conductive alloy layer on the surface of the high melting point material layer. It is preferable to include the step of reducing and removing an additive previously added to the alloy to form a structure in which the high melting point substance layer and the highly conductive alloy layer are in direct contact with each other. Here, the high melting point material layer contains Ti at 0.1% or more and has a melting point of 1800 or more, and the highly conductive alloy layer is made of Mg and Ca.

Be、Na、にの少なくとも1種類を0.1%以上含ん
でいるAfi合金であり1両層を設けた後、350℃以
上で1o分以上加熱して前記還元反応をさせるものであ
るのがよい。好ましくは350℃以上500℃以下であ
り更に好ましくは400〜450℃である。あまり、高
温で処理すると半導体基板に対して悪影響を及ぼす原因
となるためである。
It is an Afi alloy containing 0.1% or more of at least one of Be, Na, etc. After forming both layers, it is heated at 350° C. or higher for 10 minutes or more to cause the reduction reaction. good. The temperature is preferably 350°C or higher and 500°C or lower, and more preferably 400 to 450°C. This is because processing at too high a temperature may cause an adverse effect on the semiconductor substrate.

本発明に係る半導体装置は、ベース部材と、ベース部材
上に配設されたLSIチップと、該LSIチップ上に設
けられた薄膜配線と、ベース材より突設され他部材と電
気的接続をする接続ピンと、この接続ピンと前記LSI
チップ上の薄膜配線とを接続するリード線と、前記LS
Iチップを封止する封止部材とを備えた半導体装置にお
いて、その薄膜配線を前記のいずれかのもので形成した
ものである。
A semiconductor device according to the present invention includes a base member, an LSI chip disposed on the base member, a thin film wiring provided on the LSI chip, and a thin film wiring protruding from the base member for electrical connection with other members. a connection pin, this connection pin and the LSI
A lead wire connecting the thin film wiring on the chip and the LS
In a semiconductor device equipped with a sealing member for sealing an I-chip, the thin film wiring is formed of one of the above-mentioned materials.

〔作用〕[Effect]

高融点物質層と、良導電性合金層とが酸化膜を介するこ
となく、直接接触して一体化されていると、高融点物質
と良導電性合金の密着性が向上する。このように、両層
間の密着性が向上すると、良導電性合金が、エレクトロ
マイグレーションにより移動しようとしても、高融点物
質からの拘束により移動できなくなる。この結果、断線
部スリットが拡大しなくなり、配線の電気抵抗上昇を防
止できる。そこで、良導電性合金中に、十分酸素と結合
しやすい元素Nを添加しておくと、NによりMの自然酸
化膜が還元され、高融点物質と、良導電性合金が、直接
コンタクトできる様になる。
When the high melting point substance layer and the good conductive alloy layer are directly contacted and integrated without intervening an oxide film, the adhesion between the high melting point substance and the good conductive alloy is improved. In this way, when the adhesion between both layers is improved, even if the highly conductive alloy tries to move by electromigration, it will not be able to move due to the restriction from the high melting point substance. As a result, the disconnection slit does not expand, and an increase in electrical resistance of the wiring can be prevented. Therefore, if enough N, an element that easily combines with oxygen, is added to a highly conductive alloy, the natural oxide film of M will be reduced by N, allowing direct contact between the high melting point substance and the highly conductive alloy. become.

又、現在半導体配線用膜として最も多く用いられれてい
る、AM基の合金を良導電性合金として選んだ場合、A
I2配線自身の耐エレクトロマイグレーション性を向上
するため、Cu、Pd、Hf。
In addition, if an AM-based alloy, which is currently most commonly used as a film for semiconductor wiring, is selected as a highly conductive alloy,
Cu, Pd, and Hf to improve the electromigration resistance of the I2 wiring itself.

Ti等を添加することがある。本発明は、これらの元素
を添加しても達成されるので、Al配線中にCu、Pd
、Hf、Ti等を添加し、さらに、十分酸素と結合しや
すい金属元素、例えばM g +Ca、Be、Na、K
を添加することも有効である。
Ti or the like may be added. The present invention can be achieved even when these elements are added, so Cu, Pd is added to the Al wiring.
, Hf, Ti, etc., and furthermore, metal elements that easily combine with oxygen, such as M g +Ca, Be, Na, K
It is also effective to add

さらに、本発明の目的を十分達成するには、Nによる自
然酸化膜の還元反応を十分に起させる必要がある。一方
、この反応は、固相反応であり、この反応を限られた時
間に十分起させるには、最低限350”C以上で10分
間以上の加熱がよい。
Furthermore, in order to fully achieve the object of the present invention, it is necessary to sufficiently cause the reduction reaction of the natural oxide film by N. On the other hand, this reaction is a solid-phase reaction, and in order to cause this reaction to occur sufficiently in a limited time, heating at a temperature of at least 350''C or more for 10 minutes or more is recommended.

又、本発明の目的は、高融点物質と、良導電性合金を積
層して一体化するだけでなく、良導電性合金を高融点物
質で包んで一体化しても達成される。
Further, the object of the present invention can be achieved not only by laminating and integrating a high melting point substance and a highly conductive alloy, but also by wrapping the highly conductive alloy with a high melting point substance and integrating them.

〔実施例〕〔Example〕

以下本発明を実施例によって詳細に説明する。 The present invention will be explained in detail below using examples.

第1図は、本発明における実施例の構造を示した断面図
である。第1図において、1はシリコンウェハー、2は
拡散層、3は熱酸化S i O,膜で、それにドライエ
ツチングによりコンタクトホール6が形成されている。
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention. In FIG. 1, 1 is a silicon wafer, 2 is a diffusion layer, 3 is a thermally oxidized SiO film, and a contact hole 6 is formed therein by dry etching.

その上に、スパッタ法により高融点物質層4を堆積し、
その上に良導電性合金層5が堆積されている6次に、高
融点物gt、層4と、良導電性合金層5を同時にパター
ンニングする。なお、この高融点物質層4は、コンタク
トホール6で拡散層2と接触している。次に、素子表面
を保護するパッシベーション膜7をCVD法により堆積
する。この様な状態にしたウェハーを450℃で30分
間加熱し急冷した。これにより、高融点物質M4の表面
にできた自然酸化膜を良導電性合金中に添加した添加物
によって還元し、両層4,5を酸化膜のない直接接触状
態のものとした。このようにして作製したウェハーを1
チツプごと分割する。
A high melting point material layer 4 is deposited thereon by sputtering,
A highly conductive alloy layer 5 is deposited thereon.Next, the high melting point substance gt layer 4 and the highly conductive alloy layer 5 are patterned simultaneously. Note that this high melting point material layer 4 is in contact with the diffusion layer 2 through a contact hole 6. Next, a passivation film 7 for protecting the element surface is deposited by CVD. The wafer in this state was heated at 450° C. for 30 minutes and then rapidly cooled. As a result, the natural oxide film formed on the surface of the high melting point substance M4 was reduced by the additive added to the highly conductive alloy, and both layers 4 and 5 were brought into direct contact with no oxide film. One wafer prepared in this way
Divide each chip.

このようにして作製したサンプルに、電流密度5 X 
10’A/aJ、温度150℃で通電したときの、通電
時間による電気抵抗変化を測定した。
The sample prepared in this way was given a current density of 5×
When electricity was applied at 10'A/aJ and a temperature of 150°C, changes in electrical resistance depending on the electricity application time were measured.

(実施例1) 高融点物質として、W−10%Ti合金を、良導電性合
金トシテ、Al−1%5i−0,3%Mg合金を用いた
場合について、また比較例としては良導電性合金として
、Al−1%Siを、高融点金属として、W−10%T
i合金を用いた場合を挙げてのべる。
(Example 1) As a high melting point substance, W-10% Ti alloy, a good conductive alloy Toshite, and an Al-1%5i-0.3% Mg alloy were used, and as a comparative example, a good conductive alloy was used. Al-1%Si as alloy, W-10%T as high melting point metal
A case in which i alloy is used will be described.

第2図に、通電時間による電気抵抗の変化を示したグラ
フを示す。同図により、Al−1%Siの良導電性合金
の場合は、時間の経過とともに、急速に電気抵抗の上昇
があったが、本発明に係るAl−1%5i−0,3%M
gの良導電性合金の場合には、電気抵抗の上昇がそれほ
ど急速ではなかった。
FIG. 2 shows a graph showing the change in electrical resistance depending on the energization time. According to the same figure, in the case of the highly conductive alloy of Al-1%Si, the electrical resistance increased rapidly with the passage of time, but the Al-1%5i-0.3%M alloy according to the present invention
In the case of the highly conductive alloy of g, the increase in electrical resistance was not as rapid.

第3図に300時間通電後の配線を、表面からamした
結果を示す、AM−1%Siを用いた比較例の配線では
、断線部8が、10μm程度に広がっているが2本発明
に係るAl−1%5i−0,3%Mgを用いた場合、断
線部9は、3μm程度広がっているのみである。
Fig. 3 shows the result of ampering the wiring from the surface after being energized for 300 hours. In the wiring of a comparative example using AM-1%Si, the disconnection part 8 has spread to about 10 μm. When such Al-1%5i-0.3%Mg is used, the disconnection portion 9 only extends by about 3 μm.

又、本発明に係るAl−1%5i−0,3%MgとW−
10%Ti界面を450℃30分アニール前と、アニー
ル後のサンプルでXPs分析した。その結果、Ti−0
結合ピークが、アニール前の試料では検出されたが、ア
ニール後の試料では、検出されなかった。又、Mg−0
ピークについても測定したところ、アニール前の試料で
は検出されなかったが、アニール後の試料では検出され
た。又、比較例のAl−1%SiとW−10%Ti界面
にも測定したが、アニール前、後、両方の試料について
Ti−0ビークが検出された。これらの結果により1M
gをAl合全中に添加すると、W−10%Ti合金上に
あるTi酸化物がMgにより還元されることがわかる。
Moreover, Al-1%5i-0.3%Mg and W-
XPs analysis of the 10% Ti interface was performed on samples before and after annealing at 450°C for 30 minutes. As a result, Ti-0
A binding peak was detected in the pre-annealed sample but not in the post-annealed sample. Also, Mg-0
When the peak was also measured, it was not detected in the sample before annealing, but it was detected in the sample after annealing. In addition, measurement was also performed on the Al-1%Si and W-10%Ti interfaces of the comparative example, and Ti-0 peaks were detected for both samples before and after annealing. Based on these results, 1M
It can be seen that when g is added during Al synthesis, Ti oxide on the W-10% Ti alloy is reduced by Mg.

この時、次の反応 の450℃における標準自由エネルギー変化ΔGは、−
122kJである。又、次の反応の450℃における標
準自由エネルギー変化は、−83kJである。このよう
に、通常の半導体プロセスで、 nMOm+N−+nM+NOnm (nmmは定数+nmは。と、の積、0は酸素原子)の
反応を十分に起こさせるには、この反応の標準自由エネ
ルギー変化は、−100kJ以下でなくてはならない。
At this time, the standard free energy change ΔG at 450°C for the following reaction is -
It is 122kJ. Further, the standard free energy change at 450°C for the following reaction is -83 kJ. In this way, in a normal semiconductor process, in order to sufficiently cause the reaction nMOm+N-+nM+NOnm (nmm is a constant + nm is the product of , where 0 is an oxygen atom), the standard free energy change for this reaction is - Must be less than 100kJ.

Al基合金に添加する元素としては、Mg以外にもMg
よりも酸素と結合しやすい、Ca HB e ?Na、
Kを添加しても有効である。
Elements added to Al-based alloys include Mg as well as Mg.
Ca HB e ? Na,
It is also effective to add K.

(実施例2) 次に、薄膜配線の加熱の効果について述べる。(Example 2) Next, the effect of heating thin film wiring will be described.

第4図に、良導電性合金としてAl−1%5i−0,3
%Mgを、高融点物質として、W−10%Tiを用いた
場合の、300’Cで30分加熱した試料と、400℃
で30分加熱した試料の通電時間による電気抵抗変化を
示す、この図より、300℃での加熱では、この場合は
不十分であり。
Figure 4 shows Al-1%5i-0,3 as a good conductive alloy.
%Mg and W-10%Ti as a high melting point substance, a sample heated at 300'C for 30 minutes and a sample heated at 400°C
From this figure, which shows the electrical resistance change depending on the current application time of a sample heated for 30 minutes at 300° C., heating at 300° C. is insufficient in this case.

400”Cで十分な効果が現われたことを示している。This shows that a sufficient effect was obtained at 400''C.

したがって、この実施例では少なくとも350℃で10
分以上加熱しなくては1本発明の効果が得られないこと
が分かる。
Therefore, in this example at least 10
It can be seen that the effects of the present invention cannot be obtained unless heating is performed for more than 1 minute.

(実施例3) 次に、Al合金中にMg等以外の、従来よりA12配線
自身の耐エレクトロマイグレーション性を向上するため
に添加されていた元素、例えばCu、Pd、Ti、Hf
等を添加した場合について述べる。
(Example 3) Next, elements other than Mg, which have been conventionally added to the Al alloy to improve the electromigration resistance of the A12 wiring itself, such as Cu, Pd, Ti, and Hf.
The following describes the case where the following substances are added.

第5図に、高融点物質としてW−10%Tiを、良導電
性合金としてAl2−1%S i−0,3%Mg−0,
3%Pdを用いた場合の、電流密度5X10’A/cd
で通電したときの通電時間による電気抵抗変化のグラフ
を、従来より用いられてきたAM−1%5i−0,3%
Pdと比較して記載する。コノ図より、Al−1%5i
−0,3%Pdでも電気抵抗の上昇は、ある程度抑えら
れるが、0.3%のMgを添加すると、さらに電気抵抗
上昇を抑えられる事がわかる。
Figure 5 shows W-10%Ti as a high melting point substance, Al2-1%Si-0, 3%Mg-0, and a high-conductivity alloy.
Current density 5X10'A/cd when using 3% Pd
The graph of the change in electrical resistance depending on the energization time when energized with AM-1%5i-0.3%, which has been used conventionally, is
This will be described in comparison with Pd. From the diagram, Al-1%5i
It can be seen that even -0.3% Pd can suppress the increase in electrical resistance to some extent, but adding 0.3% Mg can further suppress the increase in electrical resistance.

このように、Ju1合金自身の耐エレクトロマイグレー
ション性を向上する元素を添加し、さらに本発明の、高
融点物質と良導電性合金の密着性を向上させる元素を添
加すると、これらの相乗効果により、さらに電気抵抗上
昇が抑えられる。
In this way, by adding an element that improves the electromigration resistance of the Ju1 alloy itself, and further adding an element that improves the adhesion between the high melting point substance and the conductive alloy of the present invention, the synergistic effect of these elements will result in Furthermore, the increase in electrical resistance is suppressed.

(実施例4) 以上は、良導電性合金としてAl金合金用いた場合の実
施例について述べたが他のCu、Ag。
(Example 4) In the above, an example was described in which an Al-gold alloy was used as a good conductive alloy, but other Cu and Ag alloys were used.

Au基合金を用いてもよい。次にAl合金以外のCu合
金を用いた場合の実施例について述べる。
An Au-based alloy may also be used. Next, an example in which a Cu alloy other than an Al alloy is used will be described.

高融点物質としてM o 、良導電性合金としてCu−
1%Al合金を用いた場合の実施例を、良導電性合金と
して純Cuを用いた場合と比較して第6図に示す。同図
は、I X 10’A/aJの電流密度で150℃にお
いて通電した場合の電気抵抗変化を示している。この図
のように、Cu単体では、電気抵抗が上昇するが、Cu
−1%Alを用いると、はとんど電気抵抗は上昇しない
、このように本発明は、Al以外のCu g A u 
r A g等をベースにした配線にも用いることができ
る。
Mo as a high melting point substance, Cu as a good conductive alloy
An example using a 1% Al alloy is shown in FIG. 6 in comparison with a case using pure Cu as a highly conductive alloy. The figure shows the change in electrical resistance when electricity is applied at a current density of I x 10'A/aJ at 150°C. As shown in this figure, the electrical resistance increases with Cu alone, but Cu
- When 1% Al is used, the electrical resistance hardly increases.In this way, the present invention can be applied to Cu g A u other than Al.
It can also be used for wiring based on rAg, etc.

第7図は本発明に係る半導体装置の断面図を示す。図に
おいて10はセラミックからなるベース部材、11はL
SIチップ、12は他部材と電気的接続を図るための接
続ピン、13は薄膜配線、14はリード線、15はキャ
ップ状の封止部材、16はガラス又はゴム封止材、17
はろう材を示す。この半導体装置の薄膜配線13は前記
した高融点物質層と良導電性合金層とが直線接触して一
体化されている薄膜配線で形成されている。これにより
、半導体装置全体の信頼性が向上する。
FIG. 7 shows a cross-sectional view of a semiconductor device according to the present invention. In the figure, 10 is a base member made of ceramic, 11 is L
SI chip, 12 is a connecting pin for electrically connecting with other components, 13 is a thin film wiring, 14 is a lead wire, 15 is a cap-shaped sealing member, 16 is a glass or rubber sealing material, 17
indicates filler metal. The thin film wiring 13 of this semiconductor device is formed of a thin film wiring in which the above-described high melting point material layer and a highly conductive alloy layer are integrated in linear contact with each other. This improves the reliability of the entire semiconductor device.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高融点物質と良導電性合金の密着性を
向上することができるので、エレクトロマイグレーショ
ンによる薄膜配線の電気抵抗上昇を抑制することができ
る。この効果により、微細配線パターンを有する半導体
装置の信頼性を向上することができる。
According to the present invention, it is possible to improve the adhesion between a high melting point substance and a highly conductive alloy, so it is possible to suppress an increase in electrical resistance of thin film wiring due to electromigration. This effect makes it possible to improve the reliability of a semiconductor device having a fine wiring pattern.

本発明に係る製造方法によれば、前記薄膜配線を簡単に
製造することができる。
According to the manufacturing method according to the present invention, the thin film wiring can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の断面図、第2@は本発明の一
実施例の電気抵抗の通電時間による変化を公知例として
比較した図、第3図は第2図の試料を表面からll1t
察した図、第4図は焼鈍の効果について第2図と同様に
示した図、第5図は添加元素の効果について示した図、
第6図はCu基合金の実施例について示した図、第7図
は本発明に係る半導体装置の断面図を示す。 1・・・シリコンウェハー 2・・・拡散層、3・・・
熱酸化SiO2膜、4・・・高融点物質層、5・・・良
導電性合金層、 6・・・コンタクトホール、 7・・・パッシベーション膜、 13・・・薄膜配線。
Figure 1 is a cross-sectional view of an embodiment of the present invention, Figure 2 is a diagram comparing the change in electrical resistance of an embodiment of the present invention with current application time as a known example, and Figure 3 is a cross-sectional view of the sample in Figure 2. From ll1t
Figure 4 shows the effect of annealing in the same way as Figure 2, Figure 5 shows the effect of added elements,
FIG. 6 shows an example of a Cu-based alloy, and FIG. 7 shows a cross-sectional view of a semiconductor device according to the present invention. 1... Silicon wafer 2... Diffusion layer, 3...
Thermal oxidation SiO2 film, 4... High melting point material layer, 5... Good conductive alloy layer, 6... Contact hole, 7... Passivation film, 13... Thin film wiring.

Claims (1)

【特許請求の範囲】 1、融点が1800K以上の高融点物質層と、良導電性
合金層とが直接接触して一体化されている薄膜配線。 2、請求項1において、高融点物質と良導電性合金層と
の直接接触は、高融点物質層の表面に形成された自然酸
化膜が、その上に積層された良導電性合金層中に添加さ
れた添加物により還元されることにより形成されたもの
である薄膜配線。 3、Tiを0.1%以上に含んだ融点が1800K以上
の高融点物質層と、Mg、Ca、Be、Na、Kの少な
くとも1種類を0.1%以上含んでいるAl合金から成
る良導電性合金層とが直接接触して一体化されている薄
膜配線。 4、請求項3において、Al合金は更に、Cu、Pd、
Ti、Hf、Zrの少なくとも1種類を0.1%以上含
んでいる薄膜配線。 5、請求項3において、高融点物質層はTi、W−Ti
合金、TiN、チタンシリサイドのいずれかからなる薄
膜配線。 6、請求項1又は2において、高融点物質中に0.1%
以上含まれる元素のうちで450℃での酸化物の標準生
成自由エネルギーが最も小さい元素をMとし、良導電性
合金中の0.1%以上含まれる元素のうちで450℃で
の酸化物の標準生成自由エネルギーが最も小さい金属元
素をNとすると、 nMO_m+N→nM+NO_n_m (n、mは定数、nmはnとmの積、Oは酸素原子)の
酸化還元反応における450℃での標準自由エネルギー
変化が−100KJ以下であるような元素M及びNを各
々含むものである薄膜配線。 7、請求項2において、良導電性合金層中に予め含まれ
ている金属元素の酸化物が存在している薄膜配線。 8、他部材に高融点物質層を設ける工程と、その上に良
導電性合金層を設ける工程と、高融点物質層表面にでき
る自然酸化物を良導電性合金中に予め添加されている添
加物により還元させて除き、前記高融点物質層と良導電
性合金層とを直接接触させた構造とする工程と、を含む
薄膜配線の製造方法。 9、請求項8において、高融点物質層はTiを0.1%
以上含んだ融点1800K以上のものであり、良導電性
合金層はMg、Ca、Be、Na、Kの少なくとも1種
類を0.1%以上含んだAl合金であり、両層を設けた
後、350℃以上で10分以上加熱して前記還元反応を
させるものである薄膜配線の製造方法。 10、ベース部材と、ベース部材上に配設されたLSI
チップと、該LSIチップ上に設けられた薄膜配線と、
ベース材より突設され他部材と電気的接続をする接続ピ
ンと、この接続ピンと前記LSIチップ上の薄膜配線と
を接続するリード線と、前記LSIチップを封止する封
止部材とを備えた半導体装置において、前記薄膜配線は
請求項1〜7のいずれかのものである半導体装置。
[Claims] 1. A thin film wiring in which a high melting point material layer with a melting point of 1800K or more and a highly conductive alloy layer are directly contacted and integrated. 2. In claim 1, the direct contact between the high melting point substance and the conductive alloy layer means that the natural oxide film formed on the surface of the high melting point substance layer is in the conductive alloy layer laminated thereon. Thin film wiring formed by being reduced by added additives. 3. A high-melting material layer containing 0.1% or more of Ti and having a melting point of 1800K or more, and an Al alloy containing 0.1% or more of at least one of Mg, Ca, Be, Na, and K. Thin film wiring that is integrated with a conductive alloy layer in direct contact. 4. In claim 3, the Al alloy further includes Cu, Pd,
A thin film wiring containing 0.1% or more of at least one of Ti, Hf, and Zr. 5. In claim 3, the high melting point material layer is Ti, W-Ti
Thin film wiring made of alloy, TiN, or titanium silicide. 6. In claim 1 or 2, 0.1% in the high melting point substance
Among the elements contained above, the element with the smallest standard free energy of formation of an oxide at 450°C is defined as M, and among the elements contained at 0.1% or more in the conductive alloy, the oxide at 450°C is If the metal element with the lowest standard free energy of formation is N, then the standard free energy change at 450°C in the redox reaction of nMO_m+N→nM+NO_n_m (n, m are constants, nm is the product of n and m, O is oxygen atom) A thin film wiring containing elements M and N, each of which has a value of -100 KJ or less. 7. The thin film wiring according to claim 2, wherein an oxide of a metal element previously contained in the highly conductive alloy layer is present. 8. The process of providing a high melting point substance layer on another member, the process of providing a good conductive alloy layer thereon, and the addition of natural oxides formed on the surface of the high melting point substance layer to the good conductive alloy in advance. A method for producing a thin film wiring comprising the step of reducing and removing the high melting point substance layer with a substance to form a structure in which the high melting point substance layer and the highly conductive alloy layer are in direct contact with each other. 9. In claim 8, the high melting point material layer contains 0.1% Ti.
The well-conductive alloy layer is an Al alloy containing 0.1% or more of at least one of Mg, Ca, Be, Na, and K, and after providing both layers, A method for manufacturing thin film wiring, which involves heating at 350° C. or higher for 10 minutes or more to cause the reduction reaction. 10. Base member and LSI arranged on the base member
a chip, a thin film wiring provided on the LSI chip,
A semiconductor comprising a connecting pin that protrudes from a base material and makes an electrical connection to another member, a lead wire that connects the connecting pin to the thin film wiring on the LSI chip, and a sealing member that seals the LSI chip. 8. A semiconductor device, wherein the thin film wiring is any one of claims 1 to 7.
JP26997289A 1989-10-17 1989-10-17 Thin film wiring and semiconductor device Expired - Fee Related JP2936483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26997289A JP2936483B2 (en) 1989-10-17 1989-10-17 Thin film wiring and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26997289A JP2936483B2 (en) 1989-10-17 1989-10-17 Thin film wiring and semiconductor device

Publications (2)

Publication Number Publication Date
JPH03131031A true JPH03131031A (en) 1991-06-04
JP2936483B2 JP2936483B2 (en) 1999-08-23

Family

ID=17479792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26997289A Expired - Fee Related JP2936483B2 (en) 1989-10-17 1989-10-17 Thin film wiring and semiconductor device

Country Status (1)

Country Link
JP (1) JP2936483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102152A (en) * 1991-10-11 1993-04-23 Sony Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102152A (en) * 1991-10-11 1993-04-23 Sony Corp Semiconductor device

Also Published As

Publication number Publication date
JP2936483B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JP4221100B2 (en) Semiconductor device
TW473956B (en) Semiconductor device and a process for forming the semiconductor device
US5734200A (en) Polycide bonding pad structure
JPH088292A (en) Method for obtaining of metallographical stability in conductive bond of integrated circuit
JP2004039916A (en) Semiconductor device and its manufacturing method
US4042951A (en) Gold-germanium alloy contacts for a semiconductor device
JPH11307530A (en) Semiconductor device and its manufacture
US20070080391A1 (en) Semiconductor device with front side metallization and method for the production thereof
JPH03131031A (en) Thin-film wiring, manufacture thereof and semiconductor device
JP2002124524A (en) Wiring board
JP2000068269A (en) Semiconductor device and manufacture thereof
JP2003179059A (en) Semiconductor device
JPH06236878A (en) Metal wiring
JPS60193337A (en) Manufacture of semiconductor device
JP3638085B2 (en) Semiconductor device
JPH02123740A (en) Semiconductor device
US7531426B2 (en) Approach to high temperature wafer processing
JPH04192332A (en) Manufacture of thin film wiring and thin film wiring and semiconductor device
JPH02188922A (en) Electronic device and manufacture thereof
JPH0555296A (en) Semiconductor device
JPH0241905B2 (en)
JPH06252146A (en) Semiconductor device
JPH038346A (en) Brazing material
JPH06302600A (en) Semiconductor device
JPH0695516B2 (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees