JPH03130361A - Formation of compound film - Google Patents

Formation of compound film

Info

Publication number
JPH03130361A
JPH03130361A JP26875989A JP26875989A JPH03130361A JP H03130361 A JPH03130361 A JP H03130361A JP 26875989 A JP26875989 A JP 26875989A JP 26875989 A JP26875989 A JP 26875989A JP H03130361 A JPH03130361 A JP H03130361A
Authority
JP
Japan
Prior art keywords
substrate
film
target
ion beam
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26875989A
Other languages
Japanese (ja)
Inventor
Masahiro Katashiro
雅浩 片白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP26875989A priority Critical patent/JPH03130361A/en
Publication of JPH03130361A publication Critical patent/JPH03130361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To stably form the compd. film of a stoichiometric compsn. on a substrate surface by making gaseous reactive raw materials and the sputtered particles from a target incident to the substrate surface at the time of forming the thin film of the compd. on the substrate surface by a reactive ion beam sputtering method. CONSTITUTION:A holder 2 mounted with the substrate 3 consisting of a sintered body of SiC, etc., is disposed in a film forming chamber 1 and the target 4 consisting of Cr alone is disposed apart a high frequency coil 11 therein. The inside of the film forming chamber 1 is evacuated to a high vacuum and the gaseous Ar is supplied form a gas cylinder 7a to an ion source 6 and is accelerated as Ar ions by an accelerating electrode 5 to sputter the Cr target 4. The substrate 3 is irradiated with the sputtered particles of the Cr. The N2 of the reactive gas is supplied from a cylinder 7b into the film forming chamber 1 by a nozzle 8 and high frequency electric power is supplied from a power source 9 to the high frequency coil 11 to form the plasma near the substrate 3. The gaseous N2 is brought into reaction with the sputtered particles of the Cr by this plasma, by which the compd. film of CrN having the stoichiometric compsn. on the substrate 3 is stably formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、成膜チャンバー外にイオン源を有し、そこか
ら加速電極によりイオンビームを成膜チャンバー内に引
き出してターゲットに照射し、かつ膜の構成元素を含む
反応ガスを成膜チャンバー内に導入して、化合物膜を基
板上に堆積させる反応性イオンビームスパッタ法による
化合物膜の形成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has an ion source outside a film forming chamber, and an ion beam is drawn from there into the film forming chamber by an accelerating electrode to irradiate a target. The present invention relates to a method for forming a compound film by a reactive ion beam sputtering method in which a reactive gas containing constituent elements of the film is introduced into a film forming chamber to deposit the compound film on a substrate.

[従来の技術1 イオンビームスパッタ法は、イオン源を成膜チャンバー
外に設けるために、低圧でスパッタを行ない、成膜する
ことができる。そして、スパッタ粒子が、ターゲットか
ら基板に到達するまでに散乱を受けないために、高エネ
ルギーのまま基板に入射し、膜が高い付着力を有すると
いう利点がある。また、膜の構成元素を含む反応ガスを
成膜チャンバー内に導入することにより、化合物膜を成
膜することができる。
[Prior Art 1] In the ion beam sputtering method, since the ion source is provided outside the film forming chamber, sputtering can be performed at low pressure to form a film. Since the sputtered particles are not scattered before reaching the substrate from the target, they enter the substrate with high energy, and the film has the advantage of having high adhesion. Further, a compound film can be formed by introducing a reaction gas containing the constituent elements of the film into the film forming chamber.

ところが、単に反応ガスを導入するだけでは反応性に乏
しいために、化学量論組成の化合物膜を得られないとい
う問題があった。また、反応性を増すために反応ガスを
多く導入すると、スパッタ粒子が散乱されるようになり
、高エネルギー粒子の基板への入射というイオンビーム
スパッタ法の利点を生かせなくなってしまう。
However, there is a problem in that simply introducing a reactive gas results in poor reactivity, making it impossible to obtain a compound film with a stoichiometric composition. Furthermore, if a large amount of reactive gas is introduced to increase reactivity, sputtered particles will be scattered, making it impossible to take advantage of the advantage of ion beam sputtering in which high-energy particles are incident on the substrate.

そこで、従来、イオンビームスパッタ法の利点を生かし
つつ、更に反応性を向上させるために、「応用物理J 
Vol、55 p、119.1986には、スパッタに
使用するイオン源とは別に、反応ガスをイオン化するイ
オン源を設け、このイオン源からイオンビームを引き出
して膜を堆積する基板に照射する方法が開示されている
。また、特開昭61−124561号公報に開示される
ように、単一のイオンビームではあるが、イオンビーム
に反応ガスを含ませ、かつ基板をイオンビームが照射さ
れる位置に置くという方法も提案されている。
Therefore, in order to further improve reactivity while taking advantage of the advantages of conventional ion beam sputtering methods, we have developed
Vol. 55 p. 119.1986 describes a method in which an ion source for ionizing a reactive gas is provided in addition to the ion source used for sputtering, and an ion beam is extracted from this ion source to irradiate the substrate on which a film is to be deposited. Disclosed. Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 124561/1982, although it is a single ion beam, there is also a method in which the ion beam contains a reactive gas and the substrate is placed at a position where the ion beam is irradiated. Proposed.

[発明が解決しようとする課題] しかし、従来の反応性イオンビームスパッタ法は、どち
らも反応性向上のために反応ガスをイオンビームにして
基板に照射するという方法であるために、基板が絶縁体
の゛場合にはイオンの持つ電荷が蓄積されるチャージア
ップのために、継続的にイオンビームを基板に照射でき
ないという問題があった。すなわち、従来法では、絶縁
性の基板に化学量論組成の化合物膜を形成することは困
難であった。
[Problems to be Solved by the Invention] However, in both conventional reactive ion beam sputtering methods, the substrate is irradiated with a reactive gas in the form of an ion beam in order to improve reactivity. In the case of a body, there is a problem in that the substrate cannot be continuously irradiated with an ion beam due to charge-up in which the electric charge of the ions is accumulated. That is, in the conventional method, it is difficult to form a compound film having a stoichiometric composition on an insulating substrate.

本発明は、かかる従来の問題点に鑑みてなされたもので
、膜が高い付着力を有するというイオンビームスパッタ
法の利点を生かしつつ、絶縁性の基板に対しても化学量
論組成の化合物膜を成膜することができる化合物膜の形
成方法を提供することを目的とする。
The present invention has been made in view of such conventional problems, and while taking advantage of the ion beam sputtering method in which the film has high adhesion, it is also possible to form a compound film with a stoichiometric composition on an insulating substrate. An object of the present invention is to provide a method for forming a compound film that can form a compound film.

[課題を解決するための手段] 上記目的を解決するために、本発明は、反応性イオンビ
ームスパッタ法により化合物膜を形成するにあたり、全
圧I X 10−’〜l X 10−”Torrの雰囲
気下で、スパッタと同時に投入電力10〜50Wの高周
波放電によるプラズマを基板近傍に形成することとした
[Means for Solving the Problems] In order to solve the above objects, the present invention provides a method for forming a compound film by reactive ion beam sputtering at a total pressure of I x 10-' to l x 10-'' Torr. In an atmosphere, plasma was formed near the substrate by high-frequency discharge with input power of 10 to 50 W at the same time as sputtering.

本発明において、全圧をlXl0−’〜lXl0−”T
orrとしたのは、I X 10−’Torrより高真
空であると、イオン源の放電室内で放電が起きないため
にイオンビームな引き出すことができなくなってしまう
からであり、一方I X 10−”Torrより高圧で
あると、スパッタ粒子が散乱して基板に入射し、高エネ
ルギーを保つことができないからである。すなわち、真
空中のスパッ粒子の平均自由行程は、圧力がI X 1
O−3Torrより高真空の下では約5Cffi以上で
あり、基板とターゲットとの距離は通常その程度ある。
In the present invention, the total pressure is
The reason for setting the value to be orr is that if the vacuum is higher than I X 10 Torr, no discharge will occur in the discharge chamber of the ion source, making it impossible to extract the ion beam. "If the pressure is higher than Torr, the sputtered particles will scatter and enter the substrate, making it impossible to maintain high energy. In other words, the mean free path of the sputtered particles in vacuum is
Under a vacuum higher than O-3 Torr, it is about 5 Cffi or more, and the distance between the substrate and the target is usually about that extent.

したがって、この場合のスパッタ粒子は半分以上が一度
も散乱されずに基板に入射することになり、高エネルギ
ーを保つことができるのである。
Therefore, in this case, more than half of the sputtered particles are incident on the substrate without being scattered even once, and high energy can be maintained.

また、高周波コイルへの投入電力を10〜50Wとした
のは、LOW未満であると、継続した放電が起きないた
めに安定したプラズマを形成できないからであり、一方
50Wを越えると、イオン源が正常に動作しなくなるか
らである。すなわち、プラズマ中のイオンは投入電力が
大きいほど高いエネルギーを持つが、反面プラズマの領
域が広がってイオン源の内部にまで及んでしまうために
、イオン源が正常に動作しなくなるのである。
In addition, the reason why the power input to the high frequency coil is set to 10 to 50 W is because if it is less than LOW, a stable plasma cannot be formed because continuous discharge does not occur, whereas if it exceeds 50 W, the ion source will not work. This is because it will not work properly. That is, the ions in the plasma have higher energy as the input power increases, but on the other hand, the plasma region expands and extends into the ion source, causing the ion source to malfunction.

[作 用] 上記構成の化合物膜の形成方法によれば、イオンビーム
によりスパッタされた粒子は、高エネルギーのまま基板
に入射する。一方、反応ガスは、プラズマ中でイオン化
されて基板に入射する。基板上では、反応ガスのイオン
が非常に活性であるためにスパッタ粒子との反応が促進
され、化学量論組成の化合物膜が形成される。基板が絶
縁体の場合でも、高周波放電であるために、動き易さの
度合いの大きい電子が基板に蓄積された電荷を打ち消し
てしまう。したがって、継続してイオンが基板に入射し
、化合物膜が形成される。
[Function] According to the method for forming a compound film having the above configuration, particles sputtered by an ion beam enter the substrate with high energy. On the other hand, the reactive gas is ionized in the plasma and enters the substrate. On the substrate, since the ions of the reactive gas are very active, the reaction with the sputtered particles is promoted, and a compound film having a stoichiometric composition is formed. Even if the substrate is an insulator, since the discharge is a high-frequency discharge, the highly mobile electrons cancel out the charge accumulated on the substrate. Therefore, ions continue to be incident on the substrate, forming a compound film.

[実施例] (第1実施例) 第1図は、本実施例で用いたスパッタ装置を示すもので
、成膜チャンバ−1内上部には、基板ホルダー2が固設
されており、この基板ホルダー2には基板3が取り付け
られている。また、基板3に対向する位置にはターゲッ
ト4が斜めに配置されている。一方、成膜チャンバー1
の側壁には、加速電極5を備えたイオン源6が設けられ
ている。イオン源6は、ガスボンベ7aに接続され、イ
オンを生成し、加速電極5でイオンビームとして成膜チ
ャンバー1内に引き出してターゲット4に照射し、スパ
ッタを行なうものである。また、ガスボンベ7bにはガ
ス導入ノズル8が接続されており、成膜チャンバー1内
に所望の化合物膜を構成する元素を含む反応ガスを導入
できるようになっている。
[Example] (First Example) Fig. 1 shows a sputtering apparatus used in this example, in which a substrate holder 2 is fixedly installed in the upper part of a film forming chamber 1, and this substrate A substrate 3 is attached to the holder 2. Further, a target 4 is disposed obliquely at a position facing the substrate 3. On the other hand, deposition chamber 1
An ion source 6 equipped with an accelerating electrode 5 is provided on the side wall of the ion source 6 . The ion source 6 is connected to the gas cylinder 7a, generates ions, and extracts them into the film forming chamber 1 as an ion beam using the accelerating electrode 5, and irradiates the target 4 to perform sputtering. Further, a gas introduction nozzle 8 is connected to the gas cylinder 7b, so that a reaction gas containing elements constituting a desired compound film can be introduced into the film forming chamber 1.

さらに、成膜チャンバーl外には、高周波電源9が設け
られており、この高周波電源9にはマツチングボックス
10を介して高周波コイル11が接続されている。そし
て、高周波コイル11の先端は、基板3の近傍に位置す
るように設けられている。
Furthermore, a high frequency power source 9 is provided outside the film forming chamber 1, and a high frequency coil 11 is connected to this high frequency power source 9 via a matching box 10. The tip of the high frequency coil 11 is provided so as to be located near the substrate 3.

本実施例では、上記構成のスパッタ装置により、CrN
膜を絶縁性の基板3であるSiC焼結体の上に形成した
In this example, CrN
A film was formed on an SiC sintered body serving as an insulating substrate 3.

すなわち、Cr単体をターゲット4とし、イオン源6に
はArを2.0 X 10−’Torrまで導入してイ
オンビームを取り出した。また、反応ガスとしてN2を
成膜チャンバー1内の全圧が1.OXl0−’Torr
となるように導入した。高周波コイル11にはSOWの
電力を投入して放電させ、基板3の近傍にプラズマを形
成した。イオンビームは加速電圧lK’/でターゲット
4を照射し、スパッタされた粒子はプラズマから基板3
に入射するN+イオンと反応して、CrN膜が形成され
た。
That is, Cr alone was used as the target 4, Ar was introduced into the ion source 6 to a level of 2.0 x 10-' Torr, and an ion beam was extracted. Further, N2 was used as a reaction gas so that the total pressure inside the film forming chamber 1 was 1. OXl0-'Torr
It was introduced so that SOW power was applied to the high frequency coil 11 to cause discharge, and plasma was formed near the substrate 3. The ion beam irradiates the target 4 with an accelerating voltage lK'/, and the sputtered particles are transferred from the plasma to the substrate 3.
A CrN film was formed by reacting with the N+ ions incident on the sample.

第2図は、このようにして形成した膜のX線回折パター
ンであり、CrNの生成が確認できた。
FIG. 2 shows an X-ray diffraction pattern of the film thus formed, and the formation of CrN was confirmed.

また1本実施例で形成した膜は、引っかき試験による付
着強度の測定の結果、1 、5GPa以上という高い値
を示した。
Furthermore, as a result of measuring the adhesion strength by a scratch test, the film formed in this example showed a high value of 1.5 GPa or more.

(第2実施例) 本実施例では、第1図に示す構成のスパッタ装置により
、Al2N膜を絶縁性の基板3であるガラスの上に形成
した。
(Second Example) In this example, an Al2N film was formed on glass, which is an insulating substrate 3, using a sputtering apparatus having the configuration shown in FIG.

すなわち、Aj2単体をターゲット4とし、イオン源6
にはArを2.OX 10−’Torrまで導入してイ
オンビームを取り出した。また、反応ガスとしてN H
sを成膜チャンバー1内の全圧が8.OXl0−’To
rrとなるように導入した。高周波コイル11には50
Wの電力を投入して放電させ、基板Jの近傍にプラズマ
を形成した。イオンビームは加速電圧1Kvでターゲッ
ト4を照射し、スパッタされた粒子はプラズマから基板
3に入射するNを含むイオンと反応して、Al2N膜が
形成された。
That is, Aj2 alone is used as the target 4, and the ion source 6
2. The ion beam was introduced to OX 10-'Torr and extracted. In addition, N H as a reaction gas
s when the total pressure inside the film forming chamber 1 is 8. OXl0-'To
It was introduced so that rr. 50 for the high frequency coil 11
Power of W was applied to cause discharge, and plasma was formed in the vicinity of the substrate J. The ion beam irradiated the target 4 with an accelerating voltage of 1 Kv, and the sputtered particles reacted with ions containing N that entered the substrate 3 from the plasma, forming an Al2N film.

第3図は、このようにして形成した膜のX線回折パター
ンであり、AffNの生成が確認できた。
FIG. 3 shows an X-ray diffraction pattern of the film thus formed, and the formation of AffN was confirmed.

また、本実施例で形成した膜は、引っかき試験による付
着強度の測定の結果、1.9GPaという高い値を示し
た。
Furthermore, the film formed in this example showed a high value of 1.9 GPa as a result of measuring the adhesion strength by a scratch test.

(第3実施例) 本実施例では、第1図に示す構成のスパッタ装置により
、Cr5C*膜を絶縁性の基板3であるSiC焼結体の
上に形成した。
(Third Example) In this example, a Cr5C* film was formed on a SiC sintered body, which is an insulating substrate 3, using a sputtering apparatus having the configuration shown in FIG.

すなわち、Cr単体をターゲット4とし、イオン源6に
はArを1.OX 10−’Torrまで導入してイオ
ンビームな取り出した。また、反応ガスとしてCH4を
成膜チャンバー1内の全圧が1.OXl0−”Torr
となるように導入した。高周波コイル11には50Wの
電力を投入して放電させ、基板3の近傍にプラズマを形
成した。イオンビームは加速電圧IKVでターゲット4
を照射し、スパッタされた粒子はプラズマから基板3に
入射するCを含むイオンと反応して、CrxCz膜が形
成された。
In other words, the target 4 is Cr alone, and the ion source 6 is 1.5% Ar. The ion beam was introduced to OX 10-'Torr and extracted. Further, CH4 is used as a reaction gas so that the total pressure inside the film forming chamber 1 is 1. OXl0-”Torr
It was introduced so that A power of 50 W was applied to the high frequency coil 11 to cause it to discharge, thereby forming plasma near the substrate 3. The ion beam is aimed at target 4 with an accelerating voltage of IKV.
The sputtered particles reacted with C-containing ions incident on the substrate 3 from the plasma, forming a CrxCz film.

このようにして得られた膜は、第1.2実施例と同様の
評価により、CrxCzの生成と、高い付着力が確認で
きた。
The film thus obtained was evaluated in the same manner as in Example 1.2, and it was confirmed that CrxCz was produced and that the film had high adhesion.

[発明の効果] 以上のように1本発明の化合物膜の形成方法によれば、
全圧I X 10−’〜I X 10−”Torrの雰
囲気下で、スパッタと同時に投入電力10〜50Wの高
周波放電によるプラズマを基板近傍に形成することとし
たので、膜が高い付着力を有するというイオンビームス
パッタ法の利点を生かしつつ、絶縁性の基板に対しても
化学量論組成の化合物膜を成膜することができる。
[Effects of the Invention] As described above, according to the method for forming a compound film of the present invention,
Because we decided to form plasma near the substrate by high-frequency discharge with an input power of 10 to 50 W at the same time as sputtering in an atmosphere with a total pressure of I x 10-' to I x 10-' Torr, the film had high adhesion. While taking advantage of the advantages of the ion beam sputtering method, it is possible to form a compound film with a stoichiometric composition even on an insulating substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の各実施例で用いたスパッタ装置の概略
構成図、第2図および第3図はそれぞれ本発明の第1実
施例および第2実施例で得た化合物膜のX線回折結果を
示すチャートである。 l・・・成膜チャンバー 3・・・基板 4・・・ターゲット 6・・・イオン源 9・・・高周波電源 1 1・・・高周波コイル
Figure 1 is a schematic diagram of the sputtering apparatus used in each example of the present invention, and Figures 2 and 3 are X-ray diffraction diagrams of compound films obtained in the first and second examples of the present invention, respectively. It is a chart showing the results. l... Film formation chamber 3... Substrate 4... Target 6... Ion source 9... High frequency power supply 1 1... High frequency coil

Claims (1)

【特許請求の範囲】[Claims] (1)反応性イオンビームスパッタ法により化合物膜を
形成するにあたり、全圧1×10^−^4〜1×10^
−^3Torrの雰囲気下で、スパッタと同時に投入電
力10〜50Wの高周波放電によるプラズマを基板近傍
に形成することを特徴とする化合物膜の形成方法。
(1) When forming a compound film by reactive ion beam sputtering, the total pressure is 1 x 10^-^4 to 1 x 10^
- A method for forming a compound film characterized by forming plasma in the vicinity of a substrate by high-frequency discharge with an input power of 10 to 50 W at the same time as sputtering in an atmosphere of 3 Torr.
JP26875989A 1989-10-16 1989-10-16 Formation of compound film Pending JPH03130361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26875989A JPH03130361A (en) 1989-10-16 1989-10-16 Formation of compound film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26875989A JPH03130361A (en) 1989-10-16 1989-10-16 Formation of compound film

Publications (1)

Publication Number Publication Date
JPH03130361A true JPH03130361A (en) 1991-06-04

Family

ID=17462931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26875989A Pending JPH03130361A (en) 1989-10-16 1989-10-16 Formation of compound film

Country Status (1)

Country Link
JP (1) JPH03130361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443232B1 (en) * 2002-04-17 2004-08-04 재단법인서울대학교산학협력재단 Inductively Coupled Plasma Assisted Ion Plating System

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443232B1 (en) * 2002-04-17 2004-08-04 재단법인서울대학교산학협력재단 Inductively Coupled Plasma Assisted Ion Plating System

Similar Documents

Publication Publication Date Title
US4676194A (en) Apparatus for thin film formation
US6274014B1 (en) Method for forming a thin film of a metal compound by vacuum deposition
US4673475A (en) Dual ion beam deposition of dense films
CA2326202C (en) Method and apparatus for deposition of biaxially textured coatings
JPH0770754A (en) Apparatus for coating substrate
US3562142A (en) R.f.sputter plating method and apparatus employing control of ion and electron bombardment of the plating
DE50201853D1 (en) PROCESS FOR PRODUCING COATED SUBSTRATES
Ishikawa Negative ion beam technology for materials science
JPH0521986B2 (en)
KR100273326B1 (en) High frequency sputtering apparatus
JPS627852A (en) Formation of thin film
JPH03130361A (en) Formation of compound film
JPS5947728A (en) Method and apparatus for plasma coating
Voevodin et al. Studies of atom beams produced by a saddle field source used for depositing diamond-like carbon films on glass
JPS5489983A (en) Device and method for vacuum deposition compound
JPS6176665A (en) Device for forming film deposited by evaporation
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPS61210190A (en) Thin film forming device
Takeuchi et al. A compact ion source using a hollow cathode discharge and its application to thin film formation
Kitajima et al. Deuterium ion irradiation of SiC and Si C Al O compound films on molybdenum
JP2744505B2 (en) Silicon sputtering equipment
JPS5966045A (en) Surface modifying device
JPH04358058A (en) Method and apparatus for forming thin film
JPH02282472A (en) Thin film producing device
JPH0328367A (en) Plasma sticking device